
May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

International Journal of Shape Modeling
c© World Scientific Publishing Company

Real-time Freeform Deformation Using Programmable Hardware

Sagi Schein

HP Labs Israel, Technion, Haifa, 32000 Israel
sagi.schein@hp.com

Gershon Elber

Computer Science Department, Technion, Haifa 32000 Israel
gershon@cs.technion.ac.il

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

The recent introduction of programmable Graphics Processing Units (GPUs) has had
a tremendous impact on real-time graphics. With their extended flexibility, GPUs can
support tasks that go way beyond their originally intended rendering functionality. One
domain where GPUs can be applicable is in accelerating geometric modeling applica-
tions. In this work, we present a real-time, GPU-based, evaluation scheme for trivariate
B-spline functions. These functions are used in the implementation of Freeform Deforma-
tions (FFDs), a common global deformation algorithm. Using this deformation scheme,
complex objects can be freely warped and animated. The proposed scheme was imple-
mented on contemporary commercially-available graphics cards, achieving interactive
rates.

Keywords: Trivariate B-spline functions; Freeform Deformations (FFDs); Graphical Pro-
cessing Units (GPU)

1991 Mathematics Subject Classification : 65D17

1. Introduction and Background

Over the past few years, GPUs have become a powerful computational platform.
Designed for vector-oriented computations and employing multiple computational
pipelines, GPUs are specifically tailored for real-time rendering. Moreover, current
GPUs also offer extensive programmability support that further improves their
usability. Consequently, many complex algorithms previously non-implementable in
real-time graphics applications, have become viable options. These graphics cards
open up a programming interface for two stages in their rendering pipeline, the
per-vertex stage, and the per-fragment stage. Nevertheless, even though GPUs are
designed for rendering, general purpose computations can also take advantage of

1

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

2 Sagi Schein and Gershon Elber

Fig. 1. A trivariate function F is used to map point, Pi, in its parametric domain. The result is a
point F (Pi) ∈ R3.

F⇒

Pi = (u, v, w)
S

SSw
F (Pi)

S
SSw

· ·

their high computational throughput. Specifically, expensive geometric modeling
operations, which usually precede rendering, could take advantage of the expanded
performance.

In this work, we propose a framework for deforming geometric objects on the
GPU, at interactive frame rates. There are many available deformation schemes:
local, effecting only selected parts of a model, or global. Usually, global methods
are more computationally intensive than local ones, due to the larger amounts
of geometry that have to be processed. On the other hand, global methods also
have several advantages. For example, it is easier to retain the original continuity
of a model while deforming it, using global deformation schemes. Among global
deformation tools, Freeform Deformations (FFDs) 1 are perhaps the most common.
FFDs typically use a trivariate deformation function, F : D ⊂ IR3 ⇒ IR3, in the
form of trivariate Bézier or B-spline function. These deformation functions define
a mapping of an object, O, from D, the parametric domain of the deformation
function, F , to the Euclidean space.

The original work on FFDs 1 suggested the use of Bézier functions as the de-
formation function. In order to improve the flexibility of FFDs, low order trivariate
B-spline functions were suggested in 2. These functions are defined as,

F (u, v, w) =
l,m,n∑

i,j,k=0

PijkBo
i,τu

(u)Bo
j,τv

(v)Bo
k,τw

(w), (1)

where Pijk ∈ IR3 form the 3D lattice of control points of the trivariate B-spline
functions, and Bo

i,τu
(u) is the ith B-spline basis function of order o over knot se-

quence τu. Throughout this paper, o and τu will be omitted at times to simplify
the notation. FFDs can be used to deform geometry in IR3, specifically, surface
based models. In this context, the deformation is considered to be a composition
of a freeform surface S(u, v) = [x(u, v), y(u, v), z(u, v)] and the deformation func-
tion, F , such that S̃ = F (S) = F (x(u, v), y(u, v), z(u, v)). In this work, we consider

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

Real-time Freeform Deformations Using Programmable Hardware 3

only polygonal surface models, where the exact deformation is approximated by
deforming the vertices of the models, Vi, as Ṽi = F (Vi).

