GuIrit Shared extensions

This short document describes the interface of building shared (DLLs or dynamically linked libraries under windows, so or shared object under Unix/Linux, etc.) extensions to the GuIrit modeling environment. For simplicity we will refer to these extensions as DLLs in the rest of this document, but all applies to other environments as well. The GuIrit Environment could be sketched as follows:

[image: image1.emf]GuIritOther libraries

(wxWidgets,Open GL,etc.)

GuIrit DllExtension Support

(GuIritDllExtensions.dll)

Irit Core

(irit.dll)

GuIrit Dll Extensions

(GuIritDllBoolOp.dll,GuIritDllCurves.dll,GuIritDllPrims.dll,GuIritDllSurfaces.dll,

etc.)

GuIrit Dll Extensions

(GuIritDllBoolOp.dll,GuIritDllCurves.dll,GuIritDllPrims.dll,GuIritDllSurfaces.dll,

etc.)

GuIrit Dll Extensions

(GuIritDllBoolOp.dll,GuIritDllCurves.dll,GuIritDllPrims.dll,GuIritDllSurfaces.dll,

etc.)

GuIrit Dll Extensions

(GuIritDllBoolOp.dll,GuIritDllCurves.dll,GuIritDllPrims.dll,GuIritDllSurfaces.dll,

etc.)

1. General Rules

A GuIrit extension can use all Irit core functions and link to irit{D}.lib or irit{D}.dll (the {D} libraries are debug versions). Access to GuIrit is only via the Dll GuIrit interface provided by GuIritDllExtensions{D}.dll. Note that a Dll extension of the form *D.dll will be considered a debug version so do not use capital D as the last character in an actual GuIrit Dll extension. The full set of support functions in the Dll GuIrit interface could be found in GuIritModeler/IrtMdlrDll.h. For the meaning and documentation of these functions consult GuIritModeler/IrtMdlr.cpp. A Dll extension should not invoke wxWidgets and/or Open GL functions directly.

Every GuIrit Dll extension can be exposed via regular modeling functions or widgets supporting functions (or both). Once a regular modeling function is invoked (via a key stroke bound to that function, a mouse click on the icon of the function, or from the top down menu), a GUI panel is automatically created and parameter values of this extension function are fetched from the user via the GUI's defined panel (See Section 4.1).

In addition, widgets supporting functions (with no GUI panel) can also be define, and are invoked only when the user changes values in their respectively defined widgets. Parameter value(s) of the widgets function are fetched from the GUI's widgets (See Section 4.2).

2. Building a Guirit DLL extensions

A new GuIrit Dll extension could be built in two different ways. The first way is by adding the extension project to the main solution project in the GuIrit subdirectory. Currently, there are quite a few Dll extensions, such as GuIritDllExample, GuIritDllBoolOp, GuIritDllCurves, GuIritDllPrims, and GuIritDllSurfaces.

Alternatively, one can use an independent makefile to build the extension Dlls. In fact, on systems other than Windows, this is the only way. Such a makefile.wnt is provided in the simple example Dll extension, under the GuIritDllExample subdirectory, that implements a making-sound (beep) function. Another, more complex, makefile.wnt example, for the GuIritDllCurves.dll, can be founding in the GuIritDllCurves subdirectory. For Unix/Linux/Mac, makefile.unx’s could be found in all extensions’ directories.
These Dlls depend on two libraries that must be built first:

1. GuIritDllExtensions.dll/lib is typically built alongside the main GuIrit core, Guirit.exe, and is part of the GuIrit distribution.

2. irit.dll/lib that is built as part of the Irit core regular distribution (see www.cs.technion.ac.il/~irit for more) with the command of
 “nmake -f makefile.wnt iritD.dll”
 for the debug version and

 “nmake CFG=Rel -f makefile.wnt irit.dll”
 for the release version, executed at the Irit root directory.

 The root directory in the Irit core's sources should have irit{D}.def for these commands to succeed. These files are part of the distribution but could also be partially (some manual tweaking is still needed) rebuilt using the command
 “nmake -f makefile.wnt iritD.def”

3. Installing a Guirit DLL extensions

The GuIrit’s core (GuIrit.exe under Windows) will attempt to upload, as part of its initialization, any Dll it finds in the Extensions directory of GuIrit. This directory is prescribed by the “AppExtensionsDir” variables in the GuIrit.cfg file. Typically, this directory is “GuIrit/Extensions” relative to the location of the GuIrit executable (i.e. GuIrit.exe, underwindows). Once a Dll is uploaded, a function named “_IrtMdlrDllRegister” is sought in the Dll and invoked to initialize the Dll. See more on this initialization process in the section “Programming a GuIrit Dll Extension” below. Finding no such function name is a fatal error that renders this Dll extension useless.
GuIrit.exe, GuIrit.cfg, irit.dll, and GuIritDllExtensions.dll should all be placed in the same directory that is in the system PATH. Note GuIrit.cfg is copied from GuIritWin.cfg under windows and from GuIritUnx.cfg, otherwise. GuIritDllExtensions.dll will be loaded by GuIrit.dll automatically like a regular Dll as will irit.dll. The rest of the GuIritDll*.dll extensions must be placed under “GuIrit/Extensions” as was explained above.
The Dll has a special interface that let GuIrit’s core know about the Dll’s new abilities as part of the registration process (See “Programming a new GuIrit Dll extension” below). Among other things, this registration process let GuIrit’s core know what new functions are available from this Dll, by registering the names of these new functions. In other words, once a new functionality is provided, via a new Dll extension placed under “GuIrit/Extensions”, to GuIrit, this new functionality could be accessed from within GuIrit via the new functions’ unique names, using one of the following methods:

1. Bind any function by its unique name, in the new Dll extension, to some key stroke. For example, for the unique function name of "IRT_MDLR_EXAMPLE_BEEP", the GuIrit.cfg line:

"C-g", "HIERARCHY", "IRT_MDLR_EXAMPLE_BEEP"
binds the Beep functionality in GuIritDllExample to control–g, under the Hierarchy GuIrit panel window. See GuIrit.cfg.

