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Abstract

Inspired by the drawings of “impossible” objects by artists such as M.C. Escher, we describe a mathematical

theory which captures some of the underlying principles of their work. Using this theory, we show how

impossible three-dimensional scenes may be modeled and rendered synthetically.

1. Introduction

“A likely impossibility is always preferable to an uncon-

vincing impossibility” -Aristotle

The artist M.C. Escher was not a mathematician, but it

is commonly believed that his work was based on sound

mathematical principles2. Some of his most renowned

pictures, e.g. “Waterfall”, “Belvedere” and “Ascending

and Descending” (see Figure 1) depict various impos-

sible three-dimensional scenes. These scenes cannot be

constructed in their “global” entirety in reality, but yet

small “local” portions of the scene do not seem to

contradict basic Euclidean geometric laws when viewed

individually.

While M.C. Escher is probably the most well-known

creator of impossible scenes, drawings such as these

date back to Brueghel’s 1568 painting “The Magpie

on the Gallows”. Subsequent works are Duchamp’s in

1916 and, more significantly, Reutersvard’s in 1934. See

the survey of Ernst1 for a full historical account. The

famous “tribar” (see Figure 2(a)) was discovered by

Reutersvard, and later again by the Penroses3, when

it was first described in a scientific publication. Fol-

lowing correspondence between R. Penrose and M.C.

Escher, it later featured in Escher’s “Waterfall”. Escher’s

“Belvedere” also contains an impossible “cuboid”.
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That such impossible scenes may be rendered consis-

tently in one image is due to the fact that the geometric

contradictions may be “eliminated” when the scene is

viewed from a particular viewpoint in a particular direc-

tion, and then projected onto the two-dimensional image

plane. When looking at small portions of the result, we

have no problem understanding it and reconstructing

it in our minds. However, looking at the whole picture

leaves us confused. While not exactly what will be advo-

cated in this paper, Figure 3, due to Ernst, demonstrates

how an illusion of an impossible tribar may be created

by photographing a real 3D object from a particular an-

gle. This requires local physical corrections to the object

if conflicts arise. The methodology to be presented in

this paper avoids that.

Exploiting the dimension reduction within the pro-

jective rendering operation is a way to explain Escher’s

drawings, but not all impossible pictures are based on

these principles. Penrose4 calls drawings guided by these

principles pure, in contrast to impure pictures that are

based on other visual phenomena. Impure images gener-

ally take advantage of simple drawing techniques, such

as the simplicity of lines, to achieve the impossibility

effect (see Figure 2(b),(c)). From our point of view, im-

pure images are less interesting because they cannot be

shaded correctly while still maintaining the impossibility

effect. Pure impossible drawings contain “real” objects

(such as bars), each of which has an unambiguous con-

sistent interpretation. They can be texture mapped or

subjected to any realistic optical effect, hence may be

rendered using computer graphics techniques.
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In this paper we describe a mathematical theory which

captures the intuitive visual illusions present in pure im-

possible images. A modeling language which enables the

description of impossible scenes is proposed and a ren-

dering algorithm which “solves” for a correct viewpoint

and image is described. Apart from the work of Tsuruno
5, in which an animation of an Escher-like “Belvedere”

was shown, to the best of our knowledge this is the first

proposal of an automated method to generate synthetic

images of impossible scenes.

2. Some Mathematics

This section provides some mathematical preliminaries

which will prove useful in modeling and rendering im-

possible scenes. We assume all vectors are row vectors.

Definition 2.1 Two linear transformations A and B are

equivalent with respect to (w.r.t.) P , denoted by A ≈
B (P ), if AP = BP .

Equivalence w.r.t. P can occur for non-singular A 6= B

only if P itself is singular. Indeed, we will use this equiv-

alence relation for projection matrices P . In computer

graphics terms, equivalence w.r.t. P means that the same

image of a scene results if it is viewed transformed by

A and then projected thru P , or transformed by B and

then projected thru P .

Definition 2.2 A transformation Z is called an identity

with respect to (w.r.t.) P if for every transformation A:

AZ ≈ A (P ).

Lemma 1 Z ≈ I (P ) iff Z is an identity w.r.t. P . (I is

the regular identity matrix).

