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Abstract. Motivated by fundamental optimization problems in video
delivery over wireless networks, we consider the following problem of
packing resizable items (PRI). Given is a bin of capacity B > 0, and a
set I of items. Each item j ∈ I is of size sj > 0. A packed item must
stay in the bin for a fixed time interval. To accommodate more items in
the bin, each item j can be compressed to a size pj ∈ [0, sj) for at most a
fraction qj ∈ [0, 1) of the packing interval. The goal is to pack in the bin,
for the given time interval, a subset of items of maximum cardinality.
PRI is strongly NP-hard already for highly restricted instances.

Our main result is an approximation algorithm that packs, for any in-
stance I of PRI, at least 2

3
OPT (I)−3 items, whereOPT (I) is the number

of items packed in an optimal solution. Our algorithm yields better ra-
tio for instances in which the maximum compression time of an item is
qmax ∈ (0, 1

2
). For subclasses of instances arising in realistic scenarios,

we give an algorithm that packs at least OPT (I)− 2 items. Finally, we
show that a non-trivial subclass of instances admits an asymptotic fully
polynomial time approximation scheme (AFPTAS).

1 Introduction

Video content delivery over wireless networks is expected to grow exponentially
in the coming years. It is driven by applications including streaming TV content
to mobile devices, internet video, video on demand, personal video streaming,
video sharing applications (from mobile to mobile), video conferencing, and live
video broadcasting (cloud to mobile as well as mobile to cloud). In fact, a recent
study (Cisco Visual Networking Index [3]) predicts that the mobile video traf-
fic will be approximately two-thirds of the global mobile data traffic by 2015.
Improvements in video compression and wireless spectral efficiency will not be
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sufficient to accommodate this potential demand. This establishes the need for
solutions on the intersection of theory and practice.

A common approach taken by companies, to better utilize the available band-
width, is to deliver video content to the clients using different encodings (see,
e.g., [23, 9]). This enables the system to support mobile users, who tend to change
location (or viewing devices) throughout the show. It also allows the system to
degrade quality-of-service for bounded time intervals, while increasing the num-
ber of serviced clients. In wireless services, the available network bandwidth,
shared by all users that are covered by an access point, is typically no more than
54Mbps. Therefore, no more than 36 MPEG-1 video streams can be delivered
simultaneously to a local area [22]. This places strict limitation on the available
bandwidth for simultaneous delivery of video content.

Consider a set of clients requesting to view video content over a wireless
network. Suppose that each client is willing to tolerate a lower QoS level for
some continuous time interval throughout the delivery.4 The goal is to select a
subset of the clients to be serviced and the QoS level for each client throughout
the service, such that the total bandwidth allocated at any time does not exceed
the available bandwidth, and the number of satisfied requests is maximized.

More specifically, given is a large database of video files, and a set of n clients.
Suppose that, for some qj ∈ [0, 1], client j is willing to view a fraction, qj , of
her requested video content in low QoS.5 Each file is stored in the system in
several encodings – corresponding to several levels of QoS. Assume that high
QoS requires sj bandwidth units, while a lower QoS level requires pj bandwidth
units, for some 0 < pj < sj . Let B denote the total bandwidth available for
file transmissions to the clients. The goal is to service the maximal number of
clients, such that each client j receives high-QoS transmission, except maybe
for the pre-agreed fraction qj of the video show, in which the client may receive
a lower QoS. The degradation in QoS transmission may occur at most once
throughout the transmission of the video content to certain client, (i.e., along a
contiguous segment of the transmitted content).

We model this optimization problem as the following problem of packing
resizable items (PRI). Given is a set I of n items and a bin of capacity B > 0.
Each packed item must stay in the bin for a given time interval. Each item j
is associated with a size 0 < sj ≤ B (also called expanded or non-compressed
size), a compressed size 0 ≤ pj < sj , and a compression time, 0 ≤ qj < 1,
specifying the maximal fraction of the packing interval the item can be stored
in its compressed size. The time interval in which item j is compressed must
be contiguous. The goal is to pack in the bin a feasible subset of the items of
maximum cardinality for the given time interval. W.l.o.g., we assume that the
packing interval is (0, 1]. Thus, a solution for PRI specifies the subset of packed
items I ′ ⊆ I and, for any j ∈ I ′, the interval (cj , ej ] in which j is compressed,

4 The continuity requirement comes from the fact that repeated changes in encoding
of the transmitted content may cause the client unpleasant interruptions.

5 Allowing such degradation in QoS reduces the rates for the clients.



such that the total size of expanded and compressed items at any time t ∈ (0, 1]
is at most B.

The above application of video delivery over wireless network yields a general
instance of PRI. When all clients share the same low-QoS encoding, we get the
special case of PRI with uniform compressed size (see Section 4). When all
clients share the same pre-agreed low-QoS fraction, we get an instance of PRI
with uniform compression time (see Section 3.1).

By our definition of PRI, in any feasible packing, item j is expanded during
time interval (0, cj ], compressed during the interval (cj , ej ], and expanded again
during the interval (ej , 1] for some 0 ≤ cj ≤ ej ≤ 1, where 0 ≤ ej−cj ≤ qj . When
expanded, the item consumes capacity sj in the bin, while in its compressed form
it consumes capacity pj . W.l.o.g., we assume that B <

∑
j sj , since otherwise,

all items can be packed with no compression for the whole time interval.

In Appendix A we show that PRI is strongly NP-hard already for highly
restricted instances, where all items have the same expanded and compressed
sizes, or the same compression times. Indeed, solving PRI involves the selection
of a subset of items to be packed, as well as finding a feasible placement for these
items in the bin. This makes PRI harder than other single bin packing problems.

