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Abstract

The bisector of two rational varieties in IR® is, in general, non-rational. However, there are
some cases in which such bisectors are rational; we review some of them, mostly in IR? and R®.
We also describe the a-sector, a generalization of the bisector, and consider a few interesting
cases where a-sectors become quadratic curves or surfaces. Exact a-sectors are non-rational
even in special cases and in configurations where the bisectors are rational. This suggests the

pseudo a-sector which approximates the a-sector with a rational variety. Both the exact and

the pseudo a-sectors identify with the bisector when a = %

1 Introduction

Given m different objects Oy,...,0,,, the Voronoi region of an object O; (1 < ¢ < m) is defined
as the set of points that are closer to the object O; than to any other object O; (j # ¢). The
boundary of each Voronoi region is composed of portions of bisectors, i.e., the set of points that are
equidistant from two different objects O; and O; (¢ # j). The medial axis of an object is defined
as the set of interior points for which the minimum distance to the boundary corresponds to two
or more different boundary points; that is, the medial axis is the self-bisector of the boundary of
an object.

The concepts of Voronoi diagram and medial axis greatly simplify the design of algorithms
for various geometric computations, such as shape decomposition [1], finite-element mesh gener-
ation [19, 20], motion planning with collision avoidance [13], and NC tool-path generation [14].
When the objects involved in these applications have freeform shapes, the bisector construction for
rational varieties is indispensable. Unfortunately, the bisector of two rational varieties, in general,
is non-rational. Moreover, even the bisector of two simple geometric primitives (such as spheres,
cylinders, cones, and tori) is not always simple.

In the first part of this paper we review some important special cases where the bisectors
are known to be rational. Farouki and Johnstone [10] showed that the bisector of a point and a
rational curve in the same plane is a rational curve. Elber and Kim [4] showed that in IR® the
bisector of two rational space curves is a rational surface, whereas the bisector of a point and a
rational space curve is a rational ruled surface (which is also developable [16]). Moreover, the



bisector of a point and a rational surface is also a rational surface [6]. Although the bisector of two
rational surfaces, in general, is non-rational, there are some special cases in which the bisector is a
rational surface. Dutta and Hoffmann [2] considered the bisector of simple CSG primitives (planes,
spheres, cylinders, cones, and tori). Note that these CSG primitives are surfaces of revolution.
When two CSG primitives have the same axis of rotation, their bisector is a quadratic surface
of revolution, which is rational. Elber and Kim [6] showed that the bisector of a sphere and a
rational surface with a rational offset is a rational surface; moreover, the bisector of two circular
cones sharing the same apex is also a rational conic surface with the same apex. In a recent work,
Peternell [16] investigated algebraic and geometric properties of curve-curve, curve-surface, and
surface-surface bisector surfaces. Based on these properties, Peternell [16] proposed elementary
bisector constructions for various special pairs of rational curves and surfaces, using dual geometry
and representing bisectors as envelopes of symmetry lines or planes.

This paper outlines the computational procedures that construct the rational bisector curves and
surfaces discussed above (except some material discussed by Peternell [16]). The basic construction
steps are important since a similar technique will be employed in extending the bisector to a more
general concept, the so-called a-sector. Instead of taking an equal distance from two input varieties,
the a-sector allows different relative distances from the two varieties. Even in the simple case of a
point and a line, the a-sector may assume the form of any type of conic, depending on the value of
a (0 < a < 1). Exact a-sectors are non-rational even in the special cases where the bisectors are
rational. We also present the pseudo a-sectors which approximate exact a-sectors with rational

varieties. Both the exact and pseudo a-sectors reduce to bisectors when o = %

The rest of this paper is organized as follows. In Section 2, we consider special cases where the
bisectors of two varieties are rational curves and surfaces (in IR? and IR®, respectively). In Section 3,
we consider bisectors in higher dimensions. In Section 4, we extend the bisector (‘3-sector’) to the

more general concept of a-sector. We conclude this paper with some final remarks in Section 5.

2 Rational Bisectors

There are some special cases in IR? and IR® where the bisector has a simple closed form or a rational
representation. In this section we survey some important results already known.

