
A Theory and Algorithms for Combinatorial
Reoptimization?

Hadas Shachnai1??, Gal Tamir1, and Tami Tamir2

1 Computer Science Department, Technion, Haifa 32000, Israel.
E-mail: {hadas,galtamir}@cs.technion.ac.il.

2 School of Computer science, The Interdisciplinary Center, Herzliya, Israel.
E-mail: tami@idc.ac.il

Abstract. Many real-life applications involve systems that change dy-
namically over time. Thus, throughout the continuous operation of such
a system, it is required to compute solutions for new problem instances,
derived from previous instances. Since the transition from one solution
to another incurs some cost, a natural goal is to have the solution for the
new instance close to the original one (under a certain distance measure).
In this paper we develop a general model for combinatorial reoptimiza-
tion, encompassing classical objective functions as well as the goal of
minimizing the transition cost from one solution to the other. Formally,
we say that A is an (r, ρ)-reapproximation algorithm if it achieves a ρ-
approximation for the optimization problem, while paying a transition
cost that is at most r times the minimum required for solving the problem
optimally. When ρ = 1 we get an (r, 1)-reoptimization algorithm.
Using our model we derive reoptimization and reapproximation algo-
rithms for several important classes of optimization problems. This in-
cludes fully polynomial time reapproximation schemes for DP-benevolent
problems, a class introduced by Woeginger (Proc. Tenth ACM-SIAM
Symposium on Discrete Algorithms, 1999), reapproximation algorithms
for metric Facility Location problems, and (1, 1)-reoptimization algo-
rithm for polynomially solvable subset-selection problems.
Thus, we distinguish here for the first time between classes of reopti-
mization problems, by their hardness status with respect to minimizing
transition costs while guaranteeing a good approximation for the under-
lying optimization problem.

1 Introduction

Traditional combinatorial optimization problems require finding solutions for a
single instance. However, many of the real-life scenarios motivating these prob-
lems involve systems that change dynamically over time. Thus, throughout the
continuous operation of such a system, it is required to compute solutions for
? This research is supported by the Israel Science Foundation (grant number 1574/10),

and by the Ministry of Trade and Industry MAGNET program through the NEGEV
Consortium (www.negev-initiative.org).

?? Work partially supported by the E. and J. Bishop Research Fund.

new problem instances, derived from previous instances. Moreover, since there
is some cost associated with the transition from one solution to another, the
solution for the new instance must be close to the former solution (under certain
distance measure).

For example, in a video-on-demand (VoD) system, movie popularities tend
to change frequently. In order to satisfy new client requests, the content of the
storage system needs to be modified. The new storage allocation needs to sat-
isfy the current demand; also, due to the cost of file migrations, this should be
achieved by using a minimum number of reassignments of file copies to servers
[21]. In communication networks, the set of demands to connect sources to des-
tinations changes over time. Rerouting incurs the cost of acquiring additional
bandwidth for some links that were not used in the previous routing. The goal is
to optimally handle new demands while minimizing the total cost incurred due
to these routing changes.

Solving the above reoptimization problems involves two challenges: (i) Com-
puting an optimal (or close to the optimal) solution for the new instance, and
(ii) Efficiently converting the current solution to the new one.

In this paper we develop a general model for combinatorial reoptimization,
encompassing objective functions that combine these two challenges. Our study
differs from previous work in two aspects. One aspect is the generality of our
approach. To the best of our knowledge, previous studies consider specific reopti-
mization problems. Consequently, known algorithms rely on techniques tailored
for these problems (see Section 1.1). We are not aware of general theoretical
results, or algorithmic techniques developed for certain classes of combinatorial
reoptimization problems. This is the focus of our work. The other aspect is our
performance measure, which combines two objective functions.3 The vast ma-
jority of previous research refers to the computational complexity of solving an
optimization problem once an initial input has been modified, i.e., the first of
the above-mentioned challenges (see, e.g., the results for reoptimization of the
traveling salesman problem (TSP) [4, 6]).

