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Abstract. The input of the Edge Multicut problem consists of an undi-
rected graph G and pairs of terminals {s1, t1}, . . . , {sm, tm}; the task is
to remove a minimum set of edges such that si and ti are disconnected
for every 1 ≤ i ≤ m. The parameterized complexity of the problem,
parameterized by the maximum number k of edges that are allowed to
be removed, is currently open. The main result of the paper is a param-
eterized 2-approximation algorithm: in time f(k) · nO(1), we can either
find a solution of size 2k or correctly conclude that there is no solution
of size k.

The proposed algorithm is based on a transformation of the Edge
Multicut problem into a variant of parameterized Max-2-SAT problem,
where the parameter is related to the number of clauses that are not
satisfied. It follows from previous results that the latter problem can
be 2-approximated in a fixed-parameter time; on the other hand, we
show here that it is W[1]-hard. Thus the additional contribution of the
present paper is introducing the first natural W[1]-hard problem that is
constant-ratio fixed-parameter approximable.

1 Introduction

The minimum cut problem and its variants are among the most well-studied
combinatorial optimization problems. The focus of the paper is Edge Multicut:
given a graph G and pairs of vertices {s1, t1}, . . . , {sm, tm}, remove a minimum
set of edges such that si and ti are disconnected for every 1 ≤ i ≤ m. Edge
Multicut generalizes the classical s − t cut problem (disconnect s and t) and
the Multiway Cut problem (disconnect all the terminals from each other). Edge
Multicut can be approximated within a factor of O(log m) in polynomial time
[13] (even in the weighted case where the goal is to minimize the total weight
of the removed edges). However, under the Unique Games Conjecture of Khot
[17], no constant factor approximation is possible for Edge Multicut [5].
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National Research Fund (OTKA grant 67651).
�� Supported by Science Foundation Ireland (Grant Number 05/IN/I886).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 647–658, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



648 D. Marx and I. Razgon

Parameterized complexity approaches hard computational problems through
a multivariate analysis of the running time. Instead of expressing the running
time as a function of the input size n only, the running time is expressed as a
function of n and k, where k is a well-defined parameter of the input instance. We
say that a problem (with a particular parameter k) is fixed-parameter tractable
(FPT) if it can be solved in time f(k) · nO(1), where f is an arbitrary function
depending only on k. Thus we relax polynomial time by allowing exponential (or
worse!) dependence on the parameter k. For more background on parameterized
complexity, the reader is referred to the monographs [10,12,22].

Edge Multicut on trees is FPT, parameterized by the maximum number k of
edges that can be deleted [3,15]. The problem and its vertex-cut version were
studied in [14] for other classes of graphs. For general graphs, Edge Multicut is
FPT if both k and m are chosen as parameters (i.e, the problem can be solved in
time f(k, m) ·nO(1)) [19,26]. However, it is an open question whether Edge Mul-
ticut is FPT in general graphs parameterized by k only. Besides the fundamental
nature of the problem, there are other reasons why this question is important. It
has been observed that Edge Multicut is equivalent to Fuzzy Cluster Editing, a
correlation clustering problem [2,8,1]. Furthermore, it seems that cut problems
are important ingredients in the solution of certain parameterized problems. For
example, the fixed-parameter tractability of Directed Feedback Vertex Set [6]
was a longstanding open question and solving a variant of directed multicut was
an important step in its solution.

Recently, it has been proposed that the notion of approximability can be
investigated in the framework of fixed-parameter tractability as well [4,7,9,21].
Here we follow this approach and present a parameterized 2-approximation for
Edge Multicut: the main result of the paper is an algorithm with running time
f(k) ·nO(1) that, given an instance of the Edge Multicut problem and an integer
k, either finds a solution of size 2k or correctly concludes that no solution of size
k exists. As surveyed in [21], so far there are very few natural problems where
a parameterized approximation is possible, but the problem is not known to be
fixed-parameter tractable.

The main idea of our approximation algorithm is to reduce Edge Multicut
to a variant of Almost 2SAT (delete k clauses to make a 2-CNF formula sat-
isfiable). The reduction is nontrivial: it consists of several steps and requires
the use of iterative compression. Almost 2SAT is known to be fixed-parameter
tractable [24] and this immediately implies a parameterized 2-approximation for
the variant we use here. Proving that this variant is FPT would seem an obvious
approach for proving that Edge Multicut is FPT. However, we rule out this pos-
sibility by showing the W[1]-hardness of the Almost 2SAT variant. This might
be of independent interest, as it is the first natural W[1]-hard problem having a
constant-ratio parameterized approximation.