The evaluation of trivariate B-spline functions is usually considered a rather
time-consuming operation. Each evaluation of a vertex, Vi ∈ O, requires the eval-
uation of o3 B-spline basis functions. As a result, using FFDs inside interactive
modeling tools remains limited. To improve the deformation rates of FFDs, hard-
ware acceleration is one option that can be considered. Previous work 3 already
outlined some general details of one such solution. In 3, a system for hardware ac-
celerated EFFDs 4, was described. EFFDs is a generalization of FFDs which uses
multiple trivariate patches to better approximate the general shape of the deformed
model. The system is based on OpenGL’s evaluators 5, and suggests a hardware
implementation that could support the EFFDs evaluation. This approach is some-
what appealing since it lets the software’s API remain the same while leaving the
exact hardware subject to future improvements. The only problem with such an
approach is that, as of now, most graphics accelerators do not support OpenGL’s
evaluators in their hardware. Another hardware-based approach for FFDs evalua-
tion 6 implemented it using Field Programmable Gate Array (FPGA). This solution
is, however, less suitable for general purpose computer graphics applications, due
to its high cost and lack of generality.

In this work, we present a hardware-based FFDs (HFFDs) evaluation scheme
for trivariate B-spline functions. The proposed method is fully capable of real-time
deformation of complex models at interactive frame rates using modern GPUs.
Further, the proposed scheme can be integrated easily into existing rendering ap-
plications, assuming that a proper GPU is available. Finally, the proposed scheme
also incorporates all the computational aspects of the evaluation of FFDs inside
the GPU.

The rest of this paper is organized as follows. In Section 2, we describe the
GPU-based evaluation algorithm for trivariate B-spline functions and consider two
evaluation alternatives on the GPU. Section 3 presents some animation and mod-
eling results using HFFDs. Finally, we conclude in Section 4 and consider some
future directions.

2. Evaluation of Trivariate B-splines

In order to apply an HFFDs operation, trivariate B-spline functions should be
evaluated. As in curves and surfaces, Equation (1) could be represented in a matrix
form. Due to the vector oriented architecture and specialized command set of the
GPU, vector and matrix operations are much more efficiently processed on the GPU
than on the CPU. Hence, the following equation is a rearrangement of Equation (1)
so that only vector-matrix multiplications and inner-products are used. In the tri-

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

4 Sagi Schein and Gershon Elber

quadratic case, Equation (1) becomes

F (u, v, w) = [B0(u), B1(u), B2(u)]

[B0(w), B1(w), B2(w)]

B0(v)

B1(v)

B2(v)

.

(2)

Let

Mk =

P00k P10k P20k

P01k P11k P21k

P02k P12k P22k

 , M̃k = [B0(u)B1(u)B2(u)]Mk

B0(v)
B1(v)
B2(v)

 ,

then,

F (u, v, w) =
2∑

k=0

M̃kBk(w). (3)

The last summation can also be replaced by a single inner product computation.
Cubic trivariate B-spline functions can be similarly mapped into four-by-four ma-
trices, which are also directly supported by the GPU.

In Section 2.1, several evaluation schemes for B-spline basis functions in the
context of the GPU are discussed. Section 2.2 describes an implementation of an
evaluation procedure for quadratic trivariate B-spline functions on the vertex pro-
cessor, following Equation (3). Unfortunately, this approach is also limited due to
some contemporary hardware restrictions, which will be discussed below. In Sec-
tion 2.3 we suggest an improved scheme that uses a two-phase evaluation method
that takes advantage of both the vertex and fragment processors. Since the whole
deformation process takes place on the GPU and in the context of rendering, nor-
mal vectors for the vertices of the deformed geometry should be computed as well.
In Section 2.4, this issue is addressed. Lastly, in Section 2.5, we show how bilinear
interpolation can be used to evaluate B-spline functions of order o as efficiently as
B-spline function of order o− 1. Section 2.5 defines the required evaluation proce-
dure with the anticipation that future GPU would support bilinear interpolation of
floating point textures.