2.1 Point-Curve Bisectors in R?

Farouki and Johnstone [10] showed that the bisector of a point and a rational curve in the plane
is a rational curve. Consider a fixed point @ € IR* and a regular C'! rational curve C(t) € IR%. Let
B(t) denote the bisector point of ¢ and C'(t). Then we have

dC'(t
<B(t) - C(t), %> = 0, (1)

1B(t) = QI = [[B(t) = C @], (2)
where || - || denotes the length of a vector (in the Ly norm).

Equation (1) means that the bisector point B(t) belongs to the normal line of the curve C'(t),
while Equation (2) implies that B(¢) is at an equal distance from ) and C'(¢). We can square both



sides of Equation (2) and cancel out ||B(f)||?, to obtain the equation

Equations (1) and (3) are linear in B(t). Using Cramer’s rule, we can solve these equations for
B(t) = (bs(t),by(t)) and compute a rational representation of B(t). Note that the resulting bisector
curve B(t) has its supporting foot points at ¢ and C'(t). In other words, the bisector curve B(¢)
has the same parameterization as the original curve C'(t).

2.2 Point-Curve, Curve-Curve, and Point-Surface Bisectors in R®

Elber and Kim [4] showed that the bisector of two rational space curves is a rational surface;
moreover, the bisector of a point and a rational space curve in IR® is a rational ruled surface.
Consider a fixed point @ € R® and a regular C'! rational space curve C'(t) € IR®. Let B(t) be the
bisector point of () and C'(t). Then we have

(5w -c0, 50 = o n

1B(1) =@l = IB{) = C@)]- (5)
Since B(t) is a three-dimensional point, there is one degree of freedom in these equations.

Consider a fixed location C'(tg) on the space curve C'(t). Clearly B(to) € P, (to), where P, (to) is
the normal plane of the curve at the fixed point C'(¢y). Furthermore, B(ty) is at an equal distance
from @) and C'(tp). Hence, B(tp) must belong to the plane P;(typ) which bisects () and the point
C'(to). Any point on the line £,4(to) = Pr(to) (N Pa(to) satisfies both Equations (4) and (5). Thus,
the bisector surface S(u,t) of the point ) and the curve C'(¢) must be a ruled surface, where each
ruling line £,4(¢) is parameterized by a linear parameter u. Figure 1(a) shows an example of such
a rational ruled bisector surface generated in this case from a point and a periodic rational space
curve in IR®. Based on the concept of dual geometry, Peternell [16] showed that the ruled surface
S(u,t) is in fact a developable surface.

The bisector surface (in IR?) of two regular C'!' rational space curves Cy(u) and Cy(v) is also
rational. Let B(u,v) be the bisector point of C'y(u) and Cy(v). Then, the bisector must satisfy the
following three equations:

<B(u,v)—Cl(u),dC;?Eu)> Y (6)
<3(u,v)_02(v)7d225”)> Y (1)
1B(u, v) = Cr(u)]| = [IB(u,v) = Ca(v)|- (8)

Equations (6) and (7) mean that the bisector point B(u,v) is simultaneously contained in the two
normal planes of C'y(u) and Cy(v), while Equation (8) implies that B(u,v) is at an equal distance
from C(u) and Cy(v).

The constraints in Equations (6)—(8) are all linear in B(u,v). (Note that the quadratic terms
in Equation (8) cancel out.) Using Cramer’s rule, we can solve these equations for B(u,v) =
(by(u,v),by(u,v),b.(u,v)) and compute a rational surface representation of B(u,v). The resulting



Figure 1: (a) The bisector surface of a point and a space curve in IR”. (b) The bisector surface of
a line and a round triangular periodic cubic curve in IR®. The original curves are shown in gray.

bisector surface follows the parameterization of the two original curves. In other words, for each
point on the first curve, C (ug), and each point on the second curve, Cy(vo), B(ug, vo) is the bisector
point. Figure 1(b) shows a rational bisector surface of a line and a rounded triangular periodic
cubic curve in IR>.

The bisector of a point and a rational surface in IR® is also rational [6]. Consider a fixed point
Q € R? and a regular C?! rational surface S(u,v) € R®. Let B(u,v) be the bisector point of @ and
S(u,v). Then we have,

<B(u7 v) — S(u,v), 8522’ U)> 0, (9)
<B(u7 v) — S (u,v), &ggjj’ U)> = 0, (10)
1B(u,v) = QI = |B(u,v) = S(u,v)|. (11)

The constraints in Equations (9)—(11) are also all linear in B(u,v). Using Cramer’s rule again,
we can solve these equations for B(u, v) = (by(u, v), by(u, v), b.(u, v)) and compute a rational surface
representation of B(u, v). The resulting bisector surface follows the parameterization of the original
surface. Figure 2(a) shows the rational bisector surface of a torus and a point located at the center
of the torus.