One consequence of these differences between our study and previous work
is in the spirit of our results. Indeed, in solving a reoptimization problem, we
usually expect that starting off with a solution for an initial instance of a prob-
lem should help us obtain a solution at least as good (in terms of approximation
ratio) for a modified instance, with better running time. Yet, our results show
that reoptimization with transition costs may be harder than solving the un-
derlying optimization problem. This is inherent in the reoptimization problems
motivating our study, rather than the model we use to tackle them. Indeed, due
to the transition costs, we seek for the modified instance an efficient solution
which can be reached at low cost. In that sense, the given initial solution plays
a restrictive role, rather than serve as guidance to the algorithm.4

Applications: Reoptimization problems naturally arise in many real-life sce-
narios. Indeed, planned or unanticipated changes occur over time in almost any

3 As discussed in Section 1.1, this is different than multiobjective optimization.
4 This is similar in nature, e.g., to incremental optimization studied in [18].

system. It is then required to respond to these changes quickly and efficiently.
Ideally, the response should maintain high performance while affecting only a
small portion of the system. In [14] we give a detailed description of some of the
applications for which our reoptimization model fits well. This includes storage
systems for VoD services, communication services and other network problems,
stock trading, production planning and vehicle routing.

1.1 Related Work

The work on reoptimization problems started with the analysis of dynamic graph
problems (see e.g. [12, 24] and a survey in [8]). These works focus on developing
data structures supporting update and query operations on graphs. Reoptimiza-
tion algorithms were developed also for some classic problems on graphs, such as
shortest-path [20, 19] and minimum spanning tree [2]. Since all of these problems
can be solved in polynomial time, even with no initial solution, the goal is to
compute an optimal solution very efficiently, based on the local nature of the
updates and on properties of optimal solutions.

A different line of research deals with the computation of a good solution for
an NP-hard problem, given an optimal solution for a close instance. In general,
NP-hardness of a problem implies that a solution for a locally modified instance
cannot be found in polynomial time. However, it is an advantage to have a
solution for a close instance, compared to not knowing it. In particular, for some
problems it is possible to develop algorithms guaranteeing better approximation
ratio for the reoptimization version than for the original problem. Among the
problems studied in this setting are TSP, [4, 6], Steiner Tree on weighted graphs
[11], Knapsack [1], and Pattern Matching problems [5]. A survey of other research
in this direction is given in [3].

It is important to note that, unlike the present paper, in all of the above
works, the goal is to compute an optimal (or approximate) solution for the
modified instance. The resulting solution may be significantly different from the
original one, since there is no cost associated with the transition among solu-
tions. Reoptimization is also used as a technique in local-search algorithms. For
example, in [25] reoptimization is used for efficient multiple sequence alignment
− a fundamental problem in bioinformatics and computational biology. In [23],
reoptimization in used to improve the performance of a branch-and-bound algo-
rithm for the Knapsack problem.

Other related works consider multiobjective optimization problems. In these
problems, there are several weight functions associated with the input elements.
The goal is to find a solution whose quality is measured with respect to a com-
bination of these weights (see e.g., [15, 16, 7]). Indeed, in alternative formulation
of these problems, we can view one of the weight functions as the transition
cost from one solution to another, thus, known results for multiobjective opti-
mization carry over to budgeted reoptimization. However, in this paper we focus
on minimizing the total transition cost required for achieving a good solution
for the underlying optimization problem, rather than efficiently using a given
budget. Indeed, in solving our reoptimization problems, it is natural to consider

applying binary search, to find the reoptimization cost (i.e., the budget), and
then use a multiobjective optimization algorithm as a black-box. However (as
we show in Theorem 1), this cost cannot be found in polynomial time, unless
P = NP . This leads us to use a different approach (and alternative measures)
for obtaining reapproximation algorithms.

1.2 Our Contribution

We develop (in Section 2) a general model for combinatorial reoptimization that
captures many real-life scenarios. Using our model, we derive reoptimization
and reapproximation algorithms for several important classes of optimization
problems. In particular, we consider (in Section 3) the class of DP-benevolent
problems introduced by Woeginger [26]. The paper [26] gives an elaborate char-
acterization of these problems, which is used to show that any problem in this
class admits a fully polynomial time approximation scheme (FPTAS).5

We introduce (in Definition 3) the notion of fully polynomial time reapprox-
imation scheme (FPTRS). Informally, such a scheme takes as input parameters
ε1, ε2 > 0 and outputs a solution that approximates simultaneously the minimum
reoptimization cost (within factor 1+ε1) and the objective function for Π (within
factor 1+ ε2), in time that is polynomial in the input size and in 1/ε1, 1/ε2. We
show that the reoptimization variants of a non-trivial subclass of DP-benevolent
problems admit fully polynomial time (1 + ε1, 1 + ε2)-reapproximation schemes,
for any ε1, ε2 > 0. We note that this is the best possible, unless P = NP .