Figure 1 presents some examples of PRI instances, and their packings. Figure
1(a) presents an optimal packing of 6 items with uniform expanded size, where
sj = 1 for all j, and uniform compression time, i.e., qj = 1/3 for all j. The
compressed sizes are 0.2, 0.4, 0.5, 0.5, 0.6, and 0.8, and the bin capacity is B = 5.
Figure 1(b1) presents an optimal packing of 6 items with uniform expanded size,
i.e. sj = 1 for j, and uniform compressed size pj = 1/3 for all j. The compression
times are 0.2, 0.4, 0.5, 0.5, 0.6, and 0.8. As shown in the figures, parts of the same
item can be stored at different heights in the bin, as long as the total capacity
allocated to item j along its expanded and compressed intervals are sj and pj ,
respectively. These characteristics of the packings follow from the nature of our
applications, in which the allocation of resource capacity (such as bandwidth, or
servers on a cloud) to an element is not required to be contiguous.

Figure 1(b2) demonstrates the challenge of finding a feasible placement for
the selected items. The instance is the same as the one packed in Figure 1(b1). A
natural greedy approach is to pack the items one after the other, while balancing
the load along the packing interval. Thus, each item is packed as compressed in a
‘more loaded’ sub-interval, and as expanded in other parts of the packing interval.
As shown in Figure 1(b2), packing the items using this approach requires a bin
of capacity B = 4 2

3 . While the greedy approach yields efficient approximation in
some cases, it is not well defined for arbitrary instances, since the more loaded
sub-interval may not be contiguous.

Another difficulty in solving PRI arises from the fact that there is no natural
ordering for the packed items. For example, in the Knapsack problem, it is
well known that an optimal fractional solution consists of items with the highest
profit/size ratios. Moreover, with unit profits, Knapsack can be trivially solved by
packing the smallest items. In PRI, items have unit profits and can be ordered by
their total demand for capacity (given by sj(1−qj)+pjqj), however, an optimal
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Fig. 1. (a) An optimal packing of an instance with uniform q. An optimal (b1) and
greedy (b2) packing of an instance with uniform p.

solution does not necessarily pack the items having the smallest demands. This
is valid even for a fractional solution, in which items may be partially packed
(in a fractional solution the expanded and compressed sizes are divided).

1.1 Related Work

Packing items in a single bin, or in multiple bins, have been widely studied in the
computer science, discrete mathematics and operations research communities.
Most of these problems are NP-hard. The 0/1-Knapsack problem admits a fully
polynomial time approximation scheme (FPTAS), based on a pseudo-polynomial
time solution.6 That is, for any ε > 0, a (1 − ε)-approximation to the optimal
can be found in O(n/ε2), where n is the number of items [20]. In contrast, the
multiple knapsack problem (MKP) is NP-hard in the strong sense, therefore it
is unlikely to have an FPTAS [19]. A PTAS for MKP was presented by Chekuri
and Khanna [5]. For a comprehensive survey of the Knapsack problem and its
variants, see, e.g., [15].

Our problem of packing resizable items is closely related to the bin covering
(BC) problem, which was widely studied (see, e.g., [2, 6, 7, 14]). The input for bin
covering is a set of items {a1, . . . , an}; each item aj has a size s(aj) ∈ (0, 1). The
goal is to pack the items into unit sized bins so as to maximize the number of
bins that receive items of total size at least 1. It is easy to see that no polynomial

6 Recently, it was shown in [18] that Knapsack can be solved in pseudo-polynomial
time and polynomial space.



time algorithm can have approximation ratio better than 1
2 (indeed, applying

such approximation algorithm to instances where the total size of items is 2
would solve the Partition problem). The first asymptotic approximation scheme
(APTAS) for bin covering was introduced by Csirik et al. [7]. Subsequently,
Jansen and Solis-Oba [14] presented an AFPTAS for the problem. We discuss
the relation between the two problems in Section 4.

In computational geometry, the problems of covering a region by rectangles [4,
12, 21] and tiling by rectangles [16] are well studied. Interestingly, these problems
also relate to PRI (see Section 4.1). However, in both problems, the rectangles
can translate, but cannot move along the x- or y-axis. Therefore, the techniques
used to solve these problems cannot be applied when solving PRI.

Other related work deal with efficient broadcasting over wireless networks.
This combines technical aspects as well as theoretical ones, in particular, algo-
rithms for efficient bandwidth allocation, streaming, and routing [11, 10].

1.2 Our Contribution

We give a comprehensive study of PRI. For some subclasses of instances, our
results are almost the best possible. Let OPT (I) denote an optimal solution for
an instance I. When clear from the context, we omit I. We use OPT also to
denote the cardinality of OPT (I). Our main result (in Section 2) is an approxi-
mation algorithm for general instances of PRI. The performance of the algorithm
depends on qmax, the maximum compression time of any item. Specifically, let

γ =
⌈

1
qmax

⌉
−1. If the compression times may take any value in [0, 1), in particu-

lar, if qmax ≥ 1
2 , then γ = 1. In this case, the algorithm packs at least 2

3OPT −3
items. If for all j, 0 < qj < 1

2 , then γ ≥ 2, and the algorithm packs at least
2γ+2
2γ+3OPT −3 items. For the case of uniform expanded size inputs, where sj = 1

for all j, the algorithm packs at least 3
4OPT − 3 items. We note that in the ap-

plication motivating our work, all items tend to have small compression times,
resulting in good approximation ratio. In particular, for γ = 6, a typical value in
our application of video services, we obtain an asymptotic 14/15-approximation
algorithm.

For other subclasses of instances arising in realistic scenarios, where com-
pression times are drawn from a divisible sequence, we give (in Section 3) an
algorithm that packs OPT (I) − 2 items. Furthermore, we show (in Section 4)
that a non-trivial subclass of instances, of items with uniform compressed and ex-
panded size, admits an asymptotic fully polynomial time approximation scheme
(AFPTAS).

