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Abstract

A bounding region for spiral curve segments shaped by two circular arcs, parts
of the osculating circles at the spiral’s endpoints, and two lines is introduced.
This bounding region, denoted Spiral Fat Arc (SFA) is simple to construct and
process, and shows a cubic approximation order to a given spiral curve.

Given a general planar parametric curve, it can be split at curvature extrema
(and inflection points), solving for the parametric locations for which κ′ = 0 (and
κ = 0), κ being the signed curvature field, to yield a set of spiral curves. Each
of the spirals is then fitted with a bounding SFA.

Finding the intersection locations of two free-form planar curves is a funda-
mental task in geometric computing and computer aided design, and can imme-
diately benefit from this new SFA bounding region. A recursive curve-curve
intersection (CCI) algorithm that efficiently computes the intersection location
of two parametric curves using SFAs is also introduced.

Key words: spiral, monotone curvature, curve-curve intersection, bounding
regions, fat-arcs

1. Introduction and Related Work

Spiral curves had become an important tool in geometric modeling and
computer-aided design, in the past decades. These curves, possessing a prop-
erty of a monotone curvature, were focused to be immensely useful due to their
eye-pleasing shape [1, 13]. In shape design, a curve is typically required to not
only be sufficiently smooth but also of attractive appearance [14]. High order
continuity/smoothness need not to be a decisive criterion, when the aesthetic
aspect of the curve is taken into account [13]. In computed numerically con-
trolled (CNC) machining, a path of the end-effector may also be required to
have monotonous curvature [22].

Hence, curves with monotone curvature, or even more – with monotone
change of curvature [19], are starting to be thoroughly investigated. In 2D, a
special one-parametric family of spirals represented as Bézier curves was intro-
duced [15]. By constraining the length and the angle of two neighboring edges
of its control polygon, these curves, known as typical, are guaranteed to have

Preprint submitted to Elsevier September 11, 2010



monotone curvature. A construction of a spiral segment that interpolates given
G2 boundary data (endpoints, unit tangents and signed curvatures) was pre-
sented in [21]. In order to get more degrees of freedom, rational Bézier spirals
that interpolate given G2 data were considered in [7]. Recently, a circular in-
version was applied to an arc of a parabola to construct a spiral segment that
satisfies G2 boundary conditions [12].

In 3D, not only the curve’s curvature, but also the torsion of the curve needs
to be considered. A generalization of the typical curves of [15] into 3D was
proposed in [11], yielding a family of space curves with monotone curvature and
torsion.

The curve-curve intersection problem (CCI) is a fundamental task in com-
puter aided design. Algorithms that efficiently find these points are therefore
strongly desirable. Bounding regions that contain given curve(s) are commonly
used in CCI-algorithms. These bounds are recursively intersected and parts
of both curves that lie outside the mutual intersection domains are trimmed
away. The approximation order of the bounding region to the original curve
typically reflects the quality/tightness of the bound. Consequently, this mea-
sure determines how quickly the algorithm converges to the desired intersection
point, known as convergence rate. Naturally, the higher the convergence order
is the lower the number of iterations of the algorithm needed. On the other
hand, the bounding region is required to be as simple as possible, since it is
constructed and intersected in every iteration of the algorithm. Hence, some
balance between the convergence order and the simplicity of the bound is to be
maintained.

Common bounding regions are bounding boxes, planar strips, fat lines, con-
vex hulls or fat arcs [16, 10, 3, 4]. Such regions are very easy to construct
and the intersection requires the solution of (at most) quadratic equation(s).
For two Bézier/Bspline curves, a method known as Bézier clipping was intro-
duced in [16]. It exploits the convex hull property of these curves and, in single
intersections, converges quadratically to the intersection point [18].