In Section 4 we show how α-approximation algorithms for metric Facility
Location problems can be used to obtain (1, 3α)-reapproximation algorithms for
their reoptimization variants. In Section 5, we show that for any subset-selection
problem Π over n elements, which can be optimally solved in time T (n), there
is a (1, 1)-reoptimization algorithm for the reoptimization version of Π, whose
running time is T (n′), where n′ is the size of the modified input. This yields a
polynomial time (1, 1)-reoptimization algorithm for a large set of polynomially
solvable problems, as well as for problems that are fixed parameter tractable.6

Thus, we distinguish here for the first time between classes of reoptimization
problems by their hardness status with respect to the objective of minimizing
transition costs, while guaranteeing a good approximation for the underlying
optimization problem.

We conclude (in Section 6) with a discussion of possible directions for fu-
ture work. Due to space constraints, the proofs and implementation details are
omitted. The detailed results appear in [14].

5 A key property is that each problem in the class can be formulated via a dynamic
program of certain structure, and the involved costs and transition functions satisfy
certain arithmetic and structural conditions.

6 For the recent theory of fixed-parameter algorithms and parameterized complexity,
see, e.g., [9].

2 Combinatorial Reoptimization: Definitions and
Notations

In the following we formally define our model for combinatorial reoptimization.
Given an optimization problem Π , let I0 be an input for Π, and let CI0 =
{C1

I0
, C2

I0
, . . .} be the set of configurations corresponding to the solution space

of Π for I0.7 Each configuration Cj
I0

∈ CI0 has some value val(Cj
I0

). In the
reoptimization problem, R(Π), we are given a configuration Cj

I0
∈ CI0 of an

initial instance I0, and a new instance I derived from I0 by admissible operation,
e.g, addition or removal of elements, changes in element parameters etc. For any
element i ∈ I and configuration Ck

I ∈ CI , we are given the transition cost of i

when moving from the initial configuration Cj
I0

to the feasible configuration Ck
I

of the new instance. We denote this transition cost by δ(i, Cj
I0

, Ck
I). Practically,

the transition cost of i is not given as a function of two configurations, but as a
function of i’s state in the initial configuration and its possible states in any new
configuration. This representation keeps the input description more compact.
The primary goal is to find an optimal solution for I. Among all configurations
with an optimal val(Ck

I) value, we seek a configuration C∗
I for which the total

transition cost, given by
∑

i∈I δ(i, Cj
I0

, C∗
I) is minimized.

For example, assume that Π is the minimum spanning tree (MST) problem.
Let G0 = (V0, E0) be a weighted graph, and let T0 = (V0, ET0) be an MST for
G0. Let G = (V,E) be a graph derived from G0 by adding or removing vertices
and/or edges, and by changing the weights of edges. Let T = (V,ET) be an MST
for G. For every edge e ∈ ET \ET0 , we are given the cost δadd(e) of adding e to
the new solution, and for every edge e ∈ E ∩ (ET0 \ ET) we are given the cost
δrem(e) of removing e from the solution. The goal in the reoptimization problem
R(MST) is to find an MST of G with minimal total transition cost. As we show
in Section 5, R(MST) belongs to a class of subset-selection problems that are
polynomially solvable.

The input for the reoptimization problem, IR, contains both the new instance,
I, and the transition costs δ (that may be encoded in different ways). Note that
IR does not include the initial configuration I0 since, apart from determining
the transition costs, it has no effect on the reoptimization problem.