Techniques: In deriving our results for general PRI instances (in Section 2),
we make non-standard use of a rounding technique applied in the Harmonic
algorithm for Bin packing [17]. In particular, our algorithm initially selects the
subset of packed items; then, the compression times of the items are rounded
down to one of three values, where each value is a unit fraction that depends on
γ. We show how each of these subsets, which has uniform compression time, can
be packed.



In developing (in Section 4) an AFPTAS for instances with uniform size, we
use a transformation of PRI to the problem of covering a region by sliceable
rectangles, which finds applications also in computational geometry. Our cover-
ing with holes technique (Section 4.1) enables to draw a non-trivial connection
between PRI and the bin covering problem. Due to space constraints some of
the proofs are given in the Appendix.

2 Approximation Algorithm for General Instances

In this section we present an approximation algorithm, denoted Algarb, for in-
stances of PRI with arbitrary expanded sizes, sj , and arbitrary compressed sizes
0 < pj < sj . For an item j, let rj = sj − pj , and let the weight of an item be
wj = sj(1− qj) + pjqj = sj − rjqj , that is, wj is the total capacity required for
item j along the packing interval. For a set of items S, let w(S) =

∑
j∈S wj ,

s(S) =
∑

j∈S sj , p(S) =
∑

j∈S pj , and r(S) =
∑

j∈S rj .
The idea of Algarb is to select first the subset of packed items, then round

down the compression time of each item into one of three values, and then
pack each of the resulting sets (having uniform compression times) separately.
Let Iuni−q be an instance with uniform compression time, such that for all
j ∈ Iuni−q, qj = 1

α . In Section 3.1, we present an almost optimal algorithm for
such instances and show that it is possible to pack |Iuni−q| − 1 items in a bin of
capacity w(Iuni−q). This algorithm is used as a subroutine by Algarb.

The next simple observation considers instances in which items cannot be
compressed at all.

Observation 1 If qj = 0 for all j, I can be packed in a bin of capacity w(I).

Algorithm Algarb partitions the items in I into three sets.

X = {j ∈ I| 1
γ+1 ≤ qj <

1
γ }.

Y = {j ∈ I| 1
2(γ+1) ≤ qj <

1
γ+1}.

Z = {j ∈ I|0 ≤ qj <
1

2(γ+1)}.

Let OPT be the set of items packed in an optimal solution, and let Xopt, Yopt,
Zopt be the subsets of X,Y, Z respectively, in OPT .

Lemma 1. If γ ≥ 2 then [(2γ)s(Xopt)+3p(Xopt)]+[(2γ+1)s(Yopt)+2p(Yopt)]+
[(2γ+2)s(Zopt)+p(Zopt)] ≤ (2γ+3)B, and if γ = 1 then [s(Xopt)+2p(Xopt)]+
[2s(Yopt ∪ Zopt) + p(Yopt ∪ Zopt)] ≤ 3B.

Proof. Consider the 2γ + 3 vertical lines 0, 1
2(γ+1) ,

2
2(γ+1) , · · · , 1 in an optimal

packing. Since the bin has height B, the total length of these lines is (2γ +3)B.
Consider the packing of an item j ∈ Xopt. The compressed part of j intersects
with at most three vertical lines since 2

2(γ+1) = 1
γ+1 ≤ qj < 1

γ ≤ 3
2(γ+1) (which

holds for any γ ≥ 2), and the distance between every two adjacent vertical lines is
1

2(γ+1) . The expanded part of j intersects with the rest of the vertical lines. Thus,



the total intersection length of all items in Xopt with all the vertical lines is at
least (2γ)s(Xopt) + 3p(Xopt). Similarly, the total intersection length of all items
in Yopt with all the vertical lines is at least (2γ + 1)s(Yopt) + 2p(Yopt), and the
total intersection length of the items in Zopt is at least (2γ+2)s(Zopt)+p(Zopt).
Summing up, and combining with the fact that items in the packing do not
overlap, we get the statement of the lemma. The proof for γ = 1 is similar, using
the three vertical lines 0, 1

2 , 1.

Note that this lemma cannot be proved using arguments which are simply
based on the area of each item. For example, if γ = 1, then an item j ∈ X may
have (in some solution) an area which is only slightly larger than pj , and if an
optimal solution consists only of such items, we only find p(Xopt) < B, which
is a much weaker statement (since s(Xopt) may be much larger than p(Xopt)).
Define the rounded-weight of an item j ∈ X to be wr

j = sj
γ

γ+1+pj
1

γ+1 . Similarly,

for an item j ∈ Y let wr
j = sj

2γ+1
2γ+2 + pj

1
2γ+2 , and for an item j ∈ Z let wr

j = sj .

For γ ≥ 2, consider the set of items consisting of the 2γ+2
2γ+3 |Xopt| items with

the smallest rounded weight from Xopt, the
2γ+2
2γ+3 |Yopt| items with the smallest

rounded weight from Yopt, and the 2γ+2
2γ+3 |Zopt| items with the smallest rounded

weight from Zopt. Denote this set by J∗. Note that the last item from each set
might be fractional. For γ = 1, the set J∗ is defined in the same way, using
2
3 -fractions rather than

2γ+2
2γ+3 .

Lemma 2. The total rounded weight of J∗ is at most B.