Proof One direction is trivial. The other direction fol-

lows from: Z ≈ I (P ) → ZP = IP = P , so for any A,

AZP = AP → (AZ)P = AP → AZ ≈ A (P ).

The next two theorems characterize identities w.r.t.

P . The nullspace of a matrix A (denoted null(A)) is

the rectangular matrix whose rows are a basis for the

orthogonal complement of the linear space spanned by

the columns of A. AT denotes the transpose of A.

Theorem 1 Z is an identity w.r.t. P iff span(Z − I) ⊂
null(P ) or span(PT ) ⊂ null((Z − I)T ).

Proof Z is an identity w.r.t. P iff Z ≈ I (P ) iff ZP = P

iff (Z − I)P = 0 iff span(Z − I) ⊂ null(P ) or span(PT ) ⊂
null((Z − I)T ).

Theorem 2 If Z is an identity w.r.t. P , and A commutes

with P , i.e. AP = PA, then:

1. A−1ZA is an identity w.r.t. P if A is non-singular

2. Z is an identity w.r.t AP .

Proof Z is an identity w.r.t P → Z ≈ I (P ) → ZP = P

→ ZPA = PA → ZAP = AP . This in turn implies

that:

1. A−1ZAP = P → A−1ZA ≈ I (P ) → A−1ZA is an

identity w.r.t. P .

2. Z ≈ I (AP ) → Z is an identity w.r.t. AP .

Theorem 3 implies that identities w.r.t. P are not

unique. For example, if P is an orthographic projection

through the axis defined by unit vector v, Z an identity

w.r.t. P , and A any rotation and scale transformation

around v, then A−1ZA is also an identity w.r.t. P .

3. Modeling Impossible Scenes

In most geometric modeling frameworks, a scene S con-

sists of a collection of objects Oi, each described in

its own local coordinate system. The scene is defined by

providing a geometric transformation for each of the ob-

jects into the global world coordinate system, positioning

it relative to this fixed reference frame. In this work we

generalize by allowing for transformations between pairs

of objects in the scene, which we call relations.

3.1. The scene graph

Let O = {O1, .., On} be a set of objects, each described

by its geometry (vector of coordinates). The scene graph

is the directed graph G = (O,T ), such that the graph

vertices are the scene objects and the edge set are trans-

formations Tij , such that Tij = T−1
ji . The graph is said

to be satisfied if all its cycles are satisfied, in a sense

to be made precise in Section 3.3. A scene is said to be

consistent, or possible, if its graph is satisfied, otherwise

it is said to be inconsistent, or impossible.

3.2. Describing impossible scenes

In classical scene description, where all objects are re-

lated to one global coordinate system, the scene graph

has the topology of a star. One object, the center of the

star, may be viewed as a global reference, to which all

other objects are directly related through some direct

transformation.

The key to being able to describe impossible 3D scenes

is to describe them using relations between any pair of

scene objects, instead of relating all the objects to one

global reference frame. This allows for scene inconsis-

tency, in the sense that not all of the relationships may

be satisfied simultaneously. It is precisely this class of

inconsistent scenes which are “impossible”, and which

seem to us unreal. However, in many cases, the use of

appropriate viewing and projection transformations may

eliminate these inconsistencies. This is where the concept

of equivalence with respect to a projection, described in

Section 2, proves to be useful.
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3.3. Making impossible scenes possible

Assume the scene graph G = (O,T ). In order to render

this scene, the graph must be satisfied. If this is not the

case, we require a weaker condition, that the graph be

satisfied with respect to some projective viewing trans-

formation V .

If the scene graph does not contain cycles, it is trivially

satisfied by any V . The existence of the cycle Oi1 →
Oi2 → ... → Oik implies that Ti1 i2Ti2 i3 · · · Tik−1 ikTik i1 = I

must hold in order that the graph be satisfied. This

may not always be the case, as happens for the class

of impossible scenes. These impossible scenes, however,

may be made “possible” if a weaker condition holds:

Ti1 i2Ti2 i3 · · · Tik−1 ikTik i1 ≈ I (V ) (1)

Note that the trivial V = 0 is always a solution,

reducing the entire scene to a point image. To eliminate

this solution, we require that V = BP , where P is a given

projective viewing transformation, e.g. the orthographic

or perspective transformation, and B is an unknown

non-singular matrix. The unknown is, therefore, B. Once

a V = BP satisfying (1) for all cycles of G has been

found, the actual viewing transformation for each object

is determined by calculating it for one object, and then

propagating it through the graph.