Figure 2: (a) The bisector of a torus and a point at the center of the torus, in IR®. (b) The bisector
of a cone and a sphere in IR®. Original surfaces are shown in gray. Both bisector surfaces are
infinite.

2.3 Special Cases of Surface-Surface Bisectors in R®

In general, the bisector of two rational surfaces is non-rational in IR>, as we have already noted.
However, there are some special cases where the bisector surface is rational. For example, when
one of the initial surfaces is a sphere, the problem reduces to finding the bisector of a point and an
offset surface. Thus, the bisector is rational when the offset surface is rational. This special case
is discussed in Section 2.3.1. Moreover, when the two surfaces are given as surfaces of revolution
sharing a common axis of rotation, the problem reduces to finding the planar bisector of the
generating curves of the two surfaces. The bisector surface is rational if and only if the bisector of
two generating curves is rational. This special case is discussed in Section 2.3.2. The bisector of
two conic surfaces sharing the same apex is closely related to the bisector of two spherical curves;
Section 2.3.3 considers the bisectors of points and curves on the unit sphere. A plane is a special
case of a cone with 7 as its spanning angle. Moreover, the set of all planes is closed under the offset
operation. Section 2.3.4 combines the results of Sections 2.3.2 and 2.3.3 to compute the line-plane
and cone-plane bisectors.



2.3.1 Sphere-Surface Bisectors in R®

In Section 2.2 we showed that the bisector of a point and a rational surface in IR® is a rational
surface; this immediately implies that the bisector of a sphere and a surface with a rational offset
is also a rational surface. Simultaneously offsetting both varieties by the same distance does not
change the bisector of the two varieties. Figure 2(b) shows the bisector surface of a sphere and a
cone computed by offsetting the cone by the radius of the sphere.

Pottmann [17] classified the class of all rational curves and surfaces that admit rational offsets.
An important subclass of all polynomial curves having rational offsets includes the Pythagorean
Hodograph (PH) curves [9]. Simple surfaces (that is, planes, spheres, cylinders, cones, and tori),
Dupin cyclides, rational canal surfaces, and non-developable rational ruled surfaces, all belong to
this special class of rational surfaces with rational offsets [3, 15, 18]. Thus, our results can be used
to construct a wide range of bisectors in IR?, where one curve is a circle and the other is a rational
curve having rational offsets, and in IR, where one surface is a sphere and the other is a rational
surface having rational offsets.

Even the simple rational bisector of two spheres, or the bisector of a point and a sphere, has
many important applications in practice. The bisector of two spheres of different radii can be used
for finding an optimal path of a moving object (e.g., an airplane) which attempts to avoid radar
detection. Different radar devices have different intensities, and thus their regions of influence
may be modeled by spheres of different radii. The optimal path lies on the bisector surface of the
spheres.

2.3.2 Special Cases of Simple Surfaces with Rational Bisectors in IR®

Dutta and Hoffmann [2] considered the bisectors of simple surfaces (CSG primitives), such as
natural quadrics and tori, in particular configurations. Note that these CSG primitives are surfaces
of revolution, which can be generated by rotating lines or circles about an axis of rotation. When
two primitives share the same axis of rotation, their bisector construction essentially reduces to
that of the generating curves of two primitives. The bisectors of lines and circles are conics, which
are rational. Thus, the bisector of two primitives sharing the same axis of rotation is a rational
quadratic surface of revolution.

We can extend this result to a slightly more general case. Consider a rational surface of revolu-
tion generated by a planar curve with a rational offset. When the axis of rotation is identical with
that of a torus (or a sphere), the bisector of the surface of revolution and the torus (or the sphere)
is a rational surface of revolution. This is because the bisector of a circle and a planar rational
curve with a rational offset is the same as the bisector of the center of the circle and the rational
offset curve; therefore the latter curve is also rational. Peternell [16] showed that the bisector of a
line and a rational curve with a rational offset is also a rational curve. Similar arguments also apply
to the cylinder, cone, and plane, when the axis of rotation is shared with the surface of revolution.