Besides giving an algorithm for a particular problem, the paper has a con-
ceptual contribution as well by introducing a new technique: we demonstrate
that reduction to Almost 2SAT can be a useful approach in the design of fixed-
parameter algorithms. We believe that this technique will find uses for other
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problems in the future. However, it is not obvious what type of problems can
be handled this way: for example, it was not apparent that Multicut has any
connections with 2SAT.

2 Preliminaries

The objects considered in the present paper are (simple undirected) graphs and
2-cnf formulas. We define the related notation that will be used further in the
paper. For a graph G, we denote by V (G) and E(G) its set of vertices and edges,
respectively. For C such that either C ⊆ V (G) or C ⊆ E(G), G \C is the graph
obtained from G by removal of the elements of C (if C ⊆ V (G) then the edges
incident to C are removed from G as well). For E∗ ⊆ E(G), G[E∗] is a graph
whose set of edges is E∗ and the set of vertices is the set of end points of E∗.

Let us specify two sets {s1, . . . , s�} and {t1, . . . , t�} of vertices of G and call
their union the set of terminal vertices. Let T = {{s1, t1}, . . . , {sl, t�}} and let
C be either a set of non-terminal vertices or a set of edges of G such that G \C
has no path between si and ti for each i from 1 to l. In this case, we say that C
separates T in G. If C is a set of edges, we also say that C is an edge multicut
(emc) of (G,T). Let Y ⊆ V (G). We say that C separates T and Y in G if C
separates T in G and G \C has no path between any two distinct vertices of Y .
If C is a set of edges, we also say that C is an emc of (G,T, Y ). Note that in
the Edge Multicut problem we have to find a set of edges that separates a set T
of terminal pairs.

Now we define the central problem considered in the present paper.

The emc problem
Input: A graph G, an integer k, and a set T of pairs of terminal vertices
of G
Parameter: k
Output: An emc of (G,T) of size at most k or ‘NO’ if no such emc
exists.

We will also need the auxiliary problems defined below and referred as aemc1
and aemc2.

The aemc1 problem
Instance: A graph G, an integer k, a set T of pairs of terminal vertices
of G, a set Y of at most 2k + 1 non-terminal vertices separating T in G
Parameter: k
Output: An emc of (G,T, Y ) of size at most k or ‘NO’ if no such emc
exists.

The aemc2 problem
Instance: The same as in the aemc1 problem
Parameter: k
Output: An emc of (G,T) of size at most k or ‘NO’ if no such emc
exists.
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Finally, we use the following modification of the Almost 2-sat problem [24].
Let F be a 2-cnf formula and let C = (�1 ∨ �2) be a clause of F . A literal l
satisfies C if � = �1 or � = �2. A set L of literals satisfies F or, in other words,
L is a satisfying assignment of F if L does not contain a literal together with
its negation and each clause of F is satisfied by at least one literal of L. Let
L = {�1, . . . , �r}. We denote the 2-cnf formula

∧r
i=1(�i ∨ �i) by

∧
L. The clause

(�1 → �2) is shorthand for (¬�1 ∨ �2).

Almost 2-sat problem with blocks and fixed literals (2-asat-bfl)
Instance: (F, P, L, k) where

– F is a satisfiable 2-cnf formula with possible repeated occurrences
of clauses;

– P is a family of (not necessarily disjoint) subsets (blocks) of at most
2 clauses covering all the clauses of F ;

– L is a set of literals;
– k is a non-negative integer.

Parameter: k.
Output: A set B of at most k blocks of P such that F ′∧∧

L is satisfiable
(F ′ is the formula obtained from F as a result of removal of the clauses
of B) or ‘NO’ if no such set of blocks exists.

Let P be a parameterized problem where the parameter k is an integer ap-
pearing in the input and the task is to find some object of size at most k or
report ‘NO’ if no such object exists. Following [7,21], we say that problem P
is fixed-parameter approximable (FPA) with ratio c if there is an f(k) · nO(1)

time algorithm that either returns an object satisfying all output specifications
except that its size is at most ck, or ‘NO’ and in the latter case it is guaranteed
that there is no object of size at most k satisfying the output specifications.

