
Cost-Effective Hyper-Resolution for
Preprocessing CNF Formulas

Roman Gershman and Ofer Strichman

Technion, Haifa, Israel
gershman@cs.technion.ac.il

ofers@ie.technion.ac.il

Abstract. We present an improvement to the Hypre preprocessing al-
gorithm that was suggested by Bacchus and Winter in SAT 2003 [1].
Given the power of modern SAT solvers, Hypre is currently one of the
only cost-effective preprocessors, at least when combined with some mod-
ern SAT solvers and on certain classes of problems. Our algorithm, al-
though it produces less information than Hypre, is much more efficient.
Experiments on a large set of industrial Benchmark sets from previ-
ous SAT competitions show that HyperBinFast is always faster than
Hypre (sometimes an order of magnitude faster on some of the bigger
CNF formulas), and achieves faster total run times, including the SAT
solver’s time. The experiments also show that HyperBinFast is cost-
effective when combined with three state-of-the-art SAT solvers.

1 Introduction

Given the power of modern SAT solvers, most CNF preprocessing algorithms are
mostly not cost-effective time-wise. Since these solvers are so effective in focusing
on the important information in a given CNF, it is particularly challenging to
find the right balance between the amount of effort invested in preprocessing
and the quality of information gained, in order to positively impact the overall
solving time.

The best currently available preprocessor that we are aware of is Hypre in
[1], which is cost-effective when combined with some of the modern SAT solvers,
although it fails to be so with very large CNF files. We present a new prepro-
cessing algorithm HyperBinFast for CNF formulas which is an improvement
of the Hypre algorithm. Our algorithm makes the preprocessing of CNF for-
mulas cost-effective time-wise by relaxing the optimality constraints presented
in the original algorithm. Experiments show that giving up optimality generally
improves the overall solving time (preprocessing + SAT). Another advantage of
HyperBinFast is that it is implemented as an anytime algorithm that can be
stopped either according to a predetermined timeout or according to a heuristic
function that decides when to stop it by measuring its progress. Due to limit
of space we refer the interested reader to the full version of this article [2] for a
more detailed description of this heuristic, as well as more experimental results,
comparison to previous work and a detailed comparison to Hypre.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 423–429, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

424 R. Gershman and O. Strichman

2 Definitions and Motivation

Definition 1 (Binary Implications graph). Given a CNF formula ϕ with a
set of binary clauses B, a Binary Implications Graph is a directed graph G(V,E)
such that v ∈ V if and only if v is a literal in ϕ, and e = (u, v) is an edge if and
only if B contains a clause (u, v).

A Binary Implications Graph allows us to follow implications through binary
clauses. Note that for each binary clause (u, v), both (u, v) and (v, u) are edges
in this graph. Thus, the total number of edges in the initial (before further
processing) graph is twice the size of B. This is what we refer to as the symmetry
of Binary Implications Graphs. Binary Implication Graphs are Static and are
not related to the standard implication graphs that describe the progress of Unit
Propagation (UP - also known as BCP).

Definition 2 (Binary Transitive Closure of a literal). Given a literal v, a
set of literals denoted by BTC(v) is the Binary Transitive Closure of v if it con-
tains exactly those literals that are implied by v through the Binary Implications
Graph.

Definition 3 (Failed literal). A literal v is called a Failed Literal if setting
its value to TRUE and applying UP causes a conflict.

Definition 4 (Propagation closure of a literal). Given a non-failed literal
u, a set of literals denoted by UP (u) is the Propagation closure of u if it contains
exactly those literals that are implied through UP by u in the given CNF (not
only the binary clauses).

It is easy to see that BTC(v) ⊆ UP (v) for every literal v, because UP (v) is not
restricted to what can be inferred from binary clauses. Note that v ∈ UP (u)
implies that u → v and hence v → u, but it is not necessarily the case that
u ∈ UP (v), due to the limitations of UP. For example, in the set of clauses
(x∨y), (x∨z), (y∨z∨w), it holds that x → w and hence w → x, but UP detects
only the first direction. It disregards w → x because w does not invoke any unit
clause. Hence, UP lacks the symmetry of Binary Implications Graphs.

3 The HyperBinFast Algorithm

Algorithm HyperBinFast iterates over all root nodes in the Binary Implica-
tions Graph (roots(v) denotes the set of all ancestor roots of v in such a graph).
It has two main stages. In the first stage (lines 4 - 5) it iteratively finds equal
literals (by detecting SCCs and unifying their vertices to a single ‘represent-
ing literal’), propagates unit clauses, and simplifies the clauses in the formula.
Simplification in this context corresponds to substituting literals by their rep-
resentative literal in all clauses (not only binary), removing literals that are

Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas 425

HyperBinFast
1: Mark all root vertices as weak;
2: while there are weak roots, unit clauses, or binary cycles do
3: while there are unit clauses or binary cycles do
4: Detect all SCCs and collapse each one of them to a single node;
5: Propagate all unit clauses and simplify all clauses accordingly;
6: For each new binary clause (u, v) mark as weak roots(u) and roots(v);
7: Choose a weak root node v;
8: FailedLiteral =FastVisit (v);
9: Undo assignments caused by BinaryWalk and clear nQueue;

10: if FailedLiteral �= undefined then
11: Add unit clause (FailedLiteral);
12: Mark v as strong;

FastVisit (Literal v)
1: res ← BinaryWalk (v, NULL);
2: if res �= undefined then
3: return res
4: while !nQueue.empty() do
5: Literal p ← nQueue.pop front();
6: for each n-ary clause ∈ watched(p) do � n > 2
7: if clause is conflict then
8: Literal fUIP ← FindUIP (clause);
9: return fUIP ;

10: else if clause is unit then
11: Literal toLit ← undefined literal from clause.
12: Literal fromLit ← FindUIP (clause \ {toLit});
13: Add clause (fromLit, toLit)
14: Mark roots(toLit) ∪ roots(fromLit) as weak
15: res ← BinaryWalk (toLit, (fromLit, toLit));
16: if res �= undefined then
17: return res
18: return undefined;

BinaryWalk (Literal t, Antec clause C)
1: if value(t)=True then
2: return undefined;
3: if value(t)=False then
4: return t;
5: value(t) ← TRUE;
6: antecedent(var(t)) ← C;
7: Put t on assignment stack