Dutta and Hoffmann [2] also considered the bisector of two cylinders of the same radius, and
the bisector of two parallel cylinders. The bisector of two cylinders of the same radius is the same
as the bisector of their axes, which is a hyperbolic paraboloid and therefore rational. Moreover,
the bisector of two parallel cylinders is a cylindrical surface which is obtained by linearly extruding
the bisector of two circles. Thus, the bisector of two parallel cylinders is an elliptic or hyperbolic
cylinder, which is also rational.



Again, we can slightly extend this result. Consider two rational canal surfaces obtained by
sweeping a sphere (of a fixed radius) along two rational space curves. The bisector of these canal
surfaces is the same as that of their skeleton space curves, which is a rational surface. Moreover, two
parallel cylindrical rational surfaces have a rational bisector surface if their cross-sectional curves
have a rational bisector curve. In particular, when one cross-section is a circle and the other cross-
section is a planar rational curve with a rational offset, the bisector must be a rational cylindrical
surface.

2.3.3 Bisectors on the Unit Sphere S?

Consider two conic surfaces that share the same apex. Their bisector surface is another conic surface
with the same apex, which we may assume to be located at the origin. Thus the conic surfaces
are ruled surfaces with their directrix curves fixed at the origin. The intersection of these conic
surfaces with the unit sphere S? generates spherical curves; the curve corresponding to the bisector
surface is indeed the bisector of the two spherical curves obtained from the original conic surfaces.
Thus, the bisector curve construction on S? is equivalent to the bisector surface construction for
two conic surfaces sharing the same apex. In the present section we consider the construction of
bisector curves on S2.

Given two points P and @ on S?| let their spherical (geodesic) distance p(P, Q) on S? be the
angle between P and Q: p(P, Q) = arccos (P, @), where P and () are two unit vectors. Consequently,
for three points P, @, R € S?%, we have p(P, Q) = p(P, R), if and only if (P,Q) = (P, R). Let Q € S?
be a point and C'(¢) € S% be a regular C'' rational spherical curve. Their spherical bisector curve
B(t) € S must satisfy the following three constraints:

(B(1),Q) = (B(t),C(t)), (12)
<B(t) — o, %it) _— (13)
(B(1),B(t)) = 1 (14)

Equation (12) locates the bisector curve B(t) at an equal spherical geodesic distance from ¢ and
C(t). Since the normal plane P, (t) of a spherical curve C'(f) € S* contains the origin, it intersects
S% in a great circle that is orthogonal to C'(¢). Equation (13) implies that the bisector point is
contained in the normal plane P, (¢). Finally, Equation (14) constrains the bisector curve to the
unit sphere S2.

Unfortunately, Equation (14) is quadratic in B(t); thus the spherical curve is, in general, non-
rational. Fortunately, the ruling directions of conic surfaces may be represented by nonunit vectors.
Thus, for the construction of rational direction curves, we replace the unitary condition of Equa-
tion (14) by the following linear equation:

(B(1),(0,0,1)) = 1. (15)

Equation (15) constrains the bisector curve to the plane Z = 1. Equations (12), (13), and (15)
form a system of three linear equations in B(¢), whose solution is a rational curve on the plane
Z =1, which we denote as B(t). Normalizing B(t), we obtain a spherical bisector curve: B(t) =
B(t)/||B(t)]| € S?. Because of the square root in the denominator, the bisector curve B(t) € S? will
be, in general, non-rational.



Given two regular C'! rational curves C(u) and Cy(v) on S?, their bisector curve B(u(v)) € S*
must satisfy the following three conditions:

(B(u(v)), Ci(u) = C2(v)) = 0, (16)
(B(u(v)) = C1(u),Ci(u)) = 0, (17)
(B(u(v)) = Ca(v), Ca(v)) = 0. (18)

Equation (16) is the constraint of equal distance. Equations (17) and (18) imply that the bisector
is simultaneously on the normal planes of the two curves. All three planes pass through the origin
and they intersect, in general, only at the origin. However, there is a singular case where the three
planes intersect in a line and their normal vectors are coplanar:

Cl(u) — CQ(U)
Alu,v) = C1(u) = 0. (19)
C(v)

In fact, it is a necessary and sufficient condition for a bisector point B(u(v)) € S? to have its
foot points at C'(u) and Cy(v) [7]. The bisector point B(u(v)) € S? is then computed as one
of the intersection points between the line and the unit sphere. Because of this extra constraint
A(u,v) = 0, the spherical bisector curve is, in general, non-rational (see also Elber and Kim [5]).
However, the spherical bisector curve of two circles on S? is an interesting special case which allows
a rational bisector.