Proposition 1. The 2-asat-bfl problem is FPA with ratio 2 and the approx-
imation can be achieved in time O(25kkm2) where m is the number of clauses
of F .

Proof. Claim 8 in [23] (this is the full version of [24]) states that in time O(5kkm2)
it is possible either to compute a set S of at most k clauses so that F ′ ∧ ∧

L is
satisfiable, where F ′ is the formula obtained from F as a result of the removal of S,
or to conclude that no such set of clauses exists. Run this algorithm with parameter
2k (thus raising the exponential part to 25k). Assume that the algorithm returns
a set S of clauses of size at most 2k. Then return an arbitrary minimal set B of
blocks covering these clauses. Otherwise return ‘NO’. Clearly, if a set of blocks B is
returned and F ′ is the formula resulting from removal of the clauses of these blocks
from F then F ′ ∧ ∧

L is satisfiable: in particular, all clauses of S are removed. If
the resulting algorithm returns ‘NO’, it follows that removal of 2k clauses cannot
make F satisfiable. Since each block consists of at most 2 clauses, it follows that
removal of k blocks cannot make F satisfiable, implying that the ‘NO’ answer is
correct. ��
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3 Reduction to Almost 2-Sat

Let (G,T, Y, k) be an instance of the aemc1 problem. We define the instance
(F, P, L, k) of the 2-asat-bfl problem corresponding to (G,T, Y, k). Then we
show that (G,T, Y, k) is a ‘YES’ instance of the aemc1 problem1 if and only if
(F, P, L, k) is a ‘YES’ instance of the 2-asat-bfl problem. The fixed-parameter
approximability of the aemc1 will then follow from Proposition 1.

The set of variables of F is {zu,v|u ∈ V (G), v ∈ Y }. The variable zu,v repre-
sents the truth of the ground statement “u and v belong to the same connected
component”. The clauses of F can be partitioned into the following 3 groups.

Group 1. For each {si, ti} ∈ T and for each v ∈ Y , the group contains 2k + 1
copies of clause (¬zsi,v ∨ ¬zti,v). The purpose of these clauses is to forbid
two terminals to be separated to belong to the same connected component.

Group 2. For each pair {v1, v2} of vertices of Y such that v1 
= v2, and for each
u ∈ V (G) the group contains 2k + 1 copies of clause (¬zu,v1 ∨ ¬zu,v2). The
purpose of these clauses is to forbid two different vertices of Y to belong to
the same connected component.

Group 3. For each {u, v} ∈ E(G) and for each w ∈ Y , the group contains
clause (zu,w → zv,w) and clause (zv,w → zu,w). These clauses show that
vertices u and v belong to the same connected component.

Observe that F is satisfiable, for instance, by an assignment including the neg-
ative literals of all the variables. The set P of blocks is defined as follows. For
each clause of F there is a block containing this clause only. Also for all possible
pairs {(u, w1), (v, w2)} where {u, v} ∈ E(G), w1 ∈ Y , w2 ∈ Y , there is a block
{(zu,w1 → zv,w1), (zv,w2 → zu,w2)}. Finally, L = {zv,v|v ∈ Y }.
Lemma 2. If (G,T, Y, k) is a ‘YES’ instance of the aemc1 problem then
(F, P, L, k) is a ‘YES’ instance of the 2-asat-bfl problem.

Proof. Let C be an emc of (G,T, Y, k) of size at most k. We associate with
each {u, v} ∈ C the block B({u, v}) corresponding to the ‘location’ of u and v.
In particular, if in G \ C there are two different vertices w1 and w2 of Y such
that u belongs to the component of w1 while v belongs to the component of
w2 then B({u, v}) = {(zu,w1 → zv,w1), (zv,w2 → zu,w2)}. Otherwise if exactly
one of {u, v}, say, u belongs to the connected component of some vertex w ∈ Y
while the connected component of v contains no vertex of Y then B({u, v}) =
{(zu,w → zv,w)}. Finally, if neither u nor v belong to the same component with
a vertex of Y then B({u, v}) can be an arbitrarily chosen block.