Fat arcs, regions bounded by a pair of co-centric circles, were considered
in [10] for parametric curves. Numerical tests showed cubical convergence rate
in single roots. Another scheme that handles implicit curves was presented in
[3, 2]. An implicit curve is considered as a zero set of a bivariate polynomial
over a given 2D box. Using the Bernstein-Bézier representation, the best linear
approximation with respect to the L2 norm, a 3D plane, is constructed. Using
bounds on the approximation errors, 3D bounding strips and consequently fat
lines in 2D are obtained. These two bounding fat lines define a 2D parallelo-
gram, which is afterwards intersected with the original domain and thus the new
domain is defined. This scheme converges quadratically to a single root. A gen-
eralization, that exploits one linear approximation (fat line) and one quadratic
(fat conic), [4] has shown a cubic convergence rate in single roots and superlin-
ear (1.5) in double roots. Recently, an algorithm that generates a collection of
bounding fat arcs of a given implicit curve was discussed [5].

In this work, we introduce a bounding region for spiral curve segments whose
boundary consists of two circular arcs, parts of the osculating circles at the
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spiral’s endpoints, and two lines. These bounding regions, denoted Spiral Fat
Arcs (SFA) are simple to construct, process and present cubic convergence
rate.

Given a general parametric curve, it can be split at curvature extrema (and
inflection points), solving for the parametric locations for which κ′ = 0 (and
κ = 0), κ being the signed curvature field, to yield a set of spiral curves. It
should be noted that if ϕ(t) is a regular piecewise polynomial curve, so will be
the zero (numerator) constraints for κ′ and κ.

Once both curves are split into spirals, their SFAs are constructed and,
if overlap, intersected. Parts of both segments that can not contribute to an
intersection point are trimmed away and the process is recursively repeated.
Due to the cubic approximation order of a curve by its osculating circle, the
algorithm is proved to converge with cubic convergence rate toward a single
(transversal) intersection point.

The rest of the paper is organized as follows. In Section 2, a brief summary
on spirals is given and SFA regions are introduced. Section 3 formulates the
CCI algorithm and discusses its convergence rate. Several examples are given
in Section 4 and finally the paper is concluded in Section 5.

2. Spirals

In this section, we briefly recall the notion of a spiral curve, summarize some
of its properties and introduce its simple bounding region, spiral fat arc.

Definition 1. The differentiable mapping ϕ : [0, 1]→ R
2 is said to be a regular

spiral curve if ‖ϕ′(t)‖ �= 0 and its curvature κ(t) is continuous and strictly
monotone for all t ∈ [0, 1].

Remark 1. If no misunderstanding can occur, we title both the mapping and
its image by a spiral. In addition, in the rest of the paper, if not stated differ-
ently, without loss of generality the curvature is considered strictly increasing
(otherwise reverse the parametrization).

2.1. Spirals as envelopes of nested systems of circles

Curvature is a measure of the change of the curve’s unit tangent vector [6].
Since a spiral has an increasing curvature, whereas the curvature of its osculating
circle is constant, locally a spiral ”crosses” its osculating circle. This property
is formulated in the following lemma.

Lemma 1. An osculating circle of spiral ϕ locally intersects ϕ only at the os-
culating point.

Proof. Let ϕ be arc-length parameterized curve and let O(a) be the center
of the osculating circle of ϕ, c(a), at some point ϕ(a). Denote by R the ra-
dius of osculating circle R(a) = ‖ϕ(a) − O(a)‖, see Fig. 1, where ‖ · ‖ denotes
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ϕ(a)

ϕ(a+ t)

O(a+ t) c(a+ t)

c(a)

O(a)

Figure 1: Spiral curve ϕ and two of its osculating circles, c(a) and c(a + t), from
the infinite set of osculating circles, C. C is ordered with respect to inclusion. ϕ
intersects every osculating circle in C only at the osculating point.

the Euclidean norm. Let d(t) = ‖ϕ(a + t) − O(a)‖2 − R(a)2. Then, a direct
computation gives

d′(t) = 2〈ϕ′(a+ t), ϕ(a+ t)−O(a)〉,
d′′(t) = 2〈ϕ′′(a+ t), ϕ(a+ t)−O(a)〉 + 2〈ϕ′(a+ t), ϕ′(a+ t)〉,
d′′′(t) = 2〈ϕ′′′(a+ t), ϕ(a+ t)−O(a)〉 + 6〈ϕ′′(a+ t), ϕ′(a+ t)〉,

(1)

and consequently in the Taylor expansion of d at t = 0, the first three terms (a
constant, t and t2) vanish whereas the coefficient of t3 is non-zero (2κ(a)). This
directly implies the change of the sign of d at 0. �

Definition 2. Let ϕ(t), t ∈ [0, 1], be a spiral and c(t) its osculating circle. The
infinite set

C = {c(t), t ∈ [0, 1]} (2)

is referred to as a system of osculating circles of ϕ.