2. Bind any regular function in the new Dll extension to some toolbar button under matching menu tab entry. For example, for the unique function name of "IRT_MDLR_EXAMPLE_BEEP", the GuIrit.cfg line:

 "Help.&Beep Dll Extension Example", "IRT_MDLR_EXAMPLE_BEEP",
"REGULAR , Size:32"
 binds the Beep function to “Help -> Beep Dll Extension Example”.
See GuIrit.cfg. for more detailed options possible for regular menu tab entries.

3. Bind any widgets supporting function in the new Dll extension to some special widget control under menu tab entry. For example, for the function name of "IrtMdlrPrimMenuType", under the GuIritDllPrims dll extension, the GuIrit.cfg line:

 "CSG.Primitive\nType", "IRT_MDLR_PRIM_MENU_TYPE",
 "Type:WIDGET, Size:32, ComboWidth:100, ComboHeight:22"
 binds the function to selection widget “CSG -> Primitive\nType”.

See GuIrit.cfg. for more detailed options possible for specific special widgets menu tab entries.

4. Bind any set of functions into one toolbar. For example, for the unique function name of "IRT_MDLR_EXAMPLE_BEEP", the three lines in GuIrit.cfg:

"TOOLBAR Netcom", "RGB:210 210 235, Size:32, Layout:V",

"IRT_MDLR_EXAMPLE_BEEP",
 "",

"IRT_MDLR_NET_COM",

 "",

define a new tool bar called ‘Netcom’ with two functions, the Beep example and the "IRT_MDLR_NET_COM" function that allows two GuIrit tools to communicate. Also note you can show all defined tool bars by activating the built in function (uniquely) named “CONTROL_TOOLBARS” of GuIrit (by default menu-binding of “Windows -> Control -> Show Toolbars”).

Note space is allowed and '.' (dots) separates menu hierarchy entries. Again, see GuIrit.cfg. Also note that any extension function that has no bindings, will result in a warning message once the initialization is complete.
4. Programming a new GuIrit DLL extension

Every GuIrit Dll extension must have an initialization and registration function called “_IrtMdlrDllRegister”. This function is invoked first, before any possible use of this Dll. The main purpose of this function is to let the GuIrit’s core know about the functionality this extension has to offer. Beyond local initialization that could be done inside the Dll at this time, this function must also call the registration service of the GuIrit Dll extension:
 GuIritMdlrDllRegister(FunctionTable,

 FUNC_TABLE_SIZE,

 "Title of Module",

 IconOfModule,

 Version);
FunctionTable is a data structure that prescribes all the necessary information regarding each function, which this Dll extension wishes to expose to the GuIrit’s core. The data structure presents the parameters that are expected by the function, its return value, a textual description on the function and the parameters, icon for the tool bar for this function, etc. See below (Section 4.1) and also IrtMdlrFuncTableStruct in Modeler/IrtMdlrFunc.h.

FUNC_TABLE_SIZE is simply the size of FunctionTable or the number of new functions this module has to offer.

The “Title of Module” is a short optional string describing the general functionality offered by this module (optionally serves as a tool tip for the module's icon in the toolbar). This string can be used in the configuration file (guirit.cfg) to name a Tool Bar and use the associated IconOfModule, if available, in a line like:

"",

"TOOLBAR Title of Module: 210 210 235",
See guirit.cfg for more.
IconOfModule is the optional Icon used in the modules’ Tool Bar.

Finally, Version is used to make sure loaded dlls are compatible with the dll loader version (See also IRIT_MDLR_VERSION below). This parameter is optional as well and defaults to IRIT_MDLR_VERSION.
4.1 The Regular Modeling FunctionTable entry
Any regular function entry in the FunctionTables points to strings and variables that describes one new function, reference an icon, describes the type of parameters it expects (as will be reflected in the GUI panel automatically created for this function) and the returned type, and obviously provides a pointer to the function’s implementation itself. For example in the GuIritDllExample, it points to the IrtMdlrBeepExample function. Here is this complete entry, copied verbatim from GuIritDllExample.cpp:
IRT_DSP_STATIC_DATA IrtMdlrFuncTableStruct ExampleFunctionTable[] = {

 { 0, IconExample, "IRT_MDLR_EXAMPLE_BEEP", "Beep", "Make some sound",

 "Make some sound, controlling the pitch and the duration, and return the pitch as a new (numeric) object.",

 IrtMdlrBeepExample, IrtMdlrBeepExampleSI,
 IRT_MDLR_PARAM_NO_INTERMEDIATE_UPDATE, IRT_MDLR_NUMERIC_EXPR, 3,
 IRT_MDLR_PARAM_EXACT,

 { IRT_MDLR_STRING_EXPR, IRT_MDLR_NUMERIC_EXPR, IRT_MDLR_NUMERIC_EXPR },
 { "BEEP", &IrtMdlrBeepPitch, &IrtMdlrBeepDuration },

 { "Name", "Pitch", "Duration" },

 { "Resulting object's name", "The frequency of the sound (Hz)",
 "The duration to make the sound" } }
 };

where:

· 0 – Ignore (used internally to allocate a unique numeric ID to the function).
· IconExample – An icon defined in xpm (X11) format, as C char * string. This specific icon is included in the "#include "Icons/IconExample.xpm" command.
· "IRT_MDLR_EXAMPLE_BEEP" – A unique name of the function as will be referenced from within GuIrit. Binding to key/mouse/menu/toolbar will be using this name that must be unique.
· "Beep", "Make some sound", "Make some sound, controlling the pitch and the duration, and return the pitch as a new (numeric) object." – Short, medium and long descriptions of the function to be used in various locations within GuIrit. The middle size description will be used as a title for the GUI panel that will be automatically built for the function, as well as displayed in the status bar, upon invocation. The long description will be placed as help at the top of the built GUI panel for that function.
· IrtMdlrBeepExample – The name of the C function to invoke - the function implementation of this extension.
· IrtMdlrBeepExampleSI – Optional, can be NULL. The name of the C function to invoke to synthesize a (Python, Irit) script representation to this function using GuIritMdlrDllSIPrintf.
· NULL – Ignore.
· IRT_MDLR_PARAM_NO_INTERMEDIATE_UPDATE – Control flags, like the option for the display of intermediate data when parameters are modified or not, showing an 'Ok' or 'Apply' button, etc. A full list of control flags is given below.
· IRT_MDLR_NUMERIC_EXPR – The return type of this GuIrit extension function,
· 3, IRT_MDLR_PARAM_EXACT – This function has 3 parameters and expects exactly 3 parameters.
· { IRT_MDLR_STRING_EXPR, IRT_MDLR_NUMERIC_EXPR, IRT_MDLR_NUMERIC_EXPR } – The types of the 3 parameters. The panel automatically created in the GUI for this extension function will have 3 entries. The easiest way to learn about a specific parameter type is to follow one of the existing examples in the available DLLs. One can also 'or' some modifiers (like IRT_MDLR_NO_CNSTRCTR_MODIFIER_EXPR) to the above types to allow different than default behavior of the parameter.
· { "BEEP", &IrtMdlrBeepPitch, &IrtMdlrBeepDuration } – Initial/Default value of the 3 parameters. Initial/Default values can be provided for anything but:

· IRT_MDLR_CURVE_EXPR or IRT_MDLR_SURFACE_EXPR, where a NULL must be specified.
· IRT_MDLR_SELECTION_EXPR, where this slot contains a string with all the selection's options, separated by a semicolon, and optionally the default selection's index as a last element, separated via a colon. This string should not be a constant string as the colon + default value will be replaced/appended to it on the fly (which means a few more bytes should be left for it when it is allocated).
· IRT_MDLR_MULTI_SELECT_EXPR, where this slot contains a string with all the selections labels. Selections (checkboxes) will be arranged in a grid structure. Grid entries are separated by a comma and complete rows are separated by a semicolon. Initial selection's state must be set for each entry, separated via a colon. This string should not be a constant string as the state value will be replaced in it on the fly.
· IRT_MDLR_HIERARCHY_SELECTION_EXPR, where this slot contains a string with all the hierarchy selection's options, separated by a semicolon, and optionally the default selection's index as a last element, separated via a colon. Each hierarchy selection has to describe the full hierarchy of one new menu item by order. Menu levels are separated by ‘/’. This string should not be a constant string as the colon + default value will be replaced/appended to it on the fly (which means a few more bytes should be left for it when it is allocated).

· IRT_MDLR_FILENAME_EXPR, where the static input is used to initial the state. The following characters will set this state:

· R/W – Reading/Writing a file – only one of the two can exist.

· E – On a read operation, expects the file to Exist.

· I – Process Irt files. Cannot be combined with ‘G’ or ‘:’ below. Equivalent to FileTypeFilter (see below) of
“Irit text files (*.itd)|*.itd”

· G – Process General (all types) files. Cannot be combined with ‘I’ or ‘:’ below. . Equivalent to FileTypeFilter (see below) of

“All files (*.*)|*.*” followed
1. optionally by “:FileTypeFilters” where FileTypeFilters is in the format of {File Description|*.FileType|}*,
2. and then optional by “,PreciseFileName" – the exact file name to load.
Example:

 “RE:GIF files|*.gif|PNG files|*.png|JPEG files|*.jpg,data17.gif”

One can provide the default values as a pointer to local static variables that will store values from one invocation of this function to the next. It is the responsibility of the DLL to update these values as the displayed panel only reads them when the panel is built.
· { "Name", "Pitch", "Duration" } – Names of the 3 parameters as will appear in this functions' GUI panel display. You should have a very good reason to call the first parameter (“Name”) anything else, and is strongly discouraged.
· { "Resulting object's name", "The frequency of the sound (Hz)", "The duration to make the sound" } – A longer description of the 3 parameters to be used as tool tips.
Types of widgets
· IRT_MDLR_NUMERIC_EXPR – a single real number entry.
· If the title of this widget has a “|R{Step}” optional parameter suffix, amounts to inc/decrement(horizontally/vertically) the real value of the control will be set (step is the value to set). (Otherwise default values will be set - HInc - 0.01 and VInc = 0.05).

· IRT_MDLR_VECTOR_EXPR,
 IRT_MDLR_POINT_EXPR,

 IRT_MDLR_PT_VEC_EXPR – a point/vector of typically three real values.
· If the title of this widget has a “|D2” optional parameter suffix, the point/vector will be of dimension two only.
· If the title of this widget has a “|R{Step}” optional parameter suffix, amounts to inc/decrement(horizontally/vertically) the real values of the control will be set (step is the value to set). (Otherwise default values will be set - HInc - 0.01 and VInc = 0.05).

· Options D and R can be used together, with a comma separating them.

· IRT_MDLR_SELECTION_EXPR – a drop-down list of strings, that permits a single selection only.

· IRT_MDLR_HIERARCHY_SELECTION_EXPR – a toolbar with dropdown menu, presents selections as a hierarchy list of items, one of which may be selected. when the user selects item in a toolbar's dropdown menu, the text of the tool is updated with the selected menu item text. IRT_MDLR_MULTI_SELECT_EXPR – a group of checkboxes (where each can be either on or off), that permits a multiple selection.
· IRT_MDLR_ANIM_PLAYER_EXPR – an interface for animation implementation. This widget includes a slider to show current animation location and animation control buttons (play, pause, stop, bwrd, fwrd, stepbwrd and stepfwrd). The animation is always implemented by the dll. IntermediateWidgetMinor will hold the pressed animation button. The slider position can be set and get by GuIritMdlrDllGet/SetInputParameter functions (with values between 0 to 1).IRT_MDLR_BOOL_EXPR- a 2-state checkbox (on or off).
· IRT_MDLR_INTEGER_EXPR- a single integer number entry with spin button for editing integers.
· IRT_MDLR_SRFDIR_EXPR - a drop-down list that allows the user to choose one of two strings: "Row" and "Column" as directions in a surface.

· IRT_MDLR_TRIVDIR_EXPR - a drop-down list that allows the user to choose one of three strings: "Row", "Column" or "Depth", as directions in a trivariate.
· IRT_MDLR_MVARDIR_EXPR - allows the user to choose a direction for a multivariate as an integer.
· IRT_MDLR_END_COND_EXPR- a drop-down list that allows the user to choose one of four possible B-spline end conditions: "Open (Clamped)", "Float", "Periodic", and "General".

· IRT_MDLR_PARAMETRIZE_EXPR - a drop-down list that allows the user to select parametrization possibilities: "Uniform", "Centipetal", "chord Length", and "Nielson Foley”.