Let F ′ be a 2-cnf formula obtained from F by removal of the union of all
B({u, v}). We claim that F ′ is satisfiable by an assignment including L as a
subset. In particular, let L∗ be the set of literals of the variables of V created as
follows: zu,w ∈ L∗ whenever u belongs to the same component with w in G \C,
otherwise ¬zu,w ∈ L∗. Clearly, L ⊆ L∗. We claim that L∗ satisfies F ′. Clauses of

1 A ‘YES’ instance is one whose output is not ‘NO’.
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Group 1 are satisfied because otherwise there is a pair {si, ti} of terminals that
belong to the same component (with some w ∈ Y ) in G \ C in contradiction to
being C an emc of (G,T, Y ). Clauses of Group 2 are satisfied because otherwise
there is a vertex of G \ C that belongs to two distinct connected components,
which is absurd. Finally, assume that a clause c = (zu,w → zv,w) is not satisfied
by L∗. It can happen only if u belongs to the same component with w, while v
does not. By description of Group 3, {u, v} ∈ E(G) and, since u and v belong to
different connected components of G \ C, {u, v} ∈ C. Observe that the first or
the second condition of creation of B({u, v}) is satisfied and hence c ∈ B({u, v}),
i.e. c is not a clause of F ′. The proof is now complete. ��

Lemma 3. If (F, P, L, k) is a ‘YES’ instance of the 2-asat-bfl problem then
(G,T, Y, k) is a ‘YES’ instance of the aemc1 problem.

Proof. Let B (|B| ≤ k) be a set of blocks whose removal from F makes the
resulting 2-cnf formula F ′ satisfiable by an assignment L∗ such that L ⊆ L∗.
Observe that it makes no sense to include in B any of the blocks containing only
a single clause from Group 1 or 2: those clauses are present in 2k + 1 copies in
F , hence they have to be satisfied in L∗ as well. Thus we can safely assume that
every block in B contains one or two clauses from Group 3.

By construction, each block of B corresponds to exactly one edge of G. Let
C be the set of all such edges. We claim that C is an emc of (G,T, Y ). Assume
first that C does not separate Y , i.e., there are vertices w1 and w2 of Y such
that G \ C has a path p from w1 to w2. If the length of p is 1 then let S =
{(zw1,w1 → zw2,w1)}. Otherwise, let u1, . . . , uq be the intermediate vertices of p
listed in the order of their occurrence when p is traversed from w1 to w2 and let
S = {(zw1,w1 → zu1,w1), (zu1,w1 → zu2,w1), . . . , (zuq−1,w1 → zuq,w1), (zuq,w1 →
zw2,w1)}. Since L ⊆ L∗, zw1,w1 ∈ L∗ as well as zw2,w2 ∈ L∗. If all the clauses
of S are contained in F ′, then zw2,w1 ∈ L∗ would follow from this chain of
implications, contradicting (¬zw2,w1 ∨¬zw2,w2) (that necessarily belongs to F ′).
Hence at least one clause of S belongs to a block of B, implying that at least
one edge of p belongs to C.

Thus, if C is not an emc of (G,T, Y ), it remains to assume that C does not
separate T, i.e., there is {s, t} ∈ T such that G \ C has a path p between s
and t. By definition of Y , p contains at least one vertex w ∈ Y .2 If s and w
are adjacent in p then let S = {(zw,w → zs,w)}. Otherwise, let u1, . . . uq be the
intermediate vertices of p occurring in p between w and s listed in the order
they occur if p is traversed from w to s. Then S = {(zw,w → zu1,w), (zu1,w →
zu2,w), . . . , (zuq−1,w → zuq,w), (zuq,w → zs,w)}. Arguing as in the previous case,
we derive that either zs,w ∈ L∗ or one of the edges corresponding to S belongs
to C. Arguing analogously regarding the subpath of p between w and t we derive
that either zt,w ∈ L∗ or at least one edge of this subpath belongs to C. It follows
that if no edge of p belongs to C then both zs,w ∈ L∗ and zt,w ∈ L∗ hold. But

2 Notice that this is the only place where it is essential that Y separates all the pairs
of terminals of T.
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this is a contradiction since in this case the clause (¬zs,w∨¬zt,w) is not satisfied.
We conclude that C is an emc of (G,T, Y ). ��
The following theorem is an immediate consequence of Proposition 1, Lemma 2,
and Lemma 3.

Theorem 4. The aemc1 problem is FPA with ratio 2.

4 Fixed-Parameter Approximability of the Emc Problem

We prove the main result of the paper in this section: emc is fixed-parameter
approximable with ratio 2. First, we reduce the aemc2 problem to the aemc1
problem. The only difference between the two problems is that in the instance
(G,T, Z, k) of the aemc2 problem, the solution does not have to separate Z.
However, the algorithm can be extended by trying all possible ways in which the
solution partitions the set Z.