In a slightly more general case, let us assume that one curve C(u) is a circle and the other curve
C3(v) has a rational spherical offset (e.g. a circle on the sphere). Then the curve-curve bisector
on the unit sphere is the same as the bisector of a point and an offset curve on S?. To obtain
this bisector, we first offset both curves on S? until the circular offset degenerates to a point, and
then solve this simplified system of equations for the spherical point-curve bisector. Using this
technique, we can reduce the spherical circle-circle bisectors to the spherical point-circle bisectors.

2.3.4 Line-Plane and Cone-Plane Bisectors

A plane is a special case of a circular cone with 7 as its spanning angle. Moreover, the set of all
planes is closed under offsetting. Based on these two properties, and by combining results discussed
in Sections 2.3.2 and 2.3.3, we can construct the line-plane and cone-plane bisectors.

Consider the bisector of a line £ and a plane P. Without loss of generality, we may assume that
P is the XY-plane and L intersects P at the origin. (We assume that P and £ are not parallel,
since the parallel case reduces to the point-line bisector.) Let @ = £(1S% and C(t) = P()S? be a
point and a great circle, respectively, both on S%. Moreover, let B(t) be the bisector of @ and C/(t)
on the plane Z = 1. Then, the bisector surface of £ and P is given by

B(t,r)=rB(t), recR.

Next we consider the bisector of a circular cone C and a plane P. Without loss of generality,
we may assume that P is the X'Y-plane and that the apex of the circular cone C is located at the
origin. Let Cy(u) = C()S? and C3(t) = P()S? be a circle and a great circle, respectively, both
on S2. Moreover, let B(t) be the bisector of C(u) and Cy(t) on the plane Z = 1. (Note that the



bisector curve is constructed by the spherical offset technique discussed at the end of Section 2.3.3.)
Then, the bisector surface of C and P is again given by

B(t,r)=rB(t), recR.

If the apex of the cone C is not contained in P, we can offset both the cone and the plane until
the apex is contained in P. A translation moves both varieties so that the new apex is now located
at the origin. All cone-plane bisectors can thus be reduced to the standard form discussed above.
Note that the same technique can be applied to non-circular cones C as well if their spherical curves
C N S? have rational spherical offsets.

3 Bisectors in Higher Dimensions

We now examine the existence of rational bisectors in higher dimensions. Let V; and V, be two
varieties of dimensions d; and ds, respectively, both in R?. The bisector B of V; and V, must
be located in the normal subspaces of the two varieties. Hence, there are dy 4+ dy orthogonality
constraints to be considered. The bisector must, of course, also be at an equal distance from the
two varieties, so there are in total di + dy + 1 linear constraints. When the two varieties V; and Vs
are in general position, their bisector B has a rational representation if

di +dy+1<d.

For example, consider two curves in IR>. Each curve contributes one orthogonality constraint;
that is, the bisector must be contained in the normal plane of each curve. Together with the
requirement of equidistance from two input curves, the total number of constraints is three, which
is equal to the dimension of the space. Thus, the bisector has a rational representation.

In contrast, a bivariate surface imposes two orthogonality constraints; namely that the bisector
of two surfaces must be contained in the normal line of each. Including equidistance, the total
number of constraints is therefore five. Hence the bisector of two bivariate surfaces has a rational
representation in IR, for d > 5, but not in IR®. Similarly, the bisector of a bivariate surface and a
univariate curve has a rational representation in IR?, for d > 4, but not in IR®.

The bisector curve of two curves in IR?, the bisector surface of a curve and a surface in IR>, and
the bisector of two surfaces in IR® are all, in general, non-rational; therefore we need to approximate
them numerically. Methods for approximating the bisectors of two curves were presented by Farouki
and Ramamurthy [11] and by Elber and Kim [5]. Additionally, methods for approximating the
bisector of two surfaces or that of a curve and a surface in IR® were recently proposed by the latter
authors [8].