2.1 Approximate Reoptimization

When the problem Π is NP-hard, or when the reoptimization problem R(Π)
is NP-hard,8 we consider approximate solutions. The goal is to find a good
solution for the new instance, while keeping a low transition cost from the initial
configuration to the new one. Formally, denote by O(I) the optimal value of Π(I)
(i.e., the instance I of Π). A configuration Ck

I ∈ CI yields a ρ-approximation
for Π(I), for ρ ≥ 1, if its value is within ratio ρ from O(I). That is, if Π is a
minimization problem then val(Ck

I) ≤ ρO(I); if Π is a maximization problem

7 A configuration can be any representation of a (partial) solution for Π.
8 As we show below, it may be that none, both, or only R(Π) is NP-hard.

then val(Ck
I) ≥ (1/ρ)O(I). Given a reoptimization instance IR, for any ρ ≥

1, denote by OR(IR, ρ) the minimal possible transition cost to a configuration
Ck

I ∈ CI that yields a ρ-approximation for O(I), and by OR(IR) the minimal
transition cost to an optimal configuration of I.

Ideally, in solving a reoptimization problem, we would like to find a solution
whose total transition cost is close to the best possible, among all solutions with a
given approximation guarantee, ρ ≥ 1, for the underlying optimization problem.
Formally,

Definition 1. An algorithm A yields a strong (r, ρ)-reapproximation for R(Π),
for ρ, r ≥ 1, if, for any reoptimization input IR, A achieves a ρ-approximation
for O(I), with transition cost at most r · OR(IR, ρ).

Unfortunately, for many NP-hard optimization problems, finding a strong
(r, ρ)-reapproximation is NP-hard, for any r, ρ ≥ 1. This follows from the fact
that it is NP-hard to determine whether the initial configuration is a ρ-approximation
for the optimal one (in which case, the transition cost to a ρ-approximate solu-
tion is equal to zero). We demonstrate this hardness for the Knapsack problem.

Theorem 1. For any r, ρ ≥ 1, obtaining a strong (r, ρ)-reapproximation for
Knapsack is NP-hard.

Thus, for such problems, we use an alternative measure, which compares the
total transition cost of the algorithm to the best possible, when the underlying
optimization problem is solved optimally. This alternative measure in fact helps
us achieve our preliminary goal, namely, finding a good approximation for the
optimization problem; to that end, we compare the incurred reoptimization cost
with a higher optimum. Formally,

Definition 2. An algorithm A yields an (r, ρ)-reapproximation for R(Π), for
ρ, r ≥ 1, if, for any reoptimization input IR, A achieves a ρ-approximation for
O(I), with transition cost at most r · OR(IR).

Clearly, any strong (r, ρ)-reapproximation is also an (r, ρ)-reapproximation.
For ρ = 1, we say that an (r, 1)-reapproximation algorithm is also an (r, 1)-
reoptimization algorithm (as it yields an optimal solution). In this case, Defini-
tions 1 and 2 coincide.

Our study encompasses a non-trivial subclass of optimization problems that
admit FPTAS. Approximating the reoptimization versions of these problems
involves two error parameters, ε1, ε2. This leads to the following extension for
the classic definition of FPTAS.

Definition 3. A fully polynomial time reapproximation scheme (FPTRS) for
R(Π) is an algorithm that gets an input for R(Π) and the parameters ε1, ε2 > 0
and yields a (1 + ε1, 1 + ε2)-reapproximation for R(Π), in time polynomial in
|IR|, 1/ε1 and 1/ε2.

Budgeted Reoptimization: The budgeted reoptimization problem R(Π,m) is
a restricted version of R(Π), in which we add the constraint that the transition

cost is at most m, for some budget m ≥ 0. Its optimal solution for the input IR

is denoted O(IR,m). Note that O(IR,m) is the value of the best configuration
that can be produced from the initial configuration with transition cost at most
m.

Definition 4. An algorithm A yields a ρ-approximation for R(Π,m) if, for
any reoptimization input IR, A yields a ρ-approximation for O(IR,m), with
transition cost at most m.

Note that the optimal value of O(IR,m) may be far from O(I); thus, it is
reasonable to evaluate algorithms for R(Π,m) by comparison to O(IR,m) and
not to O(I).