· IRT_MDLR_POLY_EXPR,
IRT_MDLR_CURVE_EXPR,
IRT_MDLR_TRIMSRF_EXPR,
IRT_MDLR_SURFACE_EXPR,
IRT_MDLR_TRIVAR_EXPR,
IRT_MDLR_MULTIVAR_EXPR,
IRT_MDLR_TRISRF_EXPR,
IRT_MDLR_POLY_OLST_EXPR,
IRT_MDLR_NUMERIC_OLST_EXPR,
IRT_MDLR_POINT_OLST_EXPR,
IRT_MDLR_VECTOR_OLST_EXPR,
IRT_MDLR_PLANE_OLST_EXPR,
IRT_MDLR_MATRIX_OLST_EXPR,
IRT_MDLR_CURVE_OLST_EXPR,
IRT_MDLR_SURFACE_OLST_EXPR,
IRT_MDLR_STRING_OLST_EXPR,
IRT_MDLR_CTLPT_OLST_EXPR,
IRT_MDLR_TRIMSRF_OLST_EXPR,
IRT_MDLR_TRIVAR_OLST_EXPR,
IRT_MDLR_MODEL_OLST_EXPR,
IRT_MDLR_MULTIVAR_OLST_EXPR,
IRT_MDLR_POLY_CURVE_EXPR,
IRT_MDLR_GEOM_EXPR,
IRT_MDLR_OLST_EXPR,
IRT_MDLR_OLST_GEOM_EXPR,
IRT_MDLR_SRF_TSRF_EXPR,
IRT_MDLR_POLY_SRF_EXPR,
IRT_MDLR_POLY_SRF_MODEL_EXPR,
IRT_MDLR_CRV_SRF_EXPR,
IRT_MDLR_CRV_SRF_POLY_EXPR,
IRT_MDLR_GEOM2D_EXPR,
IRT_MDLR_GEOM3D_EXPR,
IRT_MDLR_GEOM1D2D_EXPR,
IRT_MDLR_GEOM1D2D3D_EXPR
a drop-down list of specific type objects from the data base, that permits a single object selection only.

· IRT_MDLR_FONTNAME_EXPR - a font chooser dialog that allow the user to select specific font.
· IRT_MDLR_FILENAME_EXPR - a file chooser dialog that allow the user to select one file.
· IRT_MDLR_DIRNAME_EXPR - a directory chooser dialog that allow the user to select a directory.
· IRT_MDLR_COLOR_MAP_EXPR - a dialog that enables a user create a continuous colors map which is used to linearly mapping of a float value in the range of [0, 1] into a RGB color.
· IRT_MDLR_STRING_EXPR – A single- or multiple-line text entry field.
· If the title of this widget has a “|M{num}” optional parameter suffix, the text control will be multi-line (with num as the approximated number of lines).
· Note this type is always used to create the "function name" entry.
· IRT_MDLR_UNISTRING_EXPR - A single- or multiple-line Unicode text entry field.
· If the title of this widget has a “|M{num}” optional parameter suffix, the text control will be multi-line (num is the number of lines to set).
· If the title of this widget has a “|S{T,F}” optional parameter suffix, the entry will also include a symbol selection dialog (T for button F otherwise).
· Options M and S can be used together, with a comma separating them.

· IRT_MDLR_NUMERIC_LIST_EXPR – a list of real values widget.
· IRT_MDLR_PT_VEC_LIST_EXPR - a list of points/vectors widget.
· IRT_MDLR_CTLPT_LIST_EXPR – a list of control points widget.
· Numeric list, vec list and ctlpt list can have a specification of printf format string. If the title of this widget has a “|F{str}” optional parameter suffix, str will be the printf format string of list parameter numeric values.

· Ctlpt list widget can have a specification of desired type of control point (P-types or E-types). If the title of this widget has a “|E{num}” or “|P{num}” optional parameter suffix, Num will be the desired type of control point to set.

· If the title of this widget has a “|A” optional parameter suffix, the ctlpt list will be of type arrow list (E7 ctlpts that represent arrows - 6 coords of end points and last coord for length). For example of using arrow ctlpt list see GuiritDllMeasure.
· If the title of this widget has a “|W{num}” optional parameter suffix, the width of the widget is specified (num is the desired width).
· If the title of this widget has a “|L{num}” optional parameter suffix, the width of roe label is specified (num is the desired width).

· If the title of this widget has a “|X{T,F}” optional parameter suffix, the widget will be expanded to fill the space assigned to it (T for expanded widget, F otherwise). .
· Options M, E, P, A and F can be used together, with a comma separating them.
· IRT_MDLR_CURVE_LIST_EXPR - a list of curves widget.
· IRT_MDLR_SURFACE_LIST_EXPR - a list of surfaces widget.
· IRT_MDLR_STRING_LIST_EXPR – a list of strings widget.

· List can be 2 dimensional list (grid of strings). If the title of this widget has a “|C{Str}" and "O{Str}" optional parameter suffix, Str will be string of columns' and rows' labels respectively. Columns' or Rows' labels are separated by ';'. For example "|OL;O;V;E" - labels of rows 0-3 are "L", "O", "V" and "E", respectively. The grid sizes and labels are initiated according to those strings. If those optional parameters do not exist, regular string list will be created (one dimensional list). Rows' and columns' labels can be change after creation, in the modeling function by a GuIritMdlrDllSetListGridParams call.
· IRT_MDLR_TRIVAR_LIST_EXPR – a list of trivariates widget.
· IRT_MDLR_CRV_SRF_POLY_LIST_EXPR - a list of curves/surfaces/polys widget.

· All list widgets can have a specification of desired number of lines in the list. If the widget name has a “|M{num}” optional parameter suffix, num will be the number of lines in the list.
· IRT_MDLR_BUTTON_EXPR – a push-button control with a text label.
· IRT_MDLR_SEPARATOR_EXPR – a horizontal separator with no functionality.
· IRT_MDLR_TITLE_EXPR – an interior sub-title with no functionality.
Control flags
These are all the control flags that can be used to control the GUI panel of an extension function, which can be bitwise-or'ed together (see also IrtMdlrParamsMaskType):

· IRT_MDLR_PARAM_HIDE_GEOM_PARAM_DFLT_{OFF | ON} – adds a check box to the panel of the function to allow hiding of geometric parameters of this function, upon completion, with default, either off (no hiding) or on.