2.1. Evaluation of B-spline Basis Functions in the GPU

Many algorithms exist for evaluating B-spline basis functions with arbitrary knot
sequences, and can be found in standard text books 7,8. Given a knot sequence,
τ = {ti}, and a parameter value, t, find i such that ti ≤ t < ti+1. Then, the

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

Real-time Freeform Deformations Using Programmable Hardware 5

recursive relation of

Bo
i (t) =

t− ti
ti+o−1 − ti

Bo−1
i (t) +

ti+o − t

ti+o − ti+1
Bo−1

i+1 (t),

B1
i (t) =

{
1 ti ≤ t < ti+1,

0 otherwise,
(4)

can be used to evaluate the ith, B-spline basis function Bo
i (t) of order o at t0.

Due to the locality property of B-splines basis functions, only the values of o basis
functions, Bo

j (t), j = i − o + 1, . . . , i should be computed. Although recursion is
not readily available on contemporary GPUs, we will focus on evaluating basis
functions of predefined degree, where the recursive formula can be unfolded into a
direct computation.

In the case of B-spline basis functions with uniform knot sequences, fast and
simple evaluation techniques do exist 9. Assume that the knot values are selected
over the integers, that is, ti = i. Then, using recursive relation (4), we get,

Bo
i (t) =

t− i

[i + (o− 1)]− i
Bo−1

i (t) +
[i + o]− t

[i + o]− (i + 1)
Bo−1

i+1 (t)

=
t− i

o− 1
Bo−1

i (t) +
i + o− t

o− 1
Bo−1

i+1 (t). (5)

From which, one can get (see 8),

Bo
i+j(t) = Bo

i (t− j), (6)

implying that uniform B-spline basis functions are merely translated versions of each
other. In the ensuing discussion, and unless otherwise stated, we assume uniform
knot sequences.

On contemporary GPUs, the uniform B-spline basis functions could be evaluated
directly for a given value t from their analytic, piecewise polynomial form. Using this
method, a single precision accuracy is attained. Alternatively, one can pre-sample
the basis functions, Bo

i (t), on the CPU using an arbitrarily selected evaluation
algorithm. These pre-computed samples would be stored on the GPU as a 32-
bit floating point 1-D texture map, TB . Specifically, for quadratic (cubic) basis
functions, the values of

[
B

3(4)
j (t)

]i

j=i−3
=

[
(B4

i−3(t),)B
3(4)
i−2 (t), B3(4)

i−1 (t), B3(4)
i (t)

]

can be efficiently stored into the RGB(A) color channels of TB . Using t as a tex-
ture coordinate, {Bo

j (t)}i
j=i−3 can be approximated by sampling TB once at t. On

the other hand, one can improve the accuracy and reduce texture sizes by linearly
interpolating two consecutive samples in the texture map. Since bilinear interpo-
lation of 32-bit textures is not currently supported on contemporary GPUs, this
interpolation should be implemented manually inside the shader.

In the quadratic case, the direct evaluation of
[
B3

i−2(t), B
3
i−1(t), B

3
i (t)

]
requires

less then ten multiplications and additions. Using the pre-sampled table-driven ap-
proach requires one texture fetch for a nearest-neighbor value or two texture fetches

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

6 Sagi Schein and Gershon Elber

and optionally, a vectorial linear interpolation (lerp). In our tests, for the quadratic
case, the pre-sampled table version was shown to be slower by 20% compared to the
direct polynomial evaluation method, probably due to the needed texture fetches
in the vertex processor. For higher order B-spline basis functions, the pre-sampled
table approach is expected to give a better relative performance.