4 «o-Sectors

By definition, the shortest distances from a bisector point to the two varieties being bisected are
always equal. Consider an intermediate surface with weighted distances from the two varieties,

al[B=Vi|| = (1 - a)||B= Vs, (20)



where 0 < o < 1. We denote the locus of points that are at relative distances a and (1 — «) from
the two varieties as the a-sector. Unfortunately, the square of Equation (20) is linear in B only for
o= % Nevertheless, there is a nice property that the two special a-sectors are identical with the

1

original varieties when o = 0 or @ = 1. Note that the a-sector reduces to the bisector when a = 3.

The ability to change « continuously could be a useful tool in a range of applications, e.g., to
produce metamorphosis between two freeform shapes. In the next sections we consider a few simple
examples of the a-sectors of two varieties. While Equation (20) is quadratic, we later ‘linearize’ this
constraint and introduce the pseudo a-sector which is simple to represent as a rational function.

4.1 The Point-Line a-Sector in R?

We may assume without loss of generality that the line is the Y-axis, that is, the parametric line
C'(t) = (0,t), and that the point is ) = (1,0). We choose a so that o = 0 corresponds to the line
and a = 1 corresponds to the point.

The a-sector B = (by, b,) between the Y-axis and the point () satisfies the line-orthogonality
constraint

0= {50,550 = (.5~ 0.0, 0,0y =, 1, e1)

and the distance constraint
o ((bs = 1?4+ 62) = (1= )2 (b2 + (b, — 1)?). (22)

Solving Equations (21) and (22) and replacing (b;, b,) with (z,y), we obtain the quadratic curve

20— 1
(042 )x2+y2—2x—|—1:0. (23)
o

Figure 3 shows the a-sectors of the line (0,¢) and the point (1,0) for various different values
of . When a < %, the coefficients of 2% and y? have opposite signs, and so the a-sector is a
hyperbola. When o = %, the coefficient of 2% vanishes, and so the bisector is a parabola. When

o> %, the coefficients of 2% and y? have the same sign, and so the a-sector is an ellipse.

4.2 The Point-Plane a-Sector in R?

A similar a-sector exists for a point and a plane in three dimensions. We may assume without loss
of generality that the plane is the Y Z-plane, that is, the parametric plane S(u,v) = (0, u,v), and
that the point is @ = (1,0,0). We choose a such that a = 0 corresponds to the plane and o = 1
corresponds to the point.

Let B = (bg, by, b.) be the a-sector of S(u,v) and Q. As in the two-dimensional case we have
the two plane-orthogonality constraints

0= <B — S(u, o), %> — (b by b) — (0,1, 0), (0,1,0)) = by — u, (24)
0= <B _ S(u,v), %> — (b by, b) = (0,0, v), (0,0, 1)) = b, — v, (25)

and the distance constraint
o ((be = 1)+ 024+ 62) = (1 — @) (b2 + (b, — w)* + (b — v)?). (26)

10
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Figure 3: The a-sectors of the point (1, 0) and the line (0, ¢) for a = 0.10, 0.25, 0.50, 0.75, 0.90.
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Solving Equations (24)—(26) and replacing (b, by, b.) with (2, y, z), we obtain the quadratic surface

<2a;1)x2+y2—|—22—2x—|—1:0. (27)
o

This is a hyperb0101d of two sheets for 0 < o < L 5, an elliptic (circular) paraboloid for a@ = %, and

an ellipsoid for 1 3 <a<l

4.3 The Line-Line a-Sector in R3

Yet another simple example is the a-sector of two straight lines C(u) = (1,u,0) and Cy(v) =
(0,0,v). We choose a such that @ = 0 corresponds to C3(v) and o = 1 corresponds to Cy(u).
Now let B = (b, by, b.) be the a-sector of Cy(u) and Cy(v), and we have the two line-orthogonality
constraints

_ <B _ Ch(w), &5“)> — (b by, b) = (1,0, 0, (0, 1,0)) = by — u, (28)
_ <3 — Cy(w), dchf”)> — (b by, b) — (0,0, ), (0,0, 1)) = b — o, (29)

and the distance constraint
o ((be = 1)% + (by = w)? +b2) = (1= @) (b2 + b2 + (b — v)?). (30)

The solution of Equations (28)—(30) is the quadratic surface

200— 1 1—a\?
(a )x2—< a) VP42 —204+1=0. (31)

o’ o
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Thus the -sector (bisector) of C'y(u) and C(v) is the surface
yr— 22420 -1=0,

whose parametric form is given as (#, u,v). This confirms the result of [4, §2.2].