· IRT_MDLR_PARAM_INTERMEDIATE_UPDATE_DFLT_{OFF | ON} – adds a check box to support intermediate updates (i.e. evaluation of this function on every parameter change) with default, either off (no intermediate update) or on.

· IRT_MDLR_PARAM_INTERMEDIATE_UPDATE_ALWAYS – requests intermediate updates on every parameter change. No GUI check box is added - in this mode one cannot be change the update behavior.

· IRT_MDLR_PARAM_VIEW_CHANGES_UPDATE – requests events every time the view of the scene changes. Can generate large number of events during interactions so processing of this event better be quick.

· IRT_MDLR_PARAM_NO_OK – do not provide an 'Ok' button.

· IRT_MDLR_PARAM_NO_APPLY – do not provide an 'Apply' button.

· IRT_MDLR_PARAM_NO_CANCEL – do not provide a 'Cancel' button.

· IRT_MDLR_PARAM_NEGATE_GEOMETRY – provides a check box to request to orient-negate the function's geometric output, upon construction.

· IRT_MDLR_PARAM_POINT_SIZE_CONTROL - provides a controller to set the size of displayed auxiliary (control) points.
· IRT_MDLR_PARAM_PANEL_PERSISTENT – Typically only one extension function’s panel is allowed open at a given time and an old panel is closed when a new one is opened. This flag states that this panel is persistent and should not be closed if another modeling panel is opened. In other words, this panel is closed only due to an explicit command in the panel (i.e. 'Ok' button is pressed). Titles of persistent Panels are differently colored to ease their identification.
· IRT_MDLR_PARAM_PANEL_RECUR_ENTRY – States that this panel is temporary and used only for object(s) selection, only to recursively invoke the real function’s panel with the selected object(s). This panel will have a 'Commit' button instead of 'Ok' and the title will be colored differently.
· IRT_MDLR_PARAM_PANEL_NO_CTL_MESH – By default freeform geometry (curves, surfaces, etc.) is displayed with its control polygon/mesh while in editing mode. Add this flag to disable the display of the control polygon/mesh.

· IRT_MDLR_PARAM_REFRESH_PANEL_BUTTON – If present, a button is appended to the panel that will refresh the panel’s information every time it is pressed. This is useful, for example, when a panel is open with an object selection combo and new objects where loaded into the scene.

· IRT_MDLR_PARAM_NO_RESET_PARAMETER_BUTTON – By default a 'Reset' button is appended to the panel, this button will restore initial values of all parameters every time it is pressed. This flag states to not provide a 'Reset' button.
During run time, in C space, when IrtMdlrBeepExample (and any other Regular Modeling GuIrit Dll extension function) is invoked, it gets only one C parameter and returns none. The single C parameter called usually FI (for “function information”), of type IrtMdlrFuncInfoClass, and tells the function:
· The reason for the function invocation, via the IrtMdlrCnstrctStateType's CnstrctState slot:
· IRT_MDLR_CNSTRCT_STATE_INTERMEDIATE: an intermediate event (when 'Intermediate update' check box is checked on, when available). An intermediate event will occur whenever some widget in the panel is changed and then IntermediateWidgetMinor and IntermediateWidgetMajor will hold the modified widget’s numeric index (see below), or via an explicit request for an intermediate update by a GuIritMdlrDllRequestIntermediateUpdate call.
· IRT_MDLR_CNSTRCT_STATE_VIEW_CHANGED: invoked due to a view change in the graphics screen. Will only occur if this modeling function has the flag IRT_MDLR_PARAM_VIEW_CHANGES_UDPATE set.
· IRT_MDLR_CNSTRCT_STATE_UNDO: invoked if undo request was made (via an UNDO button press. Will only occur if this modeling function has a flag IRT_MDLR_PARAM_UNDO_PANEL_BUTTON set.
· IRT_MDLR_CNSTRCT_STATE_OK: invoked due to pressing an ‘Ok’ button (done successfully).
· IRT_MDLR_CNSTRCT_STATE_APPLY: invoked due to pressing an ‘Apply’ button (done and an instance of the geometry will be created as in ‘Ok’ but function’s panel will stay open for further geometric instances' creations),
· IRT_MDLR_CNSTRCT_STATE_CANCEL: invoked due to pressing a ‘Cancel’ button.

· if it was invoked due to pressing an 'Ok' button (done successfully), due to pressing a 'Cancel' button (done unsuccessfully), due to pressing an 'Apply' button (done but function’s panel will stay open for further instances' creations), or due to an intermediate change when 'Intermediate update' check box is checked on, which means that the geometry in its current temporary state is to be generated and displayed.
· The GUI panel that controls this specific instance of (geometry) construction, via the Panel slot. Typically used internally by the support functions of the Dll GuIrit Interface.
· LastPrmRecFunc will be true if the last fetched parameter, via one of GuIritMdlrDllGet*Parameter parameters, is in fact a recursive invocation of a modeling function. This slot is valid only immediately after a call to one of GuIritMdlrDllGet*Parameter functions.

· IntermediateWidgetMinor, IntermediateWidgetMajor provides information regarding the major widget index (first is zero) and minor widget index (like in a point of three real numbers) that was updated and hence created this ‘Intermediate update’ event. IntermediateWidgetEventType, provides the occurring event type. Only valid on ‘Intermediate update’ events.
· CreateHidden and CreateNegated are two Boolean flags that controls the way the final object will be altered by the database routines that insert the result to the database. I.e. whether it will be visible or hidden, and with regular or reversed (negated) orientation.

· InvocationNumber specifies the call number of this modeling function so far, in this instance of an active modeling panel. The first call is call number zero which can be used to do any needed initializations.

· An Aux pointer slot that the Dll extension can use to save data between calls, as long as this instance of (geometry) construction panel is active. This allows the code to be reentrant but it is the sole responsibility of the Dll to maintain this pointer.
· Other parameters that are used internally.

Some widgets can have parameters. For instance a list of curves/surfaces can have a specifications of desired number of visible lines in the list. A text input can be defined to be multi-line and the number of lines can be set. These parameters are defined in the widget name after a ‘|’ separator. That is the first parameter name “Name” above can have the parameter ‘7’ as “Name|7”. The 7 will serve as the parameter to the widget, depending on the widget type.