Proof. We give the proof for γ ≥ 2. The proof for γ = 1 is similar. The to-
tal rounded weight of the items in J∗ ∩ Xopt is at most 2γ+2

2γ+3 (
γ

γ+1s(Xopt) +
1

γ+1p(Xopt)). Similarly, the total rounded weight of the items in J∗ ∩ Yopt is at

most 2γ+2
2γ+3 (

2γ+1
2γ+2s(Yopt)+

1
2γ+2p(Yopt)), and the total rounded weight of the items

in J∗ ∩ Zopt is at most 2γ+2
2γ+3s(Zopt). We need to prove that 2γ+2

2γ+3 (
γ

γ+1s(Xopt) +
1

γ+1p(Xopt))+
2γ+2
2γ+3 (

2γ+1
2γ+2s(Yopt)+

1
2γ+2p(Yopt))+

2γ+2
2γ+3s(Zopt) ≤ B. This is equiv-

alent to showing that 2
2γ+3 (γs(Xopt)+p(Xopt))+

1
2γ+3 ((2γ+1)s(Yopt)+p(Yopt))+

2γ+2
2γ+3s(Zopt) ≤ B, which is true by Lemma 1.



Algarb(I,B):

1. For each j ∈ I, round down qj :
a. If j ∈ X, let qj =

1
γ+1 .

b. If j ∈ Y , let qj =
1

2(γ+1) .

c. If j ∈ Z, let qj = 0.
2. Sort the items in I in a non-decreasing order according to their rounded

weights wr
j .

3. Let I ′ be the longest prefix in the sorted list having total rounded weight
at most B. Let X ′ = I ′ ∩X, Y ′ = I ′ ∩ Y , and Z ′ = I ′ ∩ Z.

4. Pack |X ′| − 1 items of X ′ in the bin using capacity wr(X ′).
5. Pack |Y ′| − 1 items of Y ′ in the bin using capacity wr(Y ′).
6. Pack Z ′ in the bin using capacity wr(Z ′).

Algorithm Algarb receives an arbitrary PRI instance and proceeds as follows.
In Steps 4 and 5, we use an almost optimal algorithm for instances with uniform
compression times, given in Section 3.1.

Lemma 3. The algorithm outputs a feasible packing.

Theorem 1. If γ ≥ 2, then Algarb returns a packing of at least 2γ+2
2γ+3OPT − 3

items. If γ = 1, then Algarb returns a packing of at least 2
3OPT − 3 items.

Proof. We present the proof for γ ≥ 2. The proof for γ = 1 is similar. In steps
4-6, the algorithm packs |X ′| − 1 + |Y ′| − 1 + |Z ′| = |I ′| − 2 items. We show
that |I ′| ≥ 2γ+2

2γ+3OPT − 1. Recall that I ′ form a prefix of the sorted list. Thus,

the total rounded weight of any subset of at least |I ′| + 1 items is larger than
B. This implies that any set of items having total rounded weight at most B
includes less than |I ′|+1 items. In particular, by Lemma 2, as the total rounded
weight of J∗ is at most B, we have that |I ′| + 1 ≥ |J∗| (note that J∗ might
include fractions and we consider here their fractional size). By definition of J∗,
it includes 2γ+2

2γ+3OPT items. We conclude that |I ′| ≥ 2γ+2
2γ+3OPT − 1.

Uniform Expanded Sizes: In the case γ = 1, if for all items sj = 1, Algarb
returns a packing of at least 3

4OPT −3 items. To prove this, we can show that it
is either the case that the set of 3

4 |X|, 3
4 |Y | and 3

4 |Z| items of minimum weight
of the sets X,Y, Z, respectively, have total weight at most 1, or that the set
of all items of X together with ⌊B − w(X)⌋ additional items (that can always
be packed), has a sufficiently large number of items. The bound 3

4 is tight for
this case, while the bound 2

3 is tight for the general case (though the additive
constant can be reduced to 2 by uniting Y and Z).

3 Almost Optimal Algorithm for Divisible Compression
Times

In this section we present an almost optimal algorithm for instances in which
the compression times form a divisible sequence.



Definition 1. A sequence 1
d1

> 1
d2

> · · · > 1
dz

is divisible if for all 1 ≤ i ≤ z,
di is an integer, and for all 1 ≤ i ≤ z − 1, di+1 divides di.

For example, 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 and 1

3 ,
1
9 ,

1
63 ,

1
126 ,

1
504 are divisible sequences. Let

I be a PRI instance, in which item j has an arbitrary expanded size, sj , an
arbitrary compressed size, pj , and a compression time qj , such that qj = 1

di
for

some 1 ≤ i ≤ z, where { 1
di
} is a divisible sequence. As we show in Appendix

A, even the more restricted case of PRI, with unit expanded size and uniform
compression time 1/m, is strongly NP-hard. Clearly, an approximation algorithm
with an additive error of 1 is the best one can expect.

Algorithm Algdiv(I,B) packs either OPT − 1 or OPT − 2 items, depending
on several parameters of the instance (see below).

Property 1. For any item j, before j is placed, the packing consists of strips
whose widths are multiples of qj , such that the load along each strip is uniform.

Lemma 4. Throughout Step (d), the gap between the loads on any two time-
points in (0, 1] is at most rj′ .

Algdiv(I,B):

1. Sort the items of I in non-decreasing order by weights, i.e., w1 ≤ w2 ≤ . . .
2. Let I ′ be the longest prefix of the sorted list of total weight at most B.
3. Pack |I ′| − 1 or |I ′| − 2 items in the bin:

(a) Remove from I ′ the item j′ for which rj′ = maxj∈I′rj .
(b) If wj′ < rj′ and qj′ > minj∈I′qj , remove from I ′ also an item with

maximal weight.
(c) Sort the remaining items in non-increasing order by compression times,

i.e., q1 ≥ q2 ≥ . . .. denote the sorted list by L.
(d) while L ̸= ∅, place the next item in the bin as follows:

i. Let ℓ be the maximum load (=height) along (0, 1] in the bin.
ii. Let (x, ℓ) be the leftmost (with the minimal x-coordinate) point

in the bin having load ℓ.
iii. Pack j as compressed in time interval (x, x+ qj ], and as expanded

in (0, x], and (x+ qj , 1].

Lemma 5. The packing generated in Step (d) does not exceed the height B.