3.4. Solving impossible graphs

Given a viewing transformation P , solving an impos-

sible graph requires finding a transformation B such

that (1) holds for V = BP and all cycles in the

graph. This may be done by starting with an ar-

bitrary object O, and accumulating (composing) the

inter-object transformations through the graph. If O

is reached again, and the accumulated transformation

is Z , we require that Z ≈ I (BP ), or, by Theorem 1,

span(PTBT ) ⊂ null((Z − I)T ). Furthermore, Theorem

2(2) implies that the solution is not unique, since, if B

is a solution, and A commutes with BP , AB is also a

solution. Usually, a significantly different effect will not

be obtained by using A 6= I , other than some image

plane transformation.

Finding the nullspace of a matrix is a standard linear

algebraic operation, usually performed via a singular

value decomposition (SVD) operation. It is available

in most numerical matrix manipulation packages (e.g.

MATLAB).

3.5. Example

Assume that P is the orthographic projection, and that

the original and final transformations in a graph cycle

define transformations of the canonical axes to axes with

parallel XY planes and co-linear Z axes. It is easy to

see that a possible solution B corresponds to a rotation

mapping the vector connecting the origins of the object

spaces to a vector parallel to the canonical Z-axis. The

solution BP generates the family of solutions ABP ,

where A is a rotation of the XY “image” plane. See

Figure 4.

4. Rendering Impossible Scenes

To render an image of a given scene involves determining

the RGB color of every image pixel. The dominant con-

tribution to a pixel is that from the object closest to the

viewer projected on that pixel. In conventional render-

ing scenarios, determining which object this is requires

knowing and ordering the depths of all objects projected

to the pixel in the global coordinate system. Since, for

impossible scenes, a global coordinate system does not

necessarily exist, the rendering of these scenes is first

done on a per-object basis. This allows the use of exter-

nal renderers to calculate the color and depth for every

pixel and for every object in its own coordinate space,

using its accumulated viewing transformation, produc-

ing a separate image for each object. The output of such

an external renderer is an image containing a color and

a local depth for each pixel. Local depth means a depth

in the object’s local coordinate system. To generate the

final image these local depths must be sorted somehow

by relating the coordinate systems of the various objects.

This is possible for two objects if there is an edge in the

scene graph between the two objects (provided by the

user), otherwise there is no well-defined relationships be-

tween the different coordinate systems. This introduces

extra degrees of freedom into the solution, and it is up

to the user to specify occlusion relationships resolving

these ambiguities.

The algorithm proceeds by rendering all pairs of ob-

jects, for which an edge exists in the scene graph, with a

Z-buffer compositing algorithm. For pairs of objects for

which the user has defined an occlusion relationship, an

overwrite operation is used for the occluding object. For

pairs of objects for which no relationship is explicitly

defined, an arbitrary order is chosen, so long as it is

consistent throughout the entire rendering.

For some pixels, a contradicting (or inconsistent) or-

dering of the pixels will arise. This happens, for example,

with the “fat” tribar, whose three bars are so fat that

they touch in the center. This center point is unren-

derable. This phenomenon seems to be a generalization

of the situation arising when trying to render two co-

planar polygons with traditional rendering algorithms

(the question of who occludes who then arises).

5. Examples

In this section we bring two examples of impossible

scenes modeled and rendered using our system, where
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P is the canonical orthographic projection. The input

to the system is a geometric description of each of the

3D scene objects in some local coordinate space, and a

set of geometric transformations between some pairs of

the objects. The system then solves for the non-singular

transformation B, such that the scene graph is consistent

w.r.t. BP . The system renders each object separately in

in its local coordinate space, and builds an image and

depth map for it. It then presents the user with a list

of occlusion degrees of freedom which he may set in

order to render an image of the scene. The user may

experiment with various relationships until a pleasing

image is obtained. The inputs for Figs. 5-6 are detailed.

Fig. 7, demonstrating the basic motif in M.C. Escher’s

“Waterfall”, was also obtained by our system. “rot” de-

notes the rotation operator, and “trans” the translation

operator.