Note the FI parameter is also passed to all support functions of the Dll GuIrit Interface, named GuIritMdlrDll*.

The parameter values of the regular modeling extension function are fetched from the GUI's panel and/or set the GUI's panel values by invoking specific support functions in the Dll GuIrit interface, namely the GuIritMdlrDllGetInputParameter, the GuIritMdlrDllGetCurveParameter, etc., to fetch parameters from the GUI and the GuIritMdlrDllSetInputParameter to set and modify the current values displayed by the GUI's panel.
The GuIritMdlrDllGet/SetInputParameter are ‘smart’ functions in the sense that the fetched/updated parameter type is known from the function table. A parameter of the proper type must be passed by the caller to these routines, by reference, along with the parameter index. Based on the parameter index the type is identified, fetched, and updated/fetched at/from the reference. One cannot assume the returned parameters will be the same pointers even if selected objects are not changed. Comparison for consistency of objects should be done by object names.
The final (usually geometric) object created by the extension function could be transferred to GuIrit and placed in the GuIrit database by using the support function GuIritMdlrDllInsertModelingFuncObj. For intermediate updates, the created (geometric) object is stored in a temporary database by the above routine, which can also be directly invoked via the GuIritMdlrDllAddTempDisplayObject support function.

Your extension function must fetch all parameters on each intermediate/apply/ok event via the GuIritMdlrDllGet*Parameter support functions, even if the parameters are not used. This, to ensure the parameters are saved in the function’s history for future re-editing. Do not store parameters locally and if you update them using a GuIritMdlrDllSet* functions, still fetch them all, on the next intermediate/apply/ok event. This, as parameter fetching has the side effect of updating other objects as well.
By convention, the first parameter is the object's expected name, so the user can modify it. It is set by default to a short (few characters) name based on the name of the extension function (like 'Circle' or 'SurfRev') and a running index, so the first invocation of the circle constructor will offer a default name of 'Circle_0001', etc.
A GuIrit Dll extension can invoke any Irit core function and/or any external library not associated with GuIrit (as long as it is also properly linked with that external library). It is not recommended to invoke GuIrit functions other than the ones provided in GuIritModeler/IrtMdlrDll.h (the GuIritMdlrDll* support functions), nor should it invoke any GUI (wxWidgets) or Open GL functions. See the next section if you really need to augment the provided GuIrit Dll extension protocol with additional functionality.
4.2 The Widget Supporting FunctionTable entry
Unlike the regular modeling extension function entry, the widget supporting extension function entry has to provide fewer parameters, because no GUI panel is created. Only the following parameters are relevant for widgets supporting extension functions:

· StrId - Unique binding name.
· FuncName - Medium description of the function.

· FuncDescription - Long description of the function.
· Func - The name of the C function to invoke.
· FuncSI - Optional, can be NULL. The name of the C function to invoke to synthesize a (Python, Irit) script representation to this function using GuIritMdlrDllSIPrintf.
· ParamsMask – Function type and disable GUI's widget flag can be bitwise-or'ed together. By default widget is enabled, in order to create disabled GUI's widget (will be used only to display data), Set ParamMask to:

· IRT_DSP_MENU_DISABLE_PARAMETER.

Function type - type has to be set to one of:
· IRT_DSP_MENU_ITEM_TYPE_CHECK
· IRT_DSP_MENU_ITEM_TYPE_RADIO
· IRT_DSP_MENU_ITEM_TYPE_SELECTION
· IRT_DSP_MENU_ITEM_TYPE_TEXT
· IRT_DSP_MENU_ITEM_TYPE_INTEGER
· IRT_DSP_MENU_ITEM_TYPE_REAL
· IRT_DSP_MENU_ITEM_TYPE_VECTOR
According to respective widget type.

· RetType - The return type of this GuIrit extension function.

· NumOfParam – Must be 0 – there are no GUI panel parameters.
Also the following parameter:
· FuncIcon – NULL.

must be NULL in order to distinguish this function as a widget supporting function (recall that for regular modeling functions, the FuncIcon is used as the function icon).
All other parameters are irrelevant and are ignored.
Widget supporting function also gets the single parameter in C space, of type IrtMdlrFuncInfoClass, called FI, and returns none. For a widget supporting function, the pointer in the FI single parameter called Params holds a valid IrtDspFuncParamsStruct:

· A Boolean flag called Init - that will be true if the function was invoked due to initialization, and false - if it was invoked due to some changes in the widgets’ value.
· A union, called ParamsTypes to get/set the widget’s value. ParamsTypes contains the following types:
1. bool BoolVal (supports checkbox widgets).
2. int IntVal (supports radiobox widgets and spin controls for integer values).
3. IrtRType RealVal (supports spin controls for real values).
4. char StrVal[IRIT_LINE_LEN_LONG] (supports choice controls and text control).
5. IrtVecType VecVal (supports 3 spin controls for 3 real values).
6. const char * const *Selections (supports choice controls).
If the function is invoked due to initialization (during the widget construction), it has to return the default values of the input widget, via the ParamsTypes union, according to the widget type:
1. For a checkbox – set BoolVal with true / false.

2. For a radiobox – set IntVal with the initial radio item selection index value.
3. For a choice – set Selections with a pointer to a static (in dll space) array of strings with which to initialize the control.
4. For a textctrl – set StrVal with the default text value.
5. For a spinctrl - set IntVal with the default integer value.

6. For a real spinctrl – set RealVal with the default real value.

7. For a vector (3 real spinctrls) – set VecValwith 3 default real values.

If the function is invoked due to some end-user changes in the widget’s value(s), that value(s) are fetched via ParamsTypes union, in the following way:
1. For a checkbox – get BoolVal value.

2. For a radiobox – get IntVal value.
3. For a choice – get StrVal text value.
4. For a textctrl – get StrVal text value.