3 Reoptimization of DP-benevolent Problems

In this section we consider the class of DP-benevolent problems introduced in
[26]. We give a detailed description of this class in [14]. For short, we call the
class DP -B. The input for any problem Π in this class consists of a set of
vectors X̄i ∈ Nα, 1 ≤ i ≤ n, where α ≥ 1 is a fixed constant. Each problem
Π ∈ DP -B can be solved by using a dynamic program that is characterized by a
set of states and a finite set, F , of mappings; each such mapping determines the
new state after a transition, which occurs during the execution of the dynamic
program for Π. The paper [26] defines also the class of DP-simple problems.
Such problems can be expressed via a simple dynamic program (which satisfies
certain structural properties). The class of DP -B problems contains a large set
of problems that admit an FPTAS via dynamic programming. We show that a
non-trivial subclass of DP-B problems admit FPTRS.

3.1 Polynomially Bounded Transition Costs

We first consider instances in which the transition costs are polynomially bounded
in the input size. Let F be the set of mappings among states corresponding to
(partial) solutions for a problem Π ∈ DP-B. Our first main result is the following.

Theorem 2. Let R(Π) be the reoptimization version of a problem Π ∈DP-
B, for which |F| is fixed, then there exists a fully polynomial time (1, 1 + ε)-
reapproximation scheme for R(Π).

Recall that R(Π,m) is a restricted version of R(Π), in which the total tran-
sition cost is at most m, for some integer m ≥ 0, and O(IR,m) is the optimal
value of R(Π,m) for the input IR. We show that R(Π,m) is DP -benevolent in
two steps. First, we show that R(Π,m) is DP -simple, i.e., it can be expressed
via a simple dynamic programming formulation (see in [14]). Next, we show that
R(Π,m) satisfies the properties of the class DP-B.

Theorem 3. For any Π ∈ DP -B, for which |F| is fixed, and any m ∈ N,
R(Π,m) ∈ DP -B.

Intuitively, budgeted Π is also in DP-B, since the budget induces a new ‘knapsack-
like dimension’ on Π.

3.2 Arbitrary Transition Costs

Let IR be an input for R(Π,m), for some integer m ≥ 0. Given the set of vectors
X̄ ∈ I containing the parameters of the input elements, we denote by Ȳ = (X̄; r̄)
the vector corresponding to each vector X̄ in the reoptimization instance IR,
where r̄ = (rF1 , rF2 , . . .) is the transition cost vector associated with X̄ in IR.
To obtain approximate solutions for instances with arbitrary transition costs, we
first apply a transformation on the cost vector r̄.

Definition 5. Given an input IR for R(Π), let γ be a rounding function that
accepts as input the cost vector r̄ and the parameters n, m ∈ N and ε ∈ (0, 1),
then

γ(r̄, n,m, ε) = (
⌊rF1 · n

m · ε

⌋
,
⌊rF2 · n

m · ε

⌋
, . . .).

Now, given an input IR for R(Π,m), we modify each element Ȳ = (X̄; r̄) ∈
IR to Ȳ ′ = (X̄; γ(r̄, n,m, ε)). Denote the rounded instance by ÎR,ε. Since the
transition costs are rounded down, it holds that O(IR,m) ≤ O(ÎR,ε, m).

Let DP, DP’ be the dynamic programs for Π, R(Π,m) ∈DP-B, respectively.
Let ε1, ε2 > 0 be two error parameters. Given the rounded values γ(r̄, n,m, ε1/2),
we can use binary search to find the minimum budget m such that the value
obtained by DP’ for the input IR of R(Π,m) is within factor 1 − ε2 from the
best objective value obtained by DP for the input I of Π. The above is the main
idea used to obtain our next result.

Theorem 4. Let R(Π) be the reoptimization version of a problem Π ∈DP-B,
for which |F| is fixed, then for any transition costs, there exists a fully polynomial
time (1 + ε1, 1 + ε2)-reapproximation scheme for R(Π).

We note that the result in Theorem 4 is the best possible, unless P = NP .
Indeed, there exist optimization problems Π that can be reduced to their re-
optimization version, R(Π). This includes, e.g., the subclass of minimization
subset selection problems, in which we can use the costs in a given instance I as
transition costs and assign to all elements initial cost 0. Thus, solving Π for I
is equivalent to solving R(Π) for IR.