Lemma 5. The aemc2 problem is FPA with ratio 2.

Proof. Apply the following algorithm. Explore all possible partitions of vertices
of Y into subsets. For the given partition Z = Z1 ∪ · · · ∪Zq, let G∗ be the graph
obtained from G by contracting each Zi into a vertex yi (loops produced by the
contraction are removed, multiple edges are subdivided). Let Y = {y1, . . . , yq}.
Using Theorem 4, we can obtain a 2-approximation for the instance (G∗,T, Y, k)
of the aemc1. If for at least one such instance an emc S of (G∗,T, Y ) is returned
then return S. Otherwise, return ‘NO’.

Since the number of partitions of Z depends on |Z| ≤ 2k + 1, the above
algorithm is an FPT algorithm with parameter k. It is easy to see that if the
algorithm returns an emc S of (G∗,T, Y, k), then S is an emc of (G,T) as well.
Conversely, assume that (G,T) has an emc C of size at most k. Let Z1, . . . , Zq

be the partition of Z so that two vertices get into the same partition class if and
only if they belong to the same connected component of G \ C. According to
Theorem 4, being applied to the tuple (G∗,T, Y, k) resulting from this partition,
the above algorithm necessarily produces an emc S of (G∗,T) having size at
most 2k. Consequently, if the above algorithm returns ‘NO’ an emc of (G,T) of
size at most k cannot exist and the answer ‘NO’ is valid. ��
The problem aemc2 is easier than emc, since the input contains more informa-
tion, namely the set Z separating T. We apply a methodology known under the
name ‘iterative compression’ which essentially gives us such a set Z ‘for free.’
Iterative compression was first used by Reed et al. [25] and has become a very
useful technique in the design of parameterized algorithms [6,18,16,20,24].

Theorem 6. The emc problem is FPA with ratio 2.

Proof. Let (G,T, k) be an instance of the emc problem. Let e1, . . . , em be the
edges of G. Let G0, . . . , Gm be the graphs defined as follows. For each Gi,
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V (Gi) = V (G). E(G0) = ∅ and for each i > 0, E(Gi) = {e1, . . . , ei}. One
by one, we consider the (Gi,T, k) instances of the emc problem in ascending
order of i, and for each instance we find a 2-approximation. The approximation
for each (Gi,T, k) results in output Si, where Si is either a set of edges or ‘NO’.
In particular, S0 = ∅. Consider computing of Si, i > 0 provided that Si−1 is
already known. If Si−1 = ‘NO’ then Si = ‘NO’, as Si is a supergraph of Si−1.
Otherwise, Si−1 is an emc of size at most 2k for T in Gi−1, hence Si−1 ∪ {ei}
is an emc of size at most 2k + 1 for T in Gi. Subdivide each edge of Si−1 ∪ {ei}
with a new vertex; clearly, subdivisions does not change the existence of an emc.
Let G∗ be the graph obtained this way and let Z be the set of new vertices. It
follows that Z has size at most 2k + 1 and separates T in G∗. Thus we can use
the algorithm for aemc2 on the instance (G∗,T, Z, k). It either returns an emc
of T in G∗ of size at most 2k (which can be modified to obtain a emc Si of T in
G by replacing each subdivided edge by the corresponding edge of Si−1∪{ei}) or
returns ‘NO’, in which case we can set Si = ‘NO’. The validity of the algorithm
is easy to verify by induction on i combined with Lemma 5. ��
We conclude the section with computing the runtime of the algorithm achieving
the ratio 2 approximation of the EMC problem. Denote |V (G)| by n, |E(G)| by m
and |T| by �. The iterative compression process described in the proof of Theorem
6 takes O(m) iterations of solving the aemc2 problem. The algorithm for the
aemc2 problem takes P (2k + 1, k) iterations of solving the aemc1 problem,
where P (2k + 1, k) is the number of partitions of a 2k + 1-element set into
at most k classes. Finally, in order to solve the aemc1 problem the graph is
transformed into a 2-cnf formula. The number of clauses of this formula is m1 =
O(�k2+nk3+mk) = O(nk3+mk) (the term �k2 corresponding to the number of
clauses of Group 1 is absorbed by nk3). Then the 2-asat-bfl problem is solved
for the obtained formula,which takes O(25kkm2

1) = O(25kk3(n2k4 + m2)). Thus
the overall complexity is O(25kP (2k + 1, k) · k3(n2k4 + m2)).