5. For a spinctrl - get IntVal value.

6. For a real spinctrl – get RealVal value.

7. For a vector (3 real spinctrls) – get VecVal real values.

For example, a selection widget supporting function is provided in the GuIritDllPrims dll extension, named "IrtMdlrPrimMenuType". This function sets the type that primitives are constructed as. Here is this complete function entry in the FunctionTables, copied verbatim from GuIritDllPrims.cpp:

IRT_DSP_STATIC_DATA IrtMdlrFuncTableStruct PolyPrimFunctionTable[] = {

 { 0, NULL, "IRT_MDLR_PRIM_MENU_TYPE", ”Primitive Type”,
 "Primitive Type Setting", "Sets the type that primitives are constructed as.\nType can be polygonal primitive, surface primitive, or model primitive.",

IrtMdlrPrimMenuType, NULL, (int) IRT_DSP_MENU_ITEM_TYPE_SELECTION, IRT_MDLR_NO_EXPR, 0, IRT_MDLR_PARAM_DONT_CARE,

 { },

 { },

 { },

 { } },
where:

· 0 – Ignore (used internally to allocate a unique numeric ID to the function).

· IconExample – has to be NULL (irrelevant for widget supporting functions).

· "IRT_MDLR_PRIM_MENU_TYPE" – A unique name of the function as will be referenced from within GuIrit. Binding to key/mouse/menu/toolbar will be using this name that must be unique.
· ”Primitive Type”, "Primitive Type Setting", "Sets the type that primitives are constructed as.\nType can be polygonal primitive, surface primitive, or model primitive." – The short, medium, and long description of the function. The long description will be placed as a tooltip of the menu tab widget for that function.
· IrtMdlrPrimMenuType – The name of the C function to invoke - the function that implements this extension.
· (int) IRT_DSP_MENU_ITEM_TYPE_SELECTION – The type of this function (Parameter value of the function is fetched from a selection widget).
· NULL – Optional. Can be NULL. The name of the C function to invoke to synthesize a (Python, Irit) script representation to this function using GuIritMdlrDllSIPrintf.
· IRT_MDLR_PARAM_NONE – Control flags are irrelevant.
· IRT_MDLR_NO_EXPR – The return type of this GuIrit extension function.
· 0, IRT_MDLR_PARAM_DONT_CARE – GUI panel parameters - irrelevant.
· {} – GUI panel parameters types - irrelevant.
· {} – GUI panel parameters initial/Default values – irrelevant.
· {} – Names of the GUI panel parameters – irrelevant.
· {} – A longer description of the parameters to be used as tool tips- irrelevant.
The IrtMdlrPrimMenuType function is called during the widget construction in order to initialize the selection control with array of strings. In our example the array contains primitives types: polygonal primitive and surface.

Here is the relevant code from IrtMdlrPrimMenuType function:

 …
 /* Get default value of the menu tab input widget. */

 if (FI -> Params -> Init) {

FI -> Params -> ParamsTypes.Selections = (char **) IrtMdlrMenuPrimType;

 }
…
Note – IrtMdlrMenuPrimType array is declared and initialized at the beginning of GuIritDllPrims.cpp:
IRT_DSP_STATIC_DATA const char * const

 IrtMdlrMenuPrimType[] = {"Polygonal", "Surface", "Model", NULL };
When the end-user changes the widget’s selection and selects one of above primitives types, the IrtMdlrPrimMenuType function is invoked and the selected type is fetched via StrVal under the ParamsTypes union, the selected type is converted to an integer as:
polygonal primitive - 0

surface primitive - 1

model primitive – 2

and is passed to Irit core function that set to selected type.

Here is the relevant code from IrtMdlrPrimMenuType function:
 int i,

 PrimType = 0;

 /* Get default value of the menu tab input widget. */

 if (FI -> Params -> Init) {

…
 }

 else {

for (i = 0; i < GUIRIT_DLL_PRIMS_NUM_OF_TYPE_CHOICES; i++) {

 if (stricmp(FI -> Params -> ParamsTypes.StrVal,

IrtMdlrMenuPrimType[i]) == 0) {

PrimType = i;

break;

 }

}

/* Call function with menu tab input widget value. */

PrimSetGeneratePrimType(PrimType);

 }
Each function (modeling or widget) can fetch/update the parameter values of the GUI's widgets, by invoking specific support functions in the Dll GuIrit interface. The function GuIritDllGetMenuParameter to get the widget's value, and the function GuIritDllSetMenuParameter to set the widget's value.
The widget's function name must be passed by the caller to these routines , along with a parameter of the proper type ,by reference. The function type is known from the function table.

Each function can also enable/disable the GUI's widget by invoking the function GuIritMdlrDllEnableMenuParameter.

5. Adding a Guirit DLL extensions’ support function
We briefly describe here the steps necessary to add a new support function to the GuIrit Dll extension protocol. Make sure your added support function is accepted by the developers of GuIrit and will become part of future GuIrit distributions or you will risk the need to repeat this process every time a new version of GuIrit is released. We assume the new function to be added is to be called 'NewFunc'. The process involves three main steps:

1. Updating Modeler/IrtMdlr.{h|cpp} (This will hold the function's implementation):

· Create a new static function IrtMdlrClass::NewFunc in the IrtMdlr.{h|cpp}.

· In IrtMdlr.h, increment IRIT_MDLR_VERSION by 1 as you are about to add/remove/modify the IrtMdlrCallBackStruct interface. This, as old GuIrit Dll Extensions are not likely to work anymore, without a recompilation.

2. Updating Modeler/IrtMdlrDll.{h|cpp} (GuIrit side of GuIrit DLL extension):

· Create a new entry in the IrtMdlrCallBackStruct that calls IrtMdlrClass::NewFunc, in both IrtMdlrDll.{h|cpp}.
3. Updating GuIritDllExtensions.{h|cpp|def} (Dll side of GuIrit DLL extension):

· Create a new compatible function GuIritMdlrDllNewFunc that calls IrtMdlrClass::NewFunc, in GuIritDllExtensions.{h|cpp}.

· Add GuIritMdlrDllNewFunc to GuIritDllExtensions.def

Rebuild all GuIrit Dll Extensions as the support function’s table was modified.