4 Reoptimization of Metric Facility Location
In this section we show how approximation algorithms for classic network de-
sign problems can be used to obtain reapproximation algorithms with similar
performance ratios and the minimum reoptimization cost. We exemplify this on
the Center Selection problem. The input is a set of n sites s1, . . . , sn in a metric
space. The goal is to select the locations of k centers (on the plane) so that the
maximum distance from a site to its nearest center is minimized. Let Π(I0) be
the Center Selection problem over an instance I0. In the reoptimization prob-
lem, the instance I0 is modified. The change can involve insertion or deletion
of sites, as well as changes in the distance function. Denote by I the modified
instance. Given an approximate solution S0 for Π(I0), the goal in the reopti-
mization problem is to find an approximate solution S for Π(I), such that S
has the minimal possible transition cost from S0. Specifically, the opening cost

of any center i ∈ S0 is 0, while there is a uniform (positive) cost associated with
opening a center at any other location. W.l.o.g, we assume a unit opening cost
for any new center. Denote by c(`) ≥ 0 the cost of opening a center in location `;
when ` is the location of a site, sj , we may use the notation c(sj). The transition
cost from S0 to S is the sum of the costs of the new centers, i.e.,

∑
`∈S\S0

c(`),
where ` is a location in which we open a center. Suppose that for some α ≥ 1, we
have an α-approximation algorithm for the Center Selection problem, denoted
by ACS . We give below a reapproximation algorithm for R(Center Selection).
We measure the approximation ratio of our algorithm using Definition 2, as it
is NP-hard to obtain any strong reapproximation algorithm.

Let dist(m, `) denote the distance from location m to location ` (where lo-
cation may also be a site). We say that a site sj is covered if there is a center
that is ‘close enough’ to sj (see below). Initially, all sites are uncovered.

Algorithm ÃCS for R(Center Selection):

1. Preprocessing step: Use algorithm ACS to obtain α-approximation
for the Center Selection problem with the input I. Let d̂ = D(ACS)
be the maximal distance from any site to the closest center output
by ACS .

2. Let S = ∅ and L = {` | c(`) = 0}.
3. Let U = {s1, . . . , sn} be the set of uncovered sites.
4. While there exists (` ∈ L and sj ∈ U with dist(sj , `) ≤ d̂) do

(a) S = S ∪ {`}.
(b) For any site sj with dist(j, `) ≤ 3d̂ do U = U \ {sj}.

5. k′ = 0, and set D(ACS) = ∞.
While D(ACS) > d̂ do
(a) k′ = k′ + 1
(b) Run Algorithm ACS with the set of sites U and parameter k′.

6. Let SACS
be the set of centers opened by ACS , then S = S ∪ SACS

.
Output S.

Theorem 5. ÃCS is a (1, 3α)-reapproximation algorithm for R(Center Selection).

We note that for the case where α = 2, we can obtain a better reapproxi-
mation ratio for the Center Selection problem. This can be done by modifying
algorithm ÃCS to use the generic 2-approximation algorithm for Center Selection
(see in [17] and [10]). Thus, we have
Theorem 6. There is a (1, 4)-reapproximation algorithm for R(Center Selection).

5 Optimal Reoptimization of Weighted Subset-Selection
In this section we show that for any subset-selection problem Π over n elements,
that can be optimally solved in time T (n), there is a (1, 1)-reoptimization algo-
rithm for the reoptimization version of Π, whose running time is T (n′), where
n′ is the size of the modified input. In particular, if Π is solvable in polynomial

time, then so is its reoptimization variant. This includes the minimum spanning
tree problem, shortest path problems, maximum matching, maximum weighted
independent set in interval graphs, and more. Similarly, if Π is fixed param-
eter tractable, then so is R(Π). We describe the framework for maximization
problems. With slight changes it fits also for minimization problems.

Let Π be a polynomially solvable subset-selection maximization problem over
an instance I0. The weight of an element i ∈ I0 is given by an integer wi ≥ 0. The
goal is to select a subset S0 ⊆ I0 satisfying various constraints, such that the total
weight of the elements in S is maximized. In the reoptimization problem, the
instance I0 is modified. The change can involve insertion or deletion of elements,
as well as changes in element weights. For example, in the maximum matching
problem, possible changes are addition or deletion of vertices and edges, as well
as changes in edge weights. Denote by I the modified instance. Let w′

i denote the
modified weight of element i. For a given optimal solution S0 of Π(I0), the goal in
the reoptimization problem is to find an optimal solution S of Π(I) with respect
to the modified weights, such that S has the minimal possible transition cost from
S0. Specifically, every element i ∈ I, is associated with a removal-cost δrem(i) to
be charged if i ∈ S0 \S, and an addition-cost δadd(i) to be charged if i ∈ S \S0.
The transition cost from S0 to S is defined as the sum of the corresponding
removal- and addition-costs. The following is a (1, 1)-reoptimization algorithm
for R(Π).