Definition 3. We say that a one-parameter system of circles (2) is nested (or-
dered with respect to inclusion) if c(t2) ⊂ c(t1) for every t1 < t2, t1, t2 ∈ [0, 1].

Lemma 2. System C of osculating circles along a spiral curve ϕ is nested.

Proof. Assume that ϕ is an arc-length parameterized spiral. Let c(a) and
c(a + t), t > 0 be two circles of system C and let O(a) and O(a + t) be their
centers, respectively, see Fig. 1. Circle c(a+ t) is contained in c(a) if and only if

‖O(a)−O(a + t)‖ < R(a)−R(a+ t), (3)
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where R(a) = ‖ϕ(a)−O(a)‖ is the radius of c(a). Define functions

dO(t) = ‖O(a)−O(a+ t)‖2,
dR(t) = |R(a)−R(a+ t)|2 (4)

and observe the Taylor expansion of both dO(t) and dR(t) with respect to vari-
able t, at t = 0. Similarly to (1), direct computation of the derivatives gives
dO(0) = 0, d′O(0) = 0, d′′O(0) = 2‖O′(a)‖2, d′′′O (0) = 6〈O′′(a), O′(a)〉 and

d′′′′O (0) = 8〈O′(a), O′′′(a)〉+ 6〈O′′(a), O′′(a)〉 (5)

and analogously for dR(t) we obtain dR(0) = 0, d′R(0) = 0, d′′R(0) = 2R′2(a),
d′′′R (0) = 6R′(a)R′′(a) and

d′′′′R (0) = 8R′(a)R′′′(a) + 6R′′2(a). (6)

Since ϕ is arc-length parameterized, Frenet formulas give N ′ = −κϕ′ = − 1
Rϕ′

or
O = ϕ+RN,
O′ = ϕ′ +R′N +RN ′ = R′N,
O′′ = R′′N +R′N ′,
O′′′ = R′′′N + 2R′′N ′ +R′N ′′,

(7)

where N denotes the unit normal of ϕ and κ its curvature. Observe that

d
(i)
O (0) = d

(i)
R (0), i = 0, . . . , 3, but

d
(4)
O (0) < d

(4)
R (0). (8)

Using (7) and the fact that ϕ is a planar curve (its torsion τ = 0), we obtain

〈O′, O′′′〉 = R′R′′′ −R′2κ2,
〈O′′, O′′〉 = R′′2 +R′2κ2,

(9)

and substituting (9) into Eq. (5), we get an inequality of leading terms of both
Taylor expansions, Eq. (8), and consequently dO(t) < dR(t) for small t > 0.

Since for all a, c(a) ∈ C fully contains all c(a+t), t ∈ [0, t0] for some t0 ∈ R
+,

C is ordered with respect to inclusion. �

Corollary 1. A spiral is a self-intersection free curve.

Proof. Let t1, t2 ∈ [0, 1], t1 < t2, be two parameters of spiral ϕ. Define
tM = t1+t2

2 and consider osculating circle c(tM ) of ϕ at ϕ(tM ). Since C is nested
and ϕ is osculating to its osculating circle only at the contact point, c(tM ) sep-
arates ϕ(t1) and ϕ(t2) and hence ϕ(t1) �= ϕ(t2). �

An algorithm to compute self-intersections of a general (planar) curve by
splitting it into spiral can also immediately benefit from Corollary 1: 1) Split
input curve into spiral segments. 2) Intersect the different spirals. We formulate
a curve-curve-intersection algorithm in Section 3. Prior to this, we define a new
bounding region of a spiral curve.
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ϕ(0) = P0