Proof. Assume by contradiction that placing item j causes an overflow. Thus, a
strip of width at least qj has load more than B. By Lemma 4, the load along the
rest of the bin is at least B− rj′ . Therefore, the total weight of the packed items
is more than qj ·B + (1− qj)(B − rj′) = B − rj′ + qjrj′ . On the other hand, the
total weight of the packed items is at most B−wj′ = B−sj′ +qj′rj′ . If wj′ ≥ rj′

then pj′ ≥ rj′qj′ , and we get that rj′ > rj′ , which is a contradiction. Similarly,
if qj′ ≥ qj , we get that rj′ > sj′ , which is also a contradiction. Otherwise, the



condition in Step (b) holds and the total weight of the packed items is at most
B − wj′ − wmax, where wmax is the maximal weight of an item in I ′ \ {j′}. We
distinguish between two cases:

(i) If wmax ≥ wj′ then we use the fact that qj′ ≤ 1
2 to conclude that wj′ >

1
2rj′

and thus B − wj′ − wmax ≤ B − 2wj′ ≤ B − rj′ . Thus the total weight of
packed item is less than the lower bound of B − rj′ + qjrj′ on this value. A
contradiction.

(ii) If wmax < wj′ then all packed items have weight at most wmax. This implies
that among the packed items rmax < 2wmax (again, since all compression
times are at most 1

2 ). Lemma 4 is now valid with a smaller maximal gap.
Specifically, along Step (d), the gap between the loads on any two time-
points along (0, 1] is less than 2wmax. Having an overflow implies that the
total load of placed items is more than B − 2wmax, i.e., higher than the
upper bound of B − wmax − wj′ on this value. A contradiction.

Theorem 2. If wj′ ≤ rj′ or qj′ = minj∈I′qj, then the algorithm packs OPT −1
items. Otherwise, it packs OPT − 2 items.

Proof. Since the total weight of items in OPT is at most B, and I ′ is the longest
prefix of the sorted list having total weight at most B, it must be that |I ′| ≥
OPT . By Lemma 5, the algorithm packs all but one or two items from I ′,
depending on the stated condition.

Remark: For a given constant-size set U of items, it is possible to test in con-
stant time whether all items of U can be packed. This can be done (also for
arbitrary instances) by enumerating over all permutations of U and applying a
greedy rule for each permutation (we omit the details). This implies that any
algorithm which finds a solution in which OPT/r − C are packed, can be con-
verted to an (r + ε)-approximation algorithm. In particular, an algorithm that
packs OPT − θ(1) items can be converted to a PTAS.

3.1 Uniform Compression Time

The above algorithm can be applied also if all items share the same compression
time. That is, for all j, qj = q for any 0 < q < 1. Note that we do not require

q to be a unit fraction of the form 1/
⌈
1
q

⌉
. Given q, let γ =

⌈
1
q

⌉
. We show that

it is sufficient to consider only packings with a specific structure, in which the
actual compression time of all items is exactly 1/γ.

Lemma 6. There exists an optimal packing in which the items are divided into
γ groups, such that the items of group 1 ≤ i ≤ γ are all compressed during the
interval ( i−1

γ , i
γ ].



Thus, for any instance with uniform q, it is possible to round down the

compression times of all items to 1/
⌈
1
q

⌉
, and apply Algdiv(I,B) on the re-

sulting instance - the compression times for a divisible sequence with a single
element. Note that in this case, the condition in Step (b) does not hold (as
qj′ = minj∈I′qj), and thus, the algorithm packs OPT − 1 item. Therefore,

Theorem 3. Let I be an instance with uniform compression time. It is possible
to pack OPT (I)− 1 items in polynomial time.

Let I be an instance with uniform compression time q = 1
α , for some integer

α. By applying Algdiv(I,B) with a bin of capacity B = w(I), all items except
for one are packed. The following result is used in our algorithm for arbitrary
instances (see Section 2).

Theorem 4. Let I be an instance with uniform compression time q = 1
α . It is

possible to pack |I| − 1 items in a bin of capacity w(I).

4 An AFPTAS for Instances with Uniform Size

In this section we present an improved approximation algorithm for instances
with uniform expanded size. For such instances we assume, w.l.o.g., that for all
items sj = 1, and that the compression times of all items are positive (items with
qj = 0 can be added to the bin if it is not fully utilized by compressible items).
We first describe the Covering with Holes technique that we use for deriving our
result.

4.1 Technique: Covering with Holes

Our approach is to utilize in the best way the holes created while items are
packed as compressed. More formally, each item j defines a hole hj , which is
associated with a width 0 < qj < 1 and a height 0 < p′j < 1, where p′j = 1− pj .
We describe formally the Covering with Holes problem, and its relation to PRI.

In the Covering with Holes (CwH) problem, we are given a number B, and a
set HI of n holes, such that each hole hj is associated with a width 0 < qj < 1
and a height 0 < p′j < 1. The goal is to find the maximal h such that it is
possible to cover an h × 1 rectangle using at most B + h holes. A solution for
CwH is given by a set of holes H = {h1, · · · , hℓ} where ℓ ≤ B + h. For each
hole hj , the solution specifies what is the x-interval Xj = (x1j , x2j ] in which hj

is spanned, such that x2j − x1j = qj . A solution covers an h× 1 rectangle, if for
every 0 ≤ t ≤ 1 it holds that the total height of holes whose x-interval includes
t is at least h.

Figure 2(a) presents a cover of a 1× 1 rectangle with 7 holes. Note that the
holes need not be placed in the covered area as rectangles. For example, hole h4

spans along (0.6, 1] and its height is 0.5. This hole corresponds to an item in the
PRI instance having qj = 0.4 and pj = 0.5. Similarly, hole h2 spans along (0, 0.6]
and its height is 0.3. This hole corresponds to a PRI item having qj = 0.6 and



Fig. 2. (a) Covering a 1×1-rectangle with 7 holes. (b) A packing in a bin with capacity
3 and the corresponding cover of a 1 × 1 rectangle. The items define four holes of
dimensions 1

2
× 1

2
.

pj = 0.7. Note also that it is possible to have overlapping holes as well as holes
whose interval spans beyond the covered area.