A (1, 1)-reoptimization algorithm for R(Π):

(i) Let ∆ = max(maxi∈S0∩I δrem(i),maxi∈I\S0 δadd(i)).
(ii) Let λ = 2|I|∆ + 1.
(iii) Define for every i ∈ I a new weight, ŵi, as follows: for every i ∈ S0∩I,

let ŵi = λw′
i + δrem(i). For every i ∈ I \ S0, let ŵi = λw′

i − δadd(i).
(iv) Solve Π(I) with weights ŵ.

The proofs of the following theorems are given in the full version [14].

Theorem 7. An optimal solution for Π(I) with weights ŵ is an optimal solution
for Π(I) with weights w′, and a minimal transition cost, i.e., it is a (1, 1)-
reoptimization for R(Π).

The above framework does not fit for problems in which the optimal algo-
rithm is for the objective of finding a subset of minimum (maximum) cardinality.
Moreover,

Theorem 8. There are polynomially-solvable subset-selection problems whose
reoptimization variants are NP-hard.

6 Discussion
In this paper we developed a general model for combinatorial reoptimization.
We defined the notion of reapproximation and showed that for many optimiza-
tion problems, strong reapproximation algorithms are unlikely to exist, unless

P=NP. This led us to an alternative definition that is used to obtain reapproxi-
mation algorithms as well as FPTRS for a non-trivial subclass of DP-benevolent
problems.

The theoretical model introduced in this paper serves as a first step in the
study of the reoptimization variants of classical problems, which arise in many
practical scenarios. Our results show how known techniques from combinatorial
optimization can be enhanced to obtain efficient reapproximation algorithms (or
reapproximation schemes). It is natural to try and develop a generic approach
for obtaining reapproximation algorithms for a family of metric network design
problems, based on known approximation algorithms for these problems. More
generally, in the study of reoptimization variants of NP-hard problems, suppose
that there exists an α-approximation algorithm for such optimization problem
Π. Is there a polynomial time (r, α)-reapproximation algorithm for R(Π), for
some bounded value r > 1? We have shown that any (weighted) subset selection
problem that is polynomially solvable admits a (1, 1)-reoptimization algorithm.
The existence of such optimal algorithms for a wider class of problems remains
open.

Finally, while our model captures well the transition from one solution to the
other, namely, scenarios where an initial input I0 changes to a new one, I, it is
interesting to consider also scenarios in which a sequence of changes is applied to
an initial input. Formally, in addition to the initial input I0 and a solution S0,
the instance of the reoptimization problem consists also of a sequence (I ′, I ′′, . . .)
of inputs. The goal is to find a solution for each of the inputs in the sequence
optimizing the quality of the solutions and the total transition cost (with no
transition costs such a problem is studied in [13]). An optimal solution for se-
quence reoptimization may be significantly different from the solution derived
by combining the optimal transition for each pair of consecutive solutions in the
sequence. It is natural to examine also the usage of the techniques developed
for incremental approximation (see, e.g., [18]). Here, the algorithms gradually
modify the solutions for a given sequence of inputs, while guaranteeing that, for
any i > 1, the i-th solution contains the first (i − 1) solutions.

Acknowledgments: We thank Baruch Schieber and Rohit Khandekar for helpful
discussions.

References

1. C. Archetti, L. Bertazzi, M.G. Speranza, Reoptimizing the 0-1 knapsack problem,
Discrete applied mathematics, vol. 158(17), 2010.

2. G. Amato, G. Cattaneo, G. F. Italiano. Experimental analysis of dynamic minimum
spanning tree algorithms. In Proc. of 8th SODA, 1997.