Q0

ϕ

ϕ(1) = P1

Q1

c1

c0

ϕ′(1)

ϕ′(0)

Q0

Figure 2: (a) A segment of spiral parametric curve ϕ between endpoints ϕ(0) = P0

and ϕ(1)P1 is bounded by a spiral fat arc (grey) which is delimited by two straight

lines and two circular arcs,
�

P0Q1 and
�

Q0P1. Q0 is the contact point between the
tangent of c1 at P0, where c1 is the osculating circle of ϕ at P1. Q1 is the intersection
of c0 with the tangent of c1 at P1, in the direction opposite to ϕ′(1), where ϕ′(1) is
the common tangent of ϕ and c1 at P1.

2.2. Bounding spiral fat arcs

In this subsection, we introduce an easy-to-construct bounding region of a
spiral segment, the spiral fat arc (SFA), which fully contains and tightly bounds
a given spiral curve. Consider osculating circle c0, (c1) of spiral ϕ(t), t ∈ [0, 1],
at the startpoint ϕ(0) = P0 (endpoint ϕ(1) = P1), see Fig 2. Due to Lemma 2,
c1 ⊂ c0. Further, ϕ is contained in the circular ring between c0 and c1. In
addition, let us assume ∫ 1

0

κ(t)dt < 2π. (10)

Definition 4. Let Q0 and Q0 be the contact points on c1 and the two tangents
of c1 through point P0 such that 〈ϕ′(0), Q0P0〉 > 〈ϕ′(0), Q0P0〉 and let Q1 be
the intersection point between c0 and the tangent line of c1 at P1 such that
〈ϕ′(1), Q1P1〉 < 0, see Fig 2. The region delimited by the two circular arcs,

�

P0Q1 and
�

Q0P1, and the two lines P0Q0 and P1Q1 defines the spiral fat arc of

ϕ. Arc
�

P0Q1 together with line Q1P1 will be referred to as an upper envelope

of ϕ, whereas
�

Q0P1 and P0Q0 define its lower envelope.

Observe Inequality (10) is required to guarantee that ϕ does not possess
a loop inside the circular ring. Obviously, if assumption (10) is violated, the

6



P0

ϕ

P1

Q1
P0

c0

P1

(a) (b)

Figure 3: (a) A limit case of a SFA region at inflection point P0. The upper envelope
of ϕ consists of two lines P0Q1 and Q1P1. (b) SFA region is well defined only for
spiral arcs that satisfy ineq. (10).

spiral is not bounded by its SFA, see Fig. 3(b). In such a case, the curve is
subdivided and two sub-SFAs are constructed. In order to reduce the number
of redundant subdivisions, one can exploit the magnitude on the left side of
Inequality (10), which indicates the number of loops, and subdivide the curve
directly into several pieces.

Remark 2. If the curvature of ϕ is (almost) zero, its osculating circle converges
to a line and therefore the computation of the osculating circle can be numeri-
cally unstable. In such a case, the limit case is directly considered and the arc
in the upper envelope of ϕ is replaced by a segment of tangent line as depicted
at Fig. 3(a).

3. Curve-curve intersection using spiral fatarcs

In this section, we introduce an algorithm which exploits the SFA bounding
regions and computes the intersection points of two planar parametric curves.
The algorithm isolates all intersection points and, in the transversal intersection
case, has a cubical convergence rate.

Definition 5. Let ϕ1(t), ϕ2(s), t, s ∈ [0, 1] be two planar parametric curves.
We say that ϕi(t), i = 1, 2, intersect transversally at point P if there exist
unique parameters t�, s� ∈ [0, 1] such that P = ϕ1(t

�) = ϕ2(s
�) and tangent

vectors ϕ′
1(t

�) and ϕ′
2(s

�) are linearly independent.

Definition 6. We say two spiral fat arcs, SFA1, SFA2, intersect transversally,
if the upper/lower envelope of SFA1 intersects the upper/lower envelope of
SFA2 at a single point, see Fig. 4(a).
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SFA1

SFA2

D

SFA1

SFA2

(a) (b)

Figure 4: (a) Two spiral fat arcs SFA1 and SFA2 in transversal position are inter-
sected and the curve segments are restricted to domain D (grey). (b) SFA regions
in non-transversal position. In such a case, Algorithm 2 subdivides both curves.