5 Hardness of the 2-ASAT-BFL Problem

It is easy to see from the above discussion that the fixed-parameter tractability
of the 2-asat-bfl problem would imply the fixed-parameter tractability of the
emc problem. In this section we show that the latter is very unlikely to be derived
in this way because the 2-asat-bfl problem turns out to be W[1]-hard. To the
best of our knowledge, this is the first problem known to be both W[1]-hard and
FPA with a constant ratio.

Theorem 7. 2-asat-bfl problem is W[1]-hard even if the blocks are disjoint.

Proof. The proof is by reduction from Multicolored Clique, where given a
graph G, an integer k, and a proper k-coloring of the vertices of G, the task
is to decide whether there is a k-clique in G. (Proper k-coloring is a mapping
from V (G) to {1, . . . , k} such that adjacent vertices have different colors.) Mul-
ticolored Clique is known to be W[1]-hard [11]. We can assume that every
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c-colored vertex has at least one neighbor from every color class except c: oth-
erwise the vertex cannot be part of a k-clique and can be safely deleted. Let nc

be the number of vertices of color c. Let vc,i (1 ≤ i ≤ nc) be the vertices with
color c. Let d(c, i, c′) ≥ 1 be the number of neighbors of vc,i having color c′. Let
us fix an ordering of these neighbors and let n(c, i, c′, j) be the j-th neighbor of
vc,i having color c′ in this ordering.

Set k′ :=
(
k
2

)
. We construct a satisfiable 2-cnf formula F and a set of literals

L such that deletion of k′ blocks makes F satisfiable by an assignment including
L if and only if G has a multicolored clique of size k. For every 1 ≤ c ≤ k
and 0 ≤ i ≤ nc, we introduce a variable xc,i. For every 1 ≤ c, c′ ≤ k, c 
= c′,
1 ≤ i ≤ nc, 0 < j < d(c, i, c′), we introduce a variable yc,i,c′,j . For ease of
notation, we define yc,i,c′,0 := xc,i−1 and yc,i,c′,d(c,i,c′) := xc,i (note that the
second index of xc,i can be 0, while it is at least 1 for yc,i,c′,j).

The clauses of F are the union of the disjoint blocks Be for each edge e
of G. Suppose that edge e connects vc,i and vc′,i′ and n(c, i, c′, j) = vc′,i′ as
well as n(c′, i′, c, j′) = vc,i hold for some j, j′. Block Be consists of the clauses
(yc,i,c′,j−1 → yc,i,c′,j) and (yc′,i′,c,j′−1 → yc′,i′,c,j′). It is easy to see that F is
satisfiable by setting all the variables to 0. The set L of literals is defined as
follows: L = {xc,0|1 ≤ c ≤ k} ∪ {¬xc,nc |1 ≤ c ≤ k}.

Before introducing the formal proof, we give an intuitive explanation. Formula
F can be considered as containing k components, one for each color. The com-
ponent corresponding to a color c consists of nc fragments, one for each vertex
colored in c. The fragment corresponding to vertex vc,i consists of k − 1 sets of
implications one for each c′ 
= c, and it is convenient to imagine that each such set
is a sequence of implications of the form yc,i,c′,0 → yc,i,c′,1 → · · · → yc,i,c′,dc,i,c′ .
Due to the settings yc,i,c′,0 := xc,i−1 and yc,i,c′,d(c,i,c′) := xc,i and the literals
of L, F can be made satisfiable if and only if for each component of color c we
identify a fragment corresponding to vertex vc,i and remove a clause from each
sequence of implications of this fragment. That is, to make the formula satisfi-
able, it is necessary and sufficient to remove k(k − 1) clauses. Since we want to
remove only k′ = k(k − 1)/2 blocks, we have to find out such fragments whose
sequences of implications can be partitioned into pairs so that for each pair there
is a block ’covering’ both sequences of this pair. The blocks are designed in such
a way that two fragments can be ’connected’ by at most one block and even
this can happen only in the case when the vertices corresponding to these frag-
ments are adjacent. It follows that removal of k′ blocks can make F ′ satisfiable
if and only if the considered fragments correspond to a set of mutually adjacent
vertices, one for each color, i.e., a multicolored clique.