2.2. Single Phase FFDs Evaluation

The most natural way to implement HFFDs is in the vertex processor, an approach
denoted by us as the Single Phase (SP) approach. For every vertex Vi ∈ O, the
vertex processor could execute a vertex shader that would evaluate Equation (3).
The only issue that needs to be resolved is how to deliver the proper parameters to
the shader. As we already noted, a single evaluation of a tri-quadratic (tri-cubic)
B-spline function is affected by 3× 3× 3 (4× 4× 4) control points. Selecting these
points should be done in a per-vertex context.

A naive approach might select the proper control points on the CPU from the
control lattice of F for each vertex, Vi. Then, the control points would be transferred
to the GPU along with the position of Vi in the parametric domain of F . Lastly,
F (Vi) could be evaluated in the vertex shader, resulting in the deformed position
of Vi in the world’s coordinate system. These operations take place at the vertex
processor so F (Vi) should also be transformed to the view space and shaded. In this
case, for each vertex, the CPU must perform quite a few operations to locate the
proper control points. Furthermore, a substantial amount of data will be moved to
the GPU, which can put a heavy load on the graphics bus.

A better evaluation approach, which minimizes the overhead of using the CPU,
would store all the control points of F on the GPU in the form of a texture map.
GPUs are highly optimized for fast retrieval of data from texture maps. The only
problem with this approach is that textures, until recently, were inaccessible in
the vertex processor. This has changed with the introduction of vertex textures, in
shader model 3.0 10.

Using vertex textures, it is possible to store all the control points of F as a
small texture map, Tin = [Pijk], which stores the xyz-position of Pijk in the RGB
color channels. Since floating-point volumetric textures are not currently accessible
from within the vertex shader, the three-dimensional lattice of control points of the
HFFDs function is laid out in sequence on a two-dimensional floating point texture
maps (see Figure 2). Then, the spatial coordinates of each vertex, Vi ∈ D, are
used as texture coordinates in Tin, retrieving all the control points that are needed
for the evaluation of F (Vi). Although vertex-texture queries are currently more
limited than fragment-texture queries, the vertex processor of modern GPUs is still
capable of about 33 million texture-fetch operations per second 10. Unfortunately,
the above evaluation scheme requires more temporary memory than available. For a
tri-quadratic, 33 = 27 control points must be stored in the temporary memory of the
GPU, with an additional three vectors for the basis functions. In the current state-

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

Real-time Freeform Deformations Using Programmable Hardware 7

Fig. 2. A three-dimensional lattice of control
points of F , laid out in sequence on a two-
dimensional floating point texture map, de-
noted Tin.

Fig. 3. The Single-Phase (SP) HFFDs algo-
rithm that is executed solely on the vertex pro-
cessor.

of-the-art systems (for example Nvidia 6800 GPU), only 32 temporary registers are
available. Hence, technically, the 30 = 27+3 registers could fit into the memory; in
practice, however, more space is required for evaluating iterations and for holding
temporary variables. One could expend this computation serially, or use a multi
phase rendering algorithm at the cost of reduced performance. To alleviate this lack
of memory and still retain an efficient, matrix-based evaluation scheme, the read-
only registers of the GPU were used. Since read-only registers can only be written
from the CPU, some computations have to be pulled back. Accordingly, the basis
functions are computed once per vertex on the CPU and stored as part of the input
values for the vertex shader. The above algorithm is illustrated in Figure 3, where
the quadratic B-spline basis functions, B(t) = [B3

0(t), B3
1(t), B3

2(t)] , t ∈ {u, v, w},
are provided as inputs to the vertex shader along with the vertex position.

The clear downside to this approach is revealed when trying to animate an
object, O, inside the parametric domain of F . In such cases, the basis functions
must be recomputed for each vertex, Vi, at every animation step. Consequently,
the method puts a major burden on the CPU and the graphics bus and fails to
achieve interactive rates. An improved two-phase approach, which performs all the
computations in the GPU, is suggested in Section 2.3.

2.3. Two-Phase FFDs Evaluation

To better utilize the available hardware assets in the GPU, it is natural to ask
whether the deformation algorithm can also take advantage of the fragment proces-
sor. If an algorithm could be divided into two parts, the first part can be executed
on the vertex processor and the second part on the fragment processor(s), exploiting
the full depth of the GPU’s computational pipeline. Moreover, since the fragment
processor offers much better texture query support, bottlenecks due to the perfor-
mance of the vertex texture should be eliminated.

The Two Phase (TP) HFFDs algorithm is shown in Figure 4. In the first phase,
the deformation is computed by employing both the vertex shader and the pixel

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

8 Sagi Schein and Gershon Elber

Phase I Phase II

Fig. 4. The Two Phase (TP) algorithm for HFFDs. The algorithm employs both the vertex
processor and the pixel processor to compute F .

shader. In the second phase, the rendering is conducted by replacing Vi by F (Vi). To
evaluate F , the B-spline basis functions are evaluated on the vertex processor (see
Section 2.1). Toward this end, the vertex shader only has to know the position of
each vertex in the parametric domain of F . Then, the fragment shader is called for
each fragment, and the texture map, Tin, which contains Pijk, the control points
of F , is sampled. At this stage, the fragment shader possesses all the necessary
information for evaluating Equation (3) and the deformed position of the vertex
can be computed. The results of the deformation, F (Vi), are rendered into an off-
screen buffer. In this work, we used pbuffers 11. Additionally, a more recent OpenGl
extension, FrameBufferObject 12, was used. This extension is potentially faster and
is much easier to use.

Nonetheless, there is one difficulty in the two-phase scheme. The vertex shader is
evaluated for each vertex Vi ∈ O, forming a trivial one-to-one mapping between the
data and the computational kernel that processes it. The difficulty is found in the
need to ensure that for each invocation of the vertex processor, a single fragment
shader will be called. To circumvent this difficulty, the object is rendered as a 2D-
grid of vertices onto a plane orthogonal to the viewing direction. Moreover, each
vertex, Vi, is rendered inside the viewing frustum so that no vertices are clipped or
z-filtered. The result is a single frame that encodes the deformed positions, F (Vi),
into the color channels of the pbuffer. This concludes the first phase of the algorithm.
Note that this limits the number of vertices that can be handled to the number of
pixels of the maximal off-screen frame buffer.

In the second phase of the algorithm, the model is actually rendered. The
pbuffer, which was constructed in the first phase, is reattached as a new texture
and used as the input to this phase (see Figure 4). Recall that in the first phase, a
2D-grid representation of the model was generated. Each pixel in that image cor-
responds to a single vertex in the model and holds its deformed position. Hence,
in the second phase, the output image is sampled from the vertex shader, resulting
in the deformed position F (Vi) that replaces the original vertices, Vi. Finally, the

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

Real-time Freeform Deformations Using Programmable Hardware 9

model is also transformed and lit to properly render the deformed model. In our
tests, the SP approach proved to be 50% slower than the TP approach. Proper
rendering of the deformed model also requires the computation of the normals of
the deformed geometry, a topic discussed in the next section.

2.4. Normal Estimation

To properly render the deformed geometry, the direction of the normal for each de-
formed vertex Vi, ~Ni, should also be computed. While ~Nj is orthogonal to O, this is
not necessarily the case for F (~Ni) and F (O), since F is generally a non-conformal
mapping. Yet, the correct normal Ñi of F (O) at F (Vi) can be approximated by
mapping the complementary, tangent, space at Vi. A-priori compute two new in-
dependent vectors ~T 1

i , ~T 2
i ∈ IR3 that are orthogonal to ~Ni, the original normal

at Vi. ~T 1
i and ~T 2

i span the tangent space of O at Vi. F (~T 1
i) and F (~T 2

i) span the
tangent space of the mapped geometry at F (Vi), and can be approximated as
F (~T j

i) ∼= F (Vi + ~T j
i ε)− F (Vi), j = 1, 2 for some small ε ∈ IR+.

During the first phase of the deformation algorithm (see Section 2.3), two new
points, P j

i = Vi + εT j
i , j ∈ {1, 2}, are rendered in addition to Vi. In the second

phase, for each vertex Vi, the pbuffer is sampled three times, for F (Vi), F (P 1
i)

and F (P 2
i). Then, the direction of the normal of F (Vi) is approximated as Ñi =[

F (Vi)− F (P 1
i)

] × [
F (Vi)− F (P 2

i)
]
. This approximation scheme for computing

normals triples the amount of work in the two rendering passes. Note that this
approach also reduces the effective size of the off-screen pbuffer, and hence, the
maximal size of the available models. Due to memory constraint of the SP algorithm,
this method is only applicable to the TP method.

2.5. Efficient Evaluation of B-spline Basis Functions

For many applications, quadratic B-splines offer enough expressive power. However,
there are cases where smoother deformation functions are required. In such cases,
cubic B-spline functions might become desirable. When trying to use the formula-
tion of Sections 2.2 and 2.3, the restrictions of the GPU become clear. Since there
is a limited amount of read/write registers in contemporary GPUs, not all inter-
mediate values can be stored in memory. A simple computation, similar to that in
Section 2.2 for the cubic case, shows that more than seventy registers are required.
In the rest of this section we present a general scheme for using the hardware ca-
pabilities to evaluate B-spline basis functions of order o in terms of B-spline basis
functions of order o− 1. Specifically, this approach could be used to evaluate cubic
trivariate B-spline functions in terms of quadratic functions, as was earlier shown
in Section 2. Consider the B-spline curve, C(t), of order o over knot sequence τ .

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

10 Sagi Schein and Gershon Elber

Traversing only basis functions that are non-zero for ti ≤ t < ti+1, one gets,

C(t) =
i∑

m=i−o+1

PmBo
m,τ (t)

=
(a)

i∑

m=i−o+1

Pm

[
t− tm

tm+o−1 − tm
Bo−1

m,τ (t) +
tm+o − t

tm+o − tm+1
Bo−1

m+1,τ (t)
]

=
i∑

m=i−o+1

Pm
t− tm

tm+o−1 − tm
Bo−1

m,τ (t) +
i+1∑

m=i+2−o

Pm−1
tm+o−1 − t

tm+o−1 − tm
Bo−1

m,τ (t)

=
(b)

i∑

m=i−o+2

[
Pm

t− tm
tm+o−1 − tm

+ Pm−1
tm+o−1 − t

tm+o−1 − tm

]
Bo−1

m,τ (t), (7)

where (a) is due to the recursive relation of Equation (4) and (2) is due to the
locality of B-spline basis functions. Then, Equation (7) becomes

C(t) =
i∑

m=i+2−o

[Pm−1(1− α) + Pmα] Bo−1
m,τ (t), α =

t− tm
tm+o−1 − tm

,

=
i∑

m=i+2−o

QiB
o−1
m,τ (t). (8)

This shows that the new control points Qi are simply a linear combination of the
original control points.

For B-spline basis functions with uniform knot sequences, Equation (8) can be
further simplified. As in Section 2 and without loss of generality, assume the uniform
knot sequences are over the integers, ti = i. Then α = t−tm

tm+o−1−tm
= t−m

o−1 .
In the case of FFDs, a trivariate version of Equation (8) should be used. An

evaluation matrix, similar in form to that of Equation (3), is constructed. However,
the entries in this matrix are efficiently computed by bilinear texture sampling
from the control point texture, Tin. The rest of the evaluation scheme remains the
same, using Equation (3), over basis functions that are one degree smaller. Hence,
evaluating an [o× o× o] order trivariate would cost a multiplicative factor, ψ, which
is the cost ratio between a bilinear and a nearest-neighbor texture sampling, more
than the evaluation of an [o− 1× o− 1× o− 1] order trivariate. Since, as of today,
no GPU exists that supports bilinear sampling of 32 bit floating-point textures, this
method could become available only in future generation GPUs.