Remark 3. Observe that a spiral curve traverses its SFA region from one
endpoint to another with a monotone curvature (monotone change of its tangent
vector). Hence, the transversal intersection of two SFA regions implies the
transversal intersection of two bounded spirals and consequently, there exists a
unique intersection point inside the intersected region.

3.1. Algorithm

In order to find an intersection point(s) of two spirals, their SFAs are con-
structed, mutually intersected, and parts of both curves which lie outside the
intersection are trimmed off, see Fig. 4(a). This process, denoted spiral clipping,
is repeated until some numerical tolerance is reached, see Algorithm 1. This tol-
erance, ε, might be the diameter of a SFA or, in our implementation, the range
of the two endpoints in the parametric space, see line 12 of Algorithm 1. If the
SFA regions do not intersect, the spirals have no intersection points.

For two general curves, a preconditioning step is required. At this step, both
curves are split at points of extremal curvature, κ′ = 0, and at inflection points,
κ = 0, yielding two sets of spiral segments. Since

κ =
‖ϕ′ × ϕ′′‖
‖ϕ′‖3 , (11)

solving for its roots basically reduces to solve for the roots of a univariate poly-
nomial (numerator of (11)) in the case of a regular rational ϕ. This is robustly
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Algorithm 1 (see Fig. 4) SpiralClipping(ϕ1, ϕ2, ε)

1: INPUT: two spiral curves, ϕ1(t) and ϕ2(s);
numerical tolerance ε;

2: S ← ∅
3: construct the axis-aligned bounding boxes of both ϕ1 and ϕ2 to efficiently

detect non-overlapping curves;
4: SFA1,SFA2 ← construct spiral fat arcs for ϕ1 and ϕ2;
5: if SFA1 ∩ SFA2 = ∅ then
6: return S
7: end if
8: if SFA1 and SFA2 intersect transversally then
9: D ← SFA1 ∩ SFA2

10: [t0, t1] ← trim ϕ1 by region D;
11: [s0, s1] ← trim ϕ2 by region D;
12: if t1 − t0 < ε and s1 − s0 < ε then
13: t� = t1−t0

2 ; s� = s1−s0
2 ;

14: S ← S ∪ [t�, s�]
15: else
16: go to line 3
17: end if
18: else
19: subdivide in the middle of parametric domains and go to line 3 on all four

recursive calls;
20: end if
21: OUTPUT: S, set of pairs of parametric values [t�, s�] that approximate

the intersection points of ϕ1 and ϕ2;

achieved by using a numerical solver that guarantees to return all roots [8].
Then, spiral clipping is applied to any pair of spiral segments. A whole process
is summarized in Algorithm 2.

In the trimming stage, the part of the curve that lies outside the common
domain needs to be trimmed off by the boundary of the SFA region (a line
or a circle). Several schemes can be used to achieve this. We use the secant
method to iteratively find a conservative intersection point within the prescribed
tolerance.

Note that even though the SFA offers a tight bound on a spiral curve, its
construction is more time demanding than the construction of a simple bounding
box. In order to improve the timings of Algorithm 1, axis-aligned bounding
boxes were used to purge away the non-overlapping parts more efficiently.

3.2. Convergence rate

In order to make this paper self-contained, we formulate following technical
lemma.
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Algorithm 2 CurveCurveIntersection(ϕ1, ϕ2, ε)

1: INPUT: two planar parametric curves ϕ1 and ϕ2, numerical tolerance ε;

2: S ← ∅
3: {ϕi

1}mi=1, {ϕj
2}nj=1 ← split both curves into segments with monotone signed

curvature; /* preconditioning stage */

4: for i = 1 to m do
5: for j = 1 to n do
6: S ← S ∪ SpiralClipping(ϕi

1, ϕ
j
2, ε);

7: end for
8: end for
9: OUTPUT: S, set of pairs of parametric values that approximate the inter-

section points of ϕ1 and ϕ2;

Lemma 3. Let c1(C1, r1) and c2(C2, r2) be two circles transversally intersected
at some point P and let FA1 (FA2) be the fat arc arisen from c1 (c2) by
the offset distance δ such that δ 
 r1, r2. Denote by S one of the connected
components of FA1 ∩ FA2. Then diam(S) = O(δ).