6.
Making a dynamic local class

Some background: for some years, every function’s info class in a Guirit DLL had its (static) variables defined inside the class, statically. They had an initial values that were stored and used in the next time you generate that function. The problem was when one wished to create more than one instance of that class, like a sphere, simultaneously. Starting with the sphere center located at (0,0,0), you begin to edit its value and change its center to the value of (3,-2,4). The next sphere you wish to create, will take the values of the last instance you had recently created, instead of the initial/default values (So the value of the center will be (3,-2,4) and not (0,0,0) as wanted). Also, updating the 2nd instance will affect the 1st instance… That’s where the solution of dynamic classes like IrtMdlrLclDataClass comes in.
Building a dynamic local class for a DLL (example from GuIritDllCurves DLL):

1. Define an enum like the following, for all function infos in this class:

/* IDs into the IrtMdlrFuncTableStruct CurveEvalFunctionTable. */
enum {

 IRT_MDLR_CRV_DOMAIN_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_TAN_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_NRML_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_BINRML_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_CRVTR_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_INTER_FUNC_TABLE_ID,

 IRT_MDLR_CRV_EVAL_BLEND_FUNC_TABLE_ID
};

It’s best to name them after the IrtMdlrFuncTableStruct’s StrId, with the suffix of _FUNC_TABLE_ID as a convention. Also, place the definition of the enum below the const int of FUNC_TABLE_SIZE.
2. We now define a LclData class for every function-info (FI) in that table, at the beginning of the file, and below all includes. If there are char * or enums that have to be defined earlier, then it’s okay to define the LclData below them.
For example
class IrtMdlrCrvEvalVectorLclClass : public IrtMdlrLclDataClass {

 public:

IrtMdlrCrvEvalVectorLclClass(const IrtMdlrFuncTableStruct *FuncTbl):

 IrtMdlrLclDataClass((char *) FuncTbl -> ParamDefVals[0]),

 CrvExpr(),

 Parameter(0.0),

 UnitVec(TRUE)

{

 ParamVals[1] = (void *) &CrvExpr;

 ParamVals[2] = (void *) &Parameter;

 ParamVals[3] = (void *) &UnitVec;

}

IrtMdlrObjectExprClass CrvExpr;

IrtRType Parameter;

CagdBType UnitVec;

};

As you can see, the class name is IrtMdlr<STR_ID_OF_FI>LclClass, as a convention. Always inherit from IrtMdlrLclDataClass, when creating a dynamic LclData instances of a DLL function. Also, the constructor of IrtMdlrLclDataClass is passed a parameter of FuncName. In case it exists, it’s the same code as above, with FuncTbl at index 0. Otherwise, we pass nothing.

Then, at the bottom on the class, we define the local data of the function info. For example, CagdBType UnitVec is the 3rd param val inside the table. It was In the constructor, the default/inital value are initialized, like UnitVec(TRUE).

The ParamVals are the reference to the local data of the function info class. Their goal is to deal with user input, process it, store in GuIrit, display and more, defined throughout all GuIrit DLLs. You need to allow them to reference the local data, so they can do all that is described above. To do so, you need the address of the local variable (in most cases). Primitives, IrtMdlrObjectExprClass, IrtMdlrSelectExprClass and strings require the address of the variable so the DLLs will fetch the data correctly. In cases like GuIritMdlrDllListValsClass, you initialize it as a class, so you simply pass the pointer as the reference, without the & operator.
3. Use the local data class. In the DLL function body
, you need to first declare:
 IrtMdlrCrvEvalLclClass

*LclData = NULL;

Then, you need to allocate the local data class, as follows:
 if (FI -> CnstrctState == IRT_MDLR_CNSTRCT_STATE_INIT) {

FI -> LocalFuncData(new IrtMdlrCrvEvalLclClass(

 &CurveEvalFunctionTable[IRT_MDLR_CRV_EVAL_FUNC_TABLE_ID]));

return;

 }

The LclData should be allocated in the IRT_MDLR_CNSTRCT_STATE_INIT event. You store it in the FI with the method LocalFuncData. The example with the table relates to stage 1 with the enum, if need be (Method has a function name).

The next step is fetching the local data class:
 if ((LclData = dynamic_cast<IrtMdlrCrvEvalLclClass *>

 (GuIritMdlrDllGetInputParameters(FI))) == NULL)

return;

The method GuIritMdlrDllGetInputParameters ensures that all function info’s method local parameters are fetched and returned in LclData. LclData is returned upon success, or NULL in case one of the function parameters is missing/undefined. The dynamic cast is to ensure that it is the right info function class. Be sure to use the correct class!

Data in the LclData should be referenced directly, like LclData -> UnitVec.

Some Notes:
1. GuIrit DLLs cover many distinct parameters, so you can always look for similar examples that might fit your case there.

2. You DLL should have no static variates (or otherwise it will not be re-entrant).
3. Some function info classes have mouse callbacks and more. To handle it, you will have to use LocalFuncData() which returns the local data class, without fetching all parameters (As you already did).

4. In some cases, GuIritMdlrDllGetInputParameters will return NULL but you still want to continue, as not all your local data is defined in a chronological flow inside the code. There, you will use again the LocalFuncData() to get the LclData class, even when GuIritMdlrDllGetInputParameters returned NULL. Use this behavior with caution.
5. There are other statics like masks and menu descriptions. If they are const static variables, this is fine.
6. There are different types of parameters - make sure to look for examples that fit the case of your parameter:

· A primitive like Boolean/Integer only requires the address of the variable (an & operator).
· An IrtVecType or an IrtPtType require a copy method.
· There is also IrtMdlrSelectExpr that has both default index and char *. IrtMdlrMultiSelectExpr is similar.
· IrtMdlrObjectExprClass is generic object to handle objects likes IritObj/Curve/Surface/Trivariate, etc.
�????

�Does this what you meant?

�????

_1338983366.ppt

GuIrit

Other libraries

(wxWidgets,

Open GL,

etc.)

GuIrit Dll

Extension Support

(GuIritDllExtensions.dll)

Irit Core

(irit.dll)

GuIrit Dll

Extensions

(GuIritDllBoolOp.dll,

GuIritDllCurves.dll,

GuIritDllPrims.dll,

GuIritDllSurfaces.dll,

etc.)

GuIrit Dll

Extensions

(GuIritDllBoolOp.dll,

GuIritDllCurves.dll,

GuIritDllPrims.dll,

GuIritDllSurfaces.dll,

etc.)

GuIrit Dll

Extensions

(GuIritDllBoolOp.dll,

GuIritDllCurves.dll,

GuIritDllPrims.dll,

GuIritDllSurfaces.dll,

etc.)

GuIrit Dll

Extensions

(GuIritDllBoolOp.dll,

GuIritDllCurves.dll,

GuIritDllPrims.dll,

GuIritDllSurfaces.dll,

etc.)