3. Results

The HFFDs algorithm was implemented in Cg 13, and integrated into an existing
OpenGL-based viewer that is part of the Irit 14 solid modeler. The presented images
were all captured in run-time. In the examples below, we used uniform tri-quadratic
B-spline functions for deformation. In all cases, the TP method was used. The
timing statistics were taken from a system equipped with an Nvidia6800 GPU

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

Real-time Freeform Deformations Using Programmable Hardware 11

Fig. 5. Four swimming whales are animated around a periodic deformation function. Each whale
model contains 28212 vertices. The non-deformed whale model is shown on the top-left. A zoom-in
on the two of the whales is shown on the right.

Fig. 6. A snapshot from an animation sequence of seven walking ants. The shape of each ant is
deformed to fit the shape of a Möbius band. Each ant model contains 10500 vertices. The non-
deformed ant model is shown on the bottom of the left hand image. A zoom-in on one ant is shown
on the right. The scene is modeled after a drawing by M.C. Escher.

which possesses 4 vertex processors and 12 pixel processors. Additionally, our test
system was equipped with a 4xAGP bus (instead of the recommended 8xAGP bus).
All the models that are shown in the examples use simple triangle lists.

Figure 5 shows a snapshot from an animation sequence of four swimming whales.
The total number of mapped vertices in the scene is 112848. We were able to achieve
7.5 frames per seconds when executing this animation. The animation is achieved
by supplying the vertex shader with an animation offset in the direction of the
animation for each vertex Vi ∈ O in the static whale model. On the vertex shader,
this offset was added to the stored position before evaluating F .

In Figure 6, a line of seven ants is walking on a Möbius band, in the style of
one of M. C. Escher’s drawings. The Möbius band serves as the base surface of
a trivariate B-spline function. Each ant model has 10500 vertices and the total
number of vertices that are mapped through F is 73500. This example reaches
8.4 frames per seconds. In the example, an articulated animation sequence of a
straight-walking ant is embedded inside the parametric domain of F . HFFDs is

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

12 Sagi Schein and Gershon Elber

Fig. 7. On the left, a composite of four snapshots from an animation sequence of a moving Porsche.
The cars are Jello-warped to drive along complex terrain. The right image shows a zoom-in on
one of the cars. The Porsche model has 66000 vertices.

applied to each ant model to create an animation sequence of an articulated and
deformed object, interactively. This example also shows that trivariate deformation
functions can be used, in real-time, to better utilize existing straight animation
sequences, adapting them to arbitrary animation routes that are defined as a single
deformation function.

Figure 7(left) shows a composition of frames from an animation sequence of
a deformed Porsche model. Figure 7(right) shows a zoom-in on one frame. The
Porsche is Jello-warped as it drives along a path following a complex terrain. In
this example, the model of a Porsche car is deformed inside a complex scene, to
exemplify that HFFDs can be integrated into existing OpenGL-based applications.
The Porsche model contains about 66000 vertices. This example achieved about 5.5
frames per second.

4. Conclusions and Future Directions

In this work, a method for hardware-based FFDs (HFFDs) evaluation is presented.
Using the proposed approach, complex models can be deformed at interactive frame
rates. Tri-quadratic B-spline functions are used as the deformation function, while
we also showed how tri-cubic functions might fit into this paradigm. This method
can be integrated easily into existing rendering applications. The proposed tool
also offer direct access to the control points of the underlying FFDs function. By
moving and dragging the control points we are able to interactively deform the
existing model.