Proof. See Appendix.

Theorem 1. Let ϕ1(t), ϕ2(s) be two spirals transversally intersected at point
P . Then SpiralClipping converges to P with convergence rate d = 3.

Proof. Let [t�, s�] be the parameters returned by SpiralClipping(ϕ1, ϕ2, ε)
that corresponds to P and let {[ti0, ti1]× [si0, s

i
1]}i=0,1,... be the nested sequence

of parametric domains generated by SpiralClipping that contain [t�, s�].
Denote hi = diam([ti0, t

i
1]× [si0, s

i
1]), the diameter of the parametric domain

in the i-th iteration and consider

δi1+ = max
t∈[ti0,t

i
1]
(‖ϕ1(t)− ci1+‖), (12)

δi1− = max
t∈[ti0,t

i
1]
(‖ϕ1(t)− ci1−‖), (13)

where ci1+ (ci1−) is the osculating circle of ϕ1 at startpoint ϕ1(t
i
0) (endpoint

ϕ1(t
i
1)), see Fig 5. The bounding values of ϕ2, δ

i
2+ and δi2−, are defined anal-

ogously. Observe that all δi1+, δ
i
1−, δ

i
2+, δ

i
2− measure the distance between a

curve and its osculating circle and define

δi = max(δi1+, δ
i
1−, δ

i
2+, δ

i
2−). (14)

Since the curve’s parametric length is of O(hi) and the osculating circle is a
second order approximation to the curve, Taylor expansion gives δ = O(h3

i ).
Finally, consider osculating circles ci1, c

i
2 of both curves at intersection point

P and define two fat arcs FAi
1, FAi

2 arisen from ci1, c
i
2 by adding/subtracting

the offsetting distance δi, see Fig. 5(b).
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δi1−

δi1+

δi2−

δi2+

ϕ1(t)

ϕ2(s)

P

2δi

2δi

FAi
1

FAi
2

hi+1

hi

t

s

(a) (b) (c)

Figure 5: (a) Spirals ϕ1 and ϕ2 are transversally intersected at point P . δi1− (thick
grey) is the distance between the startpoint of ϕ1 and the osculating circle at its
endpoint and it bounds the distance between ϕ1 and its lower envelope. (b) Oscu-
lating circles ci1 and ci2 (dashed grey) of both curves at P define skeletons of fat arcs
FAi

1, FAi
2 of width 2δi, δi = max(δi1−, δi1+, δi2−, δi2+). FAi

1 (FAi
2) is the supersets

of SFAi
1 (SFAi

2), and consequently its intersection (grey domain) is a superset of
the region generated in line 9 of Algorithm 1. (c) In the parametric st-space, hi is
the original diameter, whereas hi+1 corresponds to the restriction of both curves to
FAi

1 ∩ FAi
2.

These fat arcs are supersets of SFA regions constructed in the i-th itera-
tion of SpiralClipping, see line 9 of Algorithm 1. Hence the diameter hi+1 of
the parametric subspace generated in the (i + 1)-th iteration of Algorithm 1 is
bounded by hi+1, the diameter of the subspace that corresponds to the restric-
tion of ϕ1, ϕ2 to FAi

1∩FAi
2. Lemma 3 gives diam(FAi

1∩FAi
2) = O(h3

i ). Since
the error is of the same order O(h3

i ) both in the model and in the parametric
space, we obtain hi+1 ≤ O(h3

i ), which completes the proof. �

Remark 4. In a special case, when the intersection point P is an inflection
point on one the input curves, Algorithm 1 considers the limit SFAs whose
upper envelopes consists of two line segments, see Fig. 3(a). In such a case, the
approximation order is two and so is the convergence rate.