Now we introduce the formal proof. Suppose that G has a multicolored clique
K of size k; let vc,ic be the vertex of K having color c. For every 1 ≤ c, c′ ≤ k,
c 
= c′, there is an integer jc,c′ such that n(c, ic, c′, jc,c′) = vc′,ic′ . Let F ′ be the
formula obtained from F by deleting the blocks corresponding to the edges of K.

Consider a set L∗ of literals of variables yc,i,c′,j (for every 1 ≤ c, c′ ≤ k,
c 
= c′, 1 ≤ i ≤ nc, 0 ≤ j ≤ d(c, i, c′)) created as follows: yc,i,c′,j ∈ L∗ if i < ic



656 D. Marx and I. Razgon

(independently of the values of c′ and j), or i = ic, provided that j < jc,c′ .
Otherwise ¬yc,i,c′,j ∈ L∗.

Since L∗ contains literals of all variables yc,i,c′,0 and yc,i,c′,d(c,i,c′), it in fact
contains the literals of all variables xc,i. Let us verify that all variables xc,i

are consistently assigned. In addition, to ensure that L ⊆ L∗, we check that L∗

contains xc,0 and ¬xc,nc for 1 ≤ c ≤ k. Consider first a variable xc,0. By definition
its value equals the value of yc,1,c′,0 for all possible values of c′. If ic > 1 then
yc,1,c′,0 ∈ L∗. Otherwise, ic = 1 and in this case, as jc,c′ ≥ 1, it follows again that
yc,1,c′,0 ∈ L∗. Thus we have verified the validity of assigning xc,0. Now, consider
xc,nc . By definition, xc,nc = yc,nc,c′,d(c,nc,c′) for all possible values of c′. Clearly
nc ≥ ic. If nc > ic then ¬yc,nc,c′,d(c,nc,c′) ∈ L∗. Otherwise, ¬yc,nc,c′,d(c,nc,c′) ∈ L∗

because nc ≥ jc,c′ , implying the validity of assigning xc,nc . Finally, consider xc,i

when 0 < i < nc. The value of xc,i is equal to the value of yc,i,c′,d(c,i,c′) and the
value of yc,i+1,c′,0 for all the values of c′. Using the description of L∗, it is not
hard to verify the consistency of instantiation of xc,i by considering first i < ic
then i = ic and finally i > ic. It remains to verify that each clause of F ′ is
satisfied by L∗. Assume that a clause (yc,i,c′,j−1 → yc,i,c′,j) is not satisfied. This
is only possible if i = ic and j − 1 < jc,c′ and j ≥ jc,c′, i.e., j = jc,c′ , but in that
case the clause was deleted from F ′, a contradiction.

For the other direction of the proof, suppose that it is possible to obtain, by
the deletion of at most k′ blocks, a formula F ′ that has a satisfying assignment
L∗ such that L ⊆ L∗. In particular this means that xc,0 ∈ L∗ and ¬xc,nc ∈ L∗

for every 1 ≤ c ≤ k. Thus for every 1 ≤ c ≤ k, there is a smallest 1 ≤ ic ≤ nc

such that xc,ic−1 ∈ L∗ and ¬xc,ic ∈ L∗. We claim that K := {vc,ic : 1 ≤ c ≤ k}
is a clique of size k. Let E∗ be the set of edges corresponding to the deleted
blocks. We show that for every 1 ≤ c, c′ ≤ k and c 
= c′, vc,ic is adjacent to a
c′-colored vertex in G[E∗]. It follows that G[E∗] has k vertices of degree k − 1.
On the other hand |E∗| =

(
k
2

)
. It only possible if G[E∗] is a complete graph and

V (G[E∗]) = K. In other words, K is a clique of size k in G.
Suppose that vc,ic is not adjacent to a c′-colored vertex in G[E∗]. That is,

E∗ does not contain any of the edges {vc,ic , n(c, ic, c′, j)} for 1 ≤ j ≤ d(c, ic, c′).
This means that none of the clauses (yc,ic,c′,j−1 → yc,ic,c′,j) (1 ≤ j ≤ d(c, ic, c′))
are deleted. Since d(c, ic, c′) ≥ 1, these clauses ensure that if yc,ic,c′,0 = 1, then
yc,ic,c′,d(c,ic,c′) = 1 as well. However, by the definition of ic, we have yc,ic,c′,0 =
xc,ic−1 = 1 and yc,ic,c′,d(c,ic,c′) = xc,ic = 0, which gives a contradiction. ��
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