When o = %, Equation (31) yields a hyperbolic paraboloid. Otherwise, when 0 < a < 1, but
o # %, it yields a hyperboloid of one sheet, which reduces to a line for & = 0 or 1. However, the
a-sector of two general rational curves in IR? is usually a non-rational surface.

4.4 The Pseudo «-Sector

In the case of a spherical bisector, we resorted to the linear constraint Z = 1. Similarly, we now
seek a linear constraint that replaces the quadratic Ly-norm of Equation (20) while yielding similar
properties to the a-sector in constraining the relative distances to the two given varieties. We
choose the plane that is at relative distances of a and (1 —«) from the closest point on each variety.

For example, for the pseudo a-sector of a curve C'(t) and a point Q in IR?, we impose the two
linear constraints

<B(t)—C(t),%t(t)> _— (32)

(B(t) = (aQ + (1 = )C (1)), C(t) - Q) = 0. (33)

Equation (32) is the regular orthogonality constraint, and Equation (33) ensures that the bisector
is on the plane containing the point a@)+ (1 —a)C'(¢) and orthogonal to the vector C'(t) — Q. If C'(¢)
has a rational representation, we can easily use Cramer’s rule to obtain a rational representation

for B(t) = (bx(t), by(t)).

Figure 4 shows three examples of planar pseudo a-sectors of: (i) a point and a line (Figure 4(a)),
(i) a point and a cubic curve (Figure 4(b)), and (iii) a point and a circle (Figure 4(c)). These
examples were all created using the IRIT solid-modeling environment [12].

The extension to IR? follows the same guidelines. The pseudo a-sector of two curves C'j(u) and
Cy(v) in IR? imposes the three linear constraints

<B(t) Oy (), dc;li“)> Y (34)
<B(t) — Cylo), d(’:;f”)> _— (35)
(B(t) = (aCy(u) + (1 — @)Cs(v)), Ci(u) — Ca(v)) = 0. (36)

Again, if C1(u) and Cy(v) have rational representations, we can use Cramer’s rule to obtain a
rational representation for B(t). Figure 5 shows two such pseudo a-sectors in IR?, for (i) two lines
(Figure 5(a)), and (ii) a line and a circle (Figure 5(b)).

The pseudo a-sector is identical with the a-sector only when o = %; in that case, they are both
equivalent to the bisector. Note also that the pseudo 0- and 1-sectors are only approximations to
the original varieties. This is because of the approximate distance constraint: points on the pseudo
a-sector do not satisfy the a : (1 — «) distance ratio; instead, this property constrains only their
projections on the lines joining the respective points on the varieties.
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(a) (b) (c)

Figure 4: (a) The pseudo a-sectors of a point and a line in IR* for a = 0.10, 0.25, 0.50, 0.75, 0.90
(cf. Figure 3). (b) The a-sectors of a point and a cubic curve in IR? for & = 0.2, 0.4, 0.6, 0.8, 1.0.

(c) The a-sectors of a point and a circle in IR? for « = 0.2, 0.4, 0.6, 0.8, 1.0. The original curves
and points are shown in gray.

1

v

Figure 5: (a) The pseudo a-sectors of two lines in R® for a = 0.0, 0.25, 0.5, 0.75, 1.0. (b) The
a-sectors of a line and a circle in R? for a = 0.0, 0.25, 0.5, 0.75, 1.0. The original curves are
shown in gray.

5 Conclusion

In this paper we have examined various special cases for which rational bisectors exist. We showed
constructively that the point-curve bisectors in IR%, and all point-curve, point-surface, and curve-
curve bisectors in IR>, have rational representations. We have also considered some special cases
where the surface-surface bisectors are rational.

Further, we describe the exact and pseudo a-sectors, extensions of the bisector that should be
useful in various applications, such as metamorphosis between the pseudo a-sector.
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