In the next result we indicate the relation between the problems CwH and
PRI. The relation is illustrated in Figure 2(b).

Theorem 5. Let I be an instance of PRI with uniform expanded size, and let
HI be the associated set of holes. It is possible to cover an h× 1 rectangle using
at most B + h holes from HI if and only if it is possible to pack B + h items of
I in a bin of capacity B.

Theorem 5 is valid for the maximal h such that at most B + h holes cover
an h× 1 rectangle. Therefore, a solution for CwH, induces a solution for PRI.

Note that the above correspondence between the two problems holds for any
instance of PRI with uniform expanded sizes.

4.2 Approximation Scheme

In the uniform size case, the expanded and the compressed size are uniform for
all items and equal to 1 and p, respectively (for some 0 < p < 1 ≤ B). The
compression times of the items (i.e., qj), may be arbitrary.

Observation 2 W.l.o.g., in any feasible packing, the number of compressed
items is uniform along the interval (0, 1].

As shown in Appendix A, PRI is strongly NP-hard already for uniform size
instances. In the following, we use our technique of covering with holes to obtain
an AFPTAS for such instances.



Assume the items are sorted such that q1 ≥ q2 ≥ . . . ≥ qn. Clearly, if for two
items j1, j2, it holds that qji > qj2 then item j1 can be accommodated in the
space allocated for item j2. Therefore, simple exchange argument implies that
w.l.o.g., an optimal solution packs the first items in the instance. In covering
terms, this means that the covering is performed using the widest holes.

Since the compressed size is uniform, all the holes determining the covering
have height (1− p). By Observation 2, in the CwH problem, there exists a cover
in which the number of holes is uniform along the interval (0, 1]. In other words,

the holes are divided into g =
⌈

h
1−p

⌉
groups (horizontal strips), such that group

1 ≤ i ≤ g covers the i-th strip of height (1− p), of the rectangle. In other words,
the covering problem in this case can be seen as a problem of maximizing the
number of horizontal strips (each of height (1 − p)), covered by rectangles of
height 1− p and widths q1, q2, . . ..

In order to obtain an approximate solution for CwH, we use an AFPTAS
for the bin covering problem. In the bin covering problem, we are given a set
{a1, · · · , an} of items, each item aj has a size s(aj) ∈ (0, 1). The goal is to pack
the items into bins in a way that maximizes the number of bins that receive
items of total size at least 1.

Let Abc be such an AFPTAS, and let c be its asymptotic constant (such an
AFPTAS with c = 4 is given in [14]). That is, given n items of sizes s(1), . . . , s(n),
such that ∀i, s(i) < 1, Abc uses the items to cover b bins of size 1, where b ≥
(1− ε)b∗− c, and b∗ is the number of bins covered by an optimal solution. Given
an instance I for PRI, let HI be the corresponding instance for CwH. Define the
following instance CI for bin covering: for every hole j ∈ HI of size (1− p)× qj ,
include in CI an item of size qi.

GivenHI , h, we want to answer the following question: “Is it possible to cover
an h× 1 rectangle with at most B + h holes from HI?” Since, unless P = NP ,
this question is unlikely to be decided in polynomial-time, our algorithm answers
a slightly different question. Specifically, Decision Algorithm(HI , h) receives HI

and h as an input, and returns true if it is possible to cover a ((1− ε)h− c)× 1
rectangle with at most (1− ε)(B+h)− c holes from HI . The algorithm uses Abc

as a subroutine.

Decision Algorithm (HI , h):

1. Let CI be the input for bin covering corresponding to HI .
2. Run Abc on the first (1− ε)(B + h)− c items in CI (corresponding to the

widest holes in HI).
3. Let b be the number of bins covered by Abc.

4. If b ≥ (1−ε)(h+B)−B−c
1−p , return true else return false.

Lemma 7. Let OPTc be an optimal solution for CwH of the instance HI . As-
sume that OPTc covers a (n∗ −B)× 1 rectangle with at most n∗ holes. Then, a
((1− ε)n∗ −B − c)× 1 rectangle can be covered with at most (1− ε)n∗ − c holes
and Decision Algorithm(h) returns true for h = n∗ −B.



To obtain an AFPTAS for PRI, we can use binary search to find the maximal
1 ≤ h ≤ n − B such that it is possible to cover a ((1 − ε)h − c) × 1 rectangle
with at most (1− ε)(B + h)− c holes. We summarize in the next result.

Theorem 6. Let n∗ be the maximal number of items that can be packed in a bin
of capacity B. Then the above scheme returns a packing of (1− ε)n∗ − c items,
in a bin of capacity B.

Proof. Let n∗ be the maximal number of items that can be packed in a bin of
capacity B. By Theorem 5, OPT covers (n∗−B)×1 with at most n∗ items. When
n∗ − B is examined by the approximation scheme, it returns true (by Lemma
7), and a cover of a (1− ε)h∗ − c× 1 rectangle with at most (1− ε)(B + h∗)− c
holes is returned. By Theorem 5, this cover induces a packing of (1 − ε)n∗ − c
items in a bin of capacity B.
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A Hardness of PRI

Theorem 7. For any 0 < p < s, PRI with uniform expanded size s and uniform
compressed size p is strongly NP-hard.

Proof. We show a reduction from 3-Partition. Given a set of 3m numbers S = {a1, ..., a3m}
such that ∀i, ai ∈ ( 1

4
, 1
2
) and

∑n
i=1 ai = m, the goal is to divide S into m subsets

S1, · · · , Sm ⊆ S such that for all 1 ≤ j ≤ m
∑

a∈Sj
a = 1. The 3-Partition problem is

known to be strongly NP-hard [13].
Given S and any 0 < p < s, we assume w.l.o.g that s = 1 (scale p accordingly).