4. Examples

In this section, we present several examples of computing the intersection
points between two planar parametric curves using bounding SFA regions. All
examples were created with aid of the Irit1 solid modeling environment, where

1www.cs.technion.ac.il/∼irit
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C2(t)

C1(s)

(a) (b)

t

s

�

�

������

��������������

(c) (d)

Figure 6: (a) Preconditioning step of Algorithm 2: both curves are split at points of
extremal curvature (white dots) and inflection points (grey). (b) All segments are
provided by their SFA regions and spiral clippings, see Algorithm 1, are applied.
(c) The segmentation of the parametric st-space, with domain’s classification of
three kind: SFA regions with empty intersection (white), transversal intersection
guaranteeing exactly one intersection point (blue) and non-transversal intersections
(red) are displayed. Only the red domains need to be subdivided in the second
iteration of Algorithm 2. (d) Two pairs of segments, one with transversal (blue)
and the second one with non-transversal intersection (red) are highlighted. Their
corresponding domains are provided by asterisks.

the presented algorithm is implemented. All presented examples have been
tested on a PC with an Intel(R) Pentium(R) CPU (2.8GHz), 1GB of RAM.
Table 1 shows the parameters and timings for examples shown in Figs. 6–8.

Algorithm 2 was compared with a subdivision based curve-curve intersecting
algorithm which exploits the single solution test of [17]. In this very efficient im-
plementation, skewed bounding boxes are also used to detect and eliminate the
no-intersecting segments. If (at most) a single intersection point is guaranteed
by [17], a numerical improvement stage, e.g. Newton-Raphson, is applied.

Two curves, transversally intersected at seven distinct locations, are shown
at Fig 6(b). The preprocessing step of Algorithm 2 is depicted at Fig 6(a) and
the corresponding segmentation of the parametric st-space is depicted at (c).
Another example of two closed B-spline curves with complex topology is shown
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(a) (b)

(c) (d)

Figure 7: (a) Two closed quartic B-spline curves with 10 transversal intersections
are shown. They are segmented and bounded by sets of SFAs (b). (c) A numerical
noise was applied on the control points of a cubic B-spline curve yielding an almost-
identical configuration. (d) All the initial SFAs of the subregions with the high
proximity are overlapping.

at Fig. 7(a). Both curves possess several loops which makes the preprocessing
step the most time demanding part of Algorithm 2, see Table 1.

A more challenging example is shown at Fig. 7(c), where one curve was
created from another by applying some numerical noise on its control points.
Such a configuration makes it difficult to decide between a ’no-root” and ’may-
be-root” case and typically requires a large number of subdivisions. In contrast,
one should observe the low number of subdivisions required by Algorithm 2, in
Table 1.

Another example is shown at Fig. 8, where both curves possess a tiny loop.
In such a case, if the subdivision tolerance is not sufficiently fine, an inexact
number of roots might be returned by any subdivision based solver. In contrast,
Algorithm 2 prevents this phenomenon by splitting both loops and handling
loop-free spiral segments.

Table 1 offers the number of subdivisions, total number of all iterations and
timings, of both algorithms. In the case of Algorithm 2, timings are reported
separately for the preprocessing step that divides a general curve into spirals
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(a) (b) (c)

Figure 8: (a) Two Bézier curves of degree four, each provided with a tiny loop. (b)
A zoom-in on the loop region. (c) Each curve is split into two spirals and bounded
by SFAs.

Table 1: Statistics on the presented CCI examples of Algorithm 2 and its comparison
to a subdivision based algorithm with single solution test of [17] for a numerical
tolerance ε = 10−6 over normalized parametric st-spaces: I indicates the number
of intersection points. Further, the number of subdivisions, total number of all
iterations and timings of both algorithms are displayed. Every example was executed
1000 times and the timings were averaged.