This work exemplifies two basic difficulties in implementing general purpose
algorithms on GPUs. First, GPUs possess only a limited amount of temporary

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

Real-time Freeform Deformations Using Programmable Hardware 13

registers and no secondary storage. As more advanced algorithms are being ported
to GPUs, the restriction on the amount of read/write memory becomes ever more
problematic. In such cases, an approach that would take advantage of both the
vertex processor and the fragment processor could circumvent this difficulty. To
accomplish this, we proposed an approach that rendered vertices as single points on
the screen, each traversing through the primitive assembly and rasterization stages
of the graphics pipeline with very little overhead. Since each vertex generates a
single fragment, it also generates an invocation of a single fragment shader. Using
this approach, the computations can be broken up into two parts. Since there are
fewer vertex processing units than fragment processing units and they operate with
different performance rates, care must be taken so that the vertex processing stage
does not become a bottleneck.

A second design issue that is demonstrated here is the problem of feedback.
The GPU’s architecture is that of a stream processor, which moves data only down-
stream. If an algorithm requires feedback, special considerations must be taken. The
standard way feedback systems are implemented on the GPU is by writing the re-
sults of one phase of the algorithm to an off-screen buffer, here done using a pbuffer.
This pbuffer is later reattached as a texture to make it available for subsequent
parts of the algorithm. The downside of using pbuffers is that they are currently
supported solely on Win32 platforms. A second limitation of pbuffers is found in
the need to make rendering-context switches, which are rather time-consuming, to
further access the pbuffer. In the future, better feedback mechanisms should be
explored.

References

1. T. W. Sederberg, S. R. Parry, Free-form deformation of solid geometric models, Trans-
actions on Graphics 20 (4) (1986) 151–160.

2. J. Griessmair, W. Purgathofer, Deformation of solids with trivariate b-splines, in:
Eurograpghic 89, 1989, pp. 137–148.

3. C. Chua, U. Neumann, Hardware-accelerated free-form deformation, in: SIG-
GRAPH/EUROGRAPHICS Workshop On Graphics Hardware, Interlaken, Switzer-
land, 2000, pp. 33 – 39.

4. S. Coquillart, Extended free-form deformation: A sculpturing tool for 3d geometric
modeling, in: Proceedings of the 17th Annual Conference on Computer Graphics and
Interactive Techniques, Vol. 24, ACM Press, 1990, pp. 187–196.

5. M. Segal, K. Akeley, The OpenGl Graphics System: A Specification, 2nd Edition
(October 2004).

6. J. Jiang, W. Luk, D. Rueckert, Fpga-based computation of free-form deformations, in:
IEEE International Conference on Field-Programmable Technology, IEEE Computer
Society Press, Hong Kong, China, 2002, pp. 407 – 410.

7. G. Farin, Curves and Surfaces for CAGD, 4th Edition, Academic Press, 1996.
8. E. Cohen, R. Riesenfeld, G. Elber, Geometric Modeling with Splines: An Introduction,

1st Edition, AK Peters, 2001.
9. E. Cohen, R. F. Riesenfeld, General matrix representations for bezier and b-spline

curves, Computers in Industry 3 (1-2) (1980) 9–15.

May 20, 2006 9:10 WSPC/INSTRUCTION FILE HwFFD

14 Sagi Schein and Gershon Elber

10. P. Gerasimov, R. Fernando, S. Green, Shader Model 3.0, Using Vertex Texture, Nvidia
Corporation, white paper Edition (2004).

11. C. Wynn, OpenGL Render-to-texture, Nvidia Corporation, white paper Edition
(2004).

12. J. Juliano, J. Sandmel, EXT_framebuffer_object, OpenGL,
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt (April
2005).

13. W. R. Mark, S. R. Glanville, K. Akeley, M. J. Kilgard, Cg: A system for programming
graphics hardware in a c-like language, ACM Transactions on Graphics 22 (3) (2003)
896–907.

14. Irit, Irit 9.5 Solid Modeling Environment. (2006).
URL http://www.cs.technion.ac.il/∼irit