Construct the following instance of PRI with uniform expanded size s = 1 and uniform
compressed size p: The set of items is A = {a1, ..., a3m}, where ∀i, qi = ai and pi = p.
The bin has capacity B = (2+ p)m. We show that S has a 3-partition if and only if A
can be packed in the bin.

Given a 3-partition of S, let S1, · · · , Sm ⊆ S be the required partition, i.e., for
all 1 ≤ j ≤ m

∑
i∈Sj

ai = 1. We pack the items of A as follows: for every subset

Sj , assume that Sj = {aj1 , aj2 , aj3}, then item j1 is compressed during (0, aj1 ], item
j2 is compressed during (aj1 , 1 − aj3 ], and item j3 is compressed during (1 − aj3 , 1].
Since aj1 + aj2 + aj3 = 1, the compression time of item j2 is aj2 as required. In other
words, for every Sj , exactly one item from Sj is compressed in any time point t ∈ (0, 1].
Clearly, each item is packed as compressed in a contiguous interval. We get, that in
every time point, every subset Sj , requires total height 2 + p. Therefore, all m subsets
require (2 + p)m which is exactly the capacity of the bin.

For the other direction, assume that the set A is packed in a bin of capacity B =
(2 + p)m. By Observation 2, the number of compressed items is uniform during the
packing. Since there are 3m items and the compressed size equals p, exactly m items
are packed as compressed at every t ∈ [0, 1]. Therefore, a total volume of mp out of the
bin capacity is allocated to compressed items. Since p is uniform, this volume can be
viewed as a collection of m bins of size 1 such that each bin accommodates items having
total compression time 1. The packing into the bins induces a partition of {a1, ..., a3m}
into m disjoint sets such that sum of items in each set is 1, This partition is the required
3-partition of S.

Theorem 8. PRI with uniform expanded size and uniform compression time is strongly
NP-hard.

Proof. Once again, we use a reduction from 3-Partition. Given S, construct the fol-
lowing instance of PRI with uniform compression time q = 1/m: The set of items is
A = {a1, ..., a3m}, where ∀i, pi = ai and qi = 1/m. The bin has capacity B = 3m− 2.
We show that S has a 3-partition if and only if A can be packed in the bin.

Given a 3-partition of S, let S1, · · · , Sm ⊆ S be the required partition, i.e., for all
1 ≤ j ≤ m

∑
i∈Sj

ai = 1. We pack the items of A as follows: Let Sj = {aj1 , aj2 , aj3}.
The items originated from Sj are packed as compressed during ( j−1

m
, (j)

m
]. Clearly, each

item is packed as compressed in a contiguous interval of length q. Moreover, since
ai ∈ ( 1

4
, 1
2
), every set Sj consists of exactly 3 items, thus 3m − 3 items are expanded

while Sj is compressed. Thus, for every 1 ≤ j ≤ m, the total size of compressed and
expanded items along ( j−1

m
, (j)

m
] is 3m − 3 + aj1 + aj2 + aj3 = 3m − 2 = B, which is

bin’s capacity.
For the other direction, assume that the set A is packed in a bin of size B = 3m−2.

By Lemma 6, the interval (0, 1] can be partitioned into strips, such that exactly 3 items



are compressed along every strip. Consider the j-th strip. Since B = 3m−2, and 3m−3
items are expanded along the strip, the 3 item compressed along the strip must have
total compressed size 1. In other words, these items can form one subset of the partition.
Since each item is compressed in a single strip, the whole packing induced a 3-partition
of S.

B Some Proofs

Proof of Lemma 3: Since the compression time of each item is rounded down, the
packing of each item is feasible. Also, by Theorem 4 (see Section 3.1) and Observation
1, in steps 4-6, the algorithm uses total capacity wr(X ′) + wr(Y ′) + wr(Z′) = wr(I ′).
By the choice of I ′ in Step 3, wr(I ′) ≤ B.

Proof of Property 1: The proof is by induction on the number of placed items.
Before the first item is placed, the whole (0, 1] interval is a single strip with load 0.
Since q1 = 1/di, the length of this strip is a multiple of q1. In Step (d)iii item j is
placed such that its compressed interval is along the highest strip. By the induction
hypothesis, the highest strip has width aqj for some integer a ≥ 1. If a = 1 the width
of this strip remains the same. If a > 1 then the highest strip is divided by item j
into two strips. The left one has width qj and load ℓ+ pj , and the right one has width
(a−1)qj and load ℓ+ sj . Since the items are sorted by their compression time, it holds
that qj+1 = qj/z for some integer z ≥ 1. Therefore, both qj and (a− 1)qj divide qj+1.
Also, the width of all other strips do not change, thus the width of any other strips
also divides qj+1.

Proof of Lemma 4: The proof is by induction on the number of placed items. Before
the first item is placed, the gap is clearly 0. The placement of the first item might
create a gap of at most rj′ . Assume that the claim holds before item j is placed. In
Step (d)iii item j is placed such that its compressed interval is along the highest strip.
By property 1, this strip has width at least qj , thus, the whole compressed interval of
item j is placed along the highest strip, and the load on this interval is increased by pj .
The added load along the rest of the bin is sj . If the load on the highest strip remains
the highest, the gap does not increase. If another strip became the most loaded, then
the gap could increase to at most sj − pj = rj ≤ rj′ .
Proof of Lemma 6: Let P be a feasible packing of n items. We present an algorithm
for modifying P to a feasible packing P ′ of n items, such that P ′ is organized in strips.
Specifically, for each 1 ≤ i ≤ γ: all the items such that their compressed packing starts
between i−1

γ
and i

γ
in P , will be compressed during the interval ( i−1

γ
, i
γ
] in P ′. We

show that P ′ is feasible by bounding the required volume along each of the strips. For
every 1 ≤ i ≤ γ, let Zi be the set of items that are compressed in strip i in P ′. By
the modifying algorithm, there exists a time point in P in which all the items that are
not in Zi are expanded, therefore, B ≥ n− |Z(i)|+

∑
j∈Z(i) pj . This implies that P ′ is

feasible along the i-th strip. all the items in Zi are packed together and their packing
is feasible. Thus, P ′ is a feasible packing of all the n items.

Proof of Theorem 5: Let H be a solution for CwH, in which an h × 1 rectangle
is covered using B + h holes. We construct a solution for PRI in which B + h items
are packed. For every hole hj in H, let Xj = (x1j , x2j ] be the interval in which hole
hj spans. We pack item j as compressed in (x1j , x2j ], and as expanded in (0, x1j ] and
(x2j , 1]. We show that for every j ∈ H, item j is legally packed, and the total size of



packed items in every time point does not exceed the bin’s capacity B. Note that each
hole is placed along a single interval in (0, 1], and therefore, each item is compressed
for along a continuous time interval.

Let t be some time point in (0, 1], and let kt be the number of holes such their
x-interval includes t, that is, kt = |{hj ∈ H|x1j ≤ t < x2j}|. Let p1, · · · , pkt be the
compressed ratio of the corresponding items. Since H is a solution for CwH, it holds
that the total height of the holes covering t is at least h. Thus, (1 − p1) + (1 − p2) +
· · ·+(1− pk) ≥ h → (p1 + · · ·+ pkt)−kt ≤ −h. We show that there is enough capacity
in time point t in the bin. In the corresponding packing, at time t there are exactly kt
compressed items and B + h − kt expanded items. Therefore, the capacity needed is
(p1 + · · ·+ pkt)+B+h− kt ≤ −h+B+h ≤ B, as required. Since this argument holds
for every t ∈ (0, 1], we conclude that B + h items can be packed.

For the other direction, let P be a solution for PRI such that |P | = B+h. We build
a solution for CwH as follows: Go through all the items j in P and set the x-interval
of hole hj to be Xj = (cj , ej ]. Since each item is packed during (0, 1] and compressed
continuously, each hole is placed at most once and thus the covering is legal. We show
that a h× 1 rectangle is covered by at most B + h holes. Let kt denote the number of
items that are compressed on time t ∈ (0, 1], that is, kt = |{j ∈ P |cj ≤ t < ej}|. Let
p1, · · · , pkt be the compressed ratio of the corresponding items. Since P is a solution
for PRI, it holds that (p1 + · · ·+ pkt)+B+h−kt ≤ B → (p1 + · · ·+ pkt)−kt ≤ −h →
kt − (p1 + · · · + pkt) ≥ h. Therefore (1 − p1) + (1 − p2) + · · · + (1 − pkt) ≥ h, and h
is covered by at most B + h holes in time point t. Since this argument holds for every
t ∈ (0, 1], we conclude that h is covered by at most B + h holes.

Proof of Observation 2: Assume that n̂ items are packed. Let ẑ be the minimal
number of compressed items on any time point along (0, 1]. At the time ẑ items are
compressed, n̂− ẑ items are expanded. Therefore B ≥ n̂− ẑ(1− p). This implies that
if more than ẑ items are compressed at some other time, there is enough capacity to
expand at least one of them.

Proof of Lemma 7: OPT packs n∗ items in a bin of capacity B. Thus, by Theorem
5, OPTcovering covers an ((n∗ − B) × 1) rectangle using at most n∗ items. Since the
rectangle is divided into horizontal strips of height (1−p), OPTcovering actually covers
n∗−B
1−p

bins using at most n∗ holes. Averaging arguments imply that using at most

(1− ε)n∗ − c holes, OPTcovering covers (1−ε)(n∗−B)−c
1−p

bins.

Let X be the maximal number of bins that receive holes of total size at least 1 from
the first (1− ε)n∗ − c holes in I. Then, X ≥ (1−ε)(n∗−B)−c

1−p
. In Step 2 of the algorithm,

the value b is returned by the AFPTAS for Bin Covering. Thus, b ≥ (1− ε)X − c′. We

need to show that b ≥ (1−ε)(h+B)−B−c
1−p

, for h = n∗ − B. In other words, we need to

show that b ≥ (1−ε)n∗−B−c
1−p

.

Combining the upper and lower bounds for b, it is sufficient to show the following

(1− ε)X − c′ ≥ (1− ε)n∗ −B − c

1− p
. (1)

Since p > 0, at least two holes are required to cover every bin. Thus,

X ≥ n∗ −B

1− p
− εn∗ − c

2
(2)



Combining (1) and (2), we need to show that

(1− ε)
n∗ −B

1− p
− εn∗ − c

2
− c′ ≥ (1− ε)n∗ −B − c

1− p
.

Simple calculations show that this is equivalent to showing

n∗(ε(p− 1) + ε2(1− p)) + c(3− ε+ p(ε− 1)) + c′(2p− 2) + 2εB ≥ 0.

Taking c′ = c, we get that c(3− ε+ p(ε− 1)) + c′(2p− 2) > 0, and our goal reduces to
showing n∗(ε(p− 1) + ε2(1− p)) + 2εB ≥ 0.

Clearly, n∗ ≥ B, and therefore, n∗(ε(p− 1) + ε2(1− p)) + 2B ≥ εB((p− 1) + ε(1−
p) + 2). Thus, it is sufficient to show that εB((p − 1) + ε(1 − p) + 2) ≥ 0. Indeed,
(p− 1) + ε(1− p) + 2 > p+ 1 > 0 for any p > 0.