3. G. Ausiello, V. Bonifaci, and B. Escoffier, Complexity and approximation in reopti-
mization. In Computability in Context: Computation and Logic in the Real World,
B. Cooper, A. Sorbi Eds., Imperial College Press/World Scientific, 2011.

4. G. Ausiello, B. Escoffier, J. Monnot and V. Th. Paschos, Reoptimization of mini-
mum and maximum traveling salesmans tours, J. of Discrete Algorithms 7(4):453-
463, 2009.

5. D. Bilo, H. Böckenhauer, D. Komm, R. Královič, T. Mömke, S. Seibert, A. Zych.
Reoptimization of the shortest common superstring problem. Symp. on Combina-
torial Pattern Matching, (CPM) 2009.

6. H.J. Böckenhauer, L. Forlizzi, J. Hromkovič, J. Kneis, J. Kupke, G. Proietti,
P. Widmayer: On the approximability of TSP on local modifications of optimally
solved instances. Algorithmic Operations Research 2(2), 2007,

7. A. Berger, V. Bonifaci, F. Grandoni, G. Schäfer, Budgeted matching and budgeted
matroid intersection via the gasoline puzzle. In proc. IPCO 2008, pp. 273–287,
2008.

8. C. Demetrescu, I. Finocchi, and G.F. Italiano. Dynamic graph algorithms. Hand-
book of Graph Theory, J. Yellen and J.L. Gross eds., CRC Press Series, in Discrete
Math and Its Applications, 2003.

9. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
New York, 1999.

10. M. E. Dyer and A. M. Frieze. A simple heuristic for the p-center problem. Oper.
Res. Lett., 3:285-288, 1985.

11. B. Escoffier, M. Milanič, V. Th. Paschos: Simple and fast reoptimizations for the
Steiner tree problem. DIMACS Technical Report 2007-01.

12. D. Eppstein, Z. Galil and G.F. Italiano, Dynamic graph algorithms, Chapter 8. in
CRC Handbook of Algorithms and Theory of Computation, ed. M. J. Atallah, 1999.

13. A. Frangioni and A. Manca. A Computational study of cost reoptimization for
min-cost flow problems. INFORMS Journal on Computing vol. 18(1), 2006.

14. H. Shachnai, G. Tamir, and T. Tamir. A Theory and Al-
gorithms for Combinatorial Reoptimization. full version.
http://www.cs.technion.ac.il/∼hadas/PUB/reopt full.pdf.

15. R. Ravi, M. X. Goemans. The constrained minimum spanning tree problem, In 5th
Workshop on Algorithm Theory, 66–75, 1996.

16. F. Grandoni, R. Zenklusen. Optimization with more than one budget. In Proc. of
ESA, 2010.

17. D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center
problem. In Math.of Operations Research, 10:180-184, 1985.

18. G. Lin, C. Nagarajan, R. Rajaraman, and D. P. Williamson. A general approach for
incremental approximation and hierarchical clustering. SIAM J. Comput. 39(8):
3633–3669, 2010.

19. E. Nardelli, G. Proietti, P. Widmayer: Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica 35, 2003.

20. S. Pallottino and M. G. Scutella; A new algorithm for reoptimizing shortest paths
when the arc costs change, Operations Research Letters, vol. 31, 2003.

21. H. Shachnai, G. Tamir and T. Tamir, Minimal cost reconfiguration of data place-
ment in storage area network. , In Proc. of 7rd WAOA, 2009.

22. M. Shindler, Approximation Algorithms for the Metric k-Median Problem. Masters
thesis, Department of Computer Science, UCLA, 2008.

23. B. Thiongane, A. Nagih and G. Plateau, Lagrangian heuristics combined with
reoptimization for the 0-1 bidimensional knapsack problem. Discrete Appl. Math.,
vol. 154:15, 2006.

24. M. Thorup and D.R. Karger. Dynamic graph algorithms with applications. In Proc
of 7th SWAT, 2000.

25. F. Yue, J. Tang, A new approach for tree alignment based on local re-optimization,
In Proc. of Intl Conf. on BioMedical Engineering and Informatics, 2008.

26. G. J. Woeginger. When does a dynamic programming formulation Guarantee the
Existence of an FPTAS? In Proc. of SODA, pp. 820–829, 1999.