Cool Cube (Fig. 5)

Objects:
A1 C1 B4: “bar.3d” B1: “bar.3d”

C4: “bar.3d” A3 C2: “bar.3d”

B2 C3 A2: “bar.3d” B3 A4: “bar.3d”

Relations:
A1 C1 rot x 90; trans 0 1 1 ;

C1 B1 rot x -90; trans 0 1 1 ;

B1 C4 rot x 90; rot y 180; trans 0 -1 1 ;

C4 A3 rot x -90;

A3 A4 rot z -90; trans -1 1 0 ;

A4 A1 rot z -90; trans -1 1 0 ;

A1 A2 rot z -90; trans -1 1 0 ;

A2 A3 rot z -90; trans -1 1 0 ;

B1 B2 rot z -90; trans -1 1 0 ;

B2 B3 rot z -90; trans -1 1 0 ;

B3 B4 rot z -90; trans -1 1 0 ;

B4 B1 rot z -90; trans -1 1 0 ;

A3 C2 rot x 90; trans 0 1 -1 ;

A2 C3 rot x 90; trans 0 1 -1 ;
Occlusions:

C2 after B1; C2 after A4; C2 before B4;

C2 before B3; C1 after A4; C3 before B2;

Star of David (Fig. 6)

Objects:

A1 A2 A3 B1 B2 B3: “BlueBar.3d”

Relations:
A1 A2: rot z 90; trans -1 -1 0 ;

A2 A3: rot x -90; trans 0 -1 -1 ;

A3 A1: rot z -90; rot y 90; trans 0 -1 1 ;

B1 B2: rot z 90; trans -1 -1 0 ;

B2 B3: rot x 90; trans 0 -1 1 ;

B3 B1: rot z -90; rot y -90; trans 0 -1 -1 ;

A1 B1: rot y 45; trans 1 0 0 ; rot y -135;

Occlusions:
B2 after A2; B2 before A1; B3 after A1;

B3 before A3; B1 after A3; B1 before A2;

6. Conclusion

We have shown that impossible scenes, such as those

drawn by M.C. Escher, are actually quite possible, given

the proper descriptive language and rendering mecha-

nisms. The key to this is that not all geometric scene

information is required to render an image of the scene,

so some of it may be inconsistent, yet still yield a con-

sistent rendering.

A mathematical theory, based on relations between

pairs of scene objects was described to support our

ideas. This formalism generalizes the traditional ways

of describing scenes and allows for the description of

impossible scenes. A method was proposed for the ren-

dering of such impossible scenes, using a mixed Painter

and Z-buffer algorithm.

While our system has proven useful in generate syn-

thetic images of impossible scenes, it still requires con-

siderable user intervention. It would be useful to reduce

this to the bare minimum. What that bare minimum is

remains an open question.
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(a) (b) (c)

Figure 1: M.C. Escher’s original drawings: (a) “Ascending and Descending”. (b) “Waterfall”. (c) “Belvedere”. Copyright

Escher’s works : c©M.C. Escher Heirs c/o Cordon Art, Baarn, The Netherlands.

(a) (b) (c)

Figure 2: (a) A pure impossible object: the famous tribar. Note that it consists of “real” physical bars. (b)-(c) Impure

impossible objects. No “real” physical objects are discernible.
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Figure 3: Photograph by Ernst (reprinted from Ernst) demonstrating how an illusion of an impossible object may be

created from a real 3D object (reflected in mirror). Note that the left corner of the vertical bar has been physically

modified (cut away) to achieve the correct illusion at the “join” with the appropriate horizontal bar.

(a) (b)

Figure 4: (a) The viewing transformation which bridges the gap between an object’s original position and its position

after propagation through a scene graph cycle. (b) The result of rotation aligning the vector v with the canonical Z axis,

composed with an orthographic projection thru the Z axis. This may also be rotated afterwards in the XY plane.
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(a) (b)

Figure 5: The impossible “Cool Cubes” scene: (a) Wireframe. (b) Shaded.

(a) (b)

Figure 6: The impossible “Star of David” scene: (a) Wireframe. (b) Shaded.

(a) (b)

Figure 7: More synthetic impossible scenes: (a) “Waterfall” (b) “Super Waterfall”.
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