Example I
Algorithm 2 Algorithm [17]

subd iter Tprep(sec) Tclip(msec) subd iter T (msec)

Fig. 6 7 25+6 199 0.54 0.78 35 141 0.68

Fig. 7 (a) 10 20+4 416 12.6 1.21 55 221 1.41

Fig. 7 (c) 9 28+12 247 3.73 1.33 127 509 2.61

Fig. 8 6 2+14 67 0 0.54 23 93 0.25

and the clipping stage that is accomplished by SpiralClipping. Also, the
total number of subdivisions (the third column) is reported as a sum of the
preprocessing subdivisions (italics) and those required by the invocations of
SpiralClipping.

Observe the comparison of Algorithm 2 with the one based on [17], see
Table 1. Whereas the preconditioning stage is time demanding, once the original
curves are split into spiral segments, SpiralClipping offers favorable results.

5. Conclusion

A bounding region of a planar spiral curve, denoted spiral fat arc, was intro-
duced. This bounding region, delimited by two circular arcs and two lines, is a
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second order approximation to the original curve and it guarantees the curve in-
side it is self-intersection free. Exploiting spiral fat arcs, a simple-to-implement
CCI algorithm was also presented. In the case of a transversal intersection, its
cubical convergence rate towards the intersection point was shown. As a future
work, an improvement of the trimming stage, as well as the implementation
of the tangential case (when two SFAs overlap) might be addressed. Testing
other applications of spirals with the help of SFAs is also within the scope of
our interest.
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ting method for Bézier curves. Computer Aided Geometric Design, Vol. 15,
pp. 879-891, 1998.

[16] T. W. Sederberg. Curve intersection using Bézier clipping. Computer Aided
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[18] Ch. Schulz. Bézier clipping is quadratically convergent. Computer Aided
Geometric Design, Vol. 26, pp. 61-74, 2009.

[19] N. Yoshida, R. Fukuda and T. Saito. Log-aesthetic space curve segments.
ACM Symposim on Solid and Physical Modeling, San Francisco, pp. 35-46,
2009.

[20] D. J. Walton and D. S. Meek. G2 curve design with a pair of Pythagorean
Hodograph quintic spiral segments. Computer Aided Geometric Design,
Vol. 24, pp. 267-285, 2007.

[21] D. J. Walton and D. S. Meek. Planar spirals that match G2 Herimete data.
Computer Aided Geometric Design, Vol. 15, pp. 103-126, 1998.

[22] Z. Yao. A novel cutter path planning approach to high speed machining.
Computer-Aided Design and Applications, Vol. 3, pp. 241–248, 2006.

16



P
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2δ

r1 r2

d

FA1

FA2
I++

c2

c1

I−+

I−−

I+−

Figure 9: Circles c1 and c2 are transversally intersected at P and so are the associated
fat arcs FA1 and FA2, both of width 2δ. The diameter of its intersection is bounded
from above by 2max{‖PIij‖}, i, j = +,−, and all the distances ‖PIij‖, i, j = +,−,
are bounded from above by a linear function in δ.

7. Appendix

Proof of Lemma 3. We recall S is one of the connected components
of FA1 ∩ FA2. Let us denote Iij , i, j = +,−, the corner points of S, see
Fig. 9. Since the diameter of S is bounded from above by 2max{‖PIij‖},
i, j = +,−, only the distance ‖PIij‖ needs to be considered. We show that
‖PIij‖ is bounded from above by some distance function which is linear in δ.

Without loss of generality, C1 is at the origin, C1 = [0, 0], and C2 lies on the
positive x-axis, C2 = [d, 0]. Let P = [x, y], x, y > 0, be the intersection point
of c1 and c2 and consider its coordinates x and y as functions of δ when circle’s
radii are increased/decreased by δ. It holds

x2 + y2 = r21 ,
(d− x)2 + y2 = r22 ,

(15)

by eliminating y2 we directly obtain

x =
r21 − r22 + d2

2d
, (16)

and consequently x is linear in δ for ri → ri ± δ, i = 1, 2. Since

y =
√
r21(δ)− x2(δ) =

√
aδ2 + bδ + c (17)

for some a, b, c ∈ R, c > 0, y is bounded from above by a linear function in δ
(a tangent line of the graph of function y at δ = 0). Hence the coordinates
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of all Iij , i, j = +,−, are bounded from above by linear functions in δ and
consequently diam(S) = O(δ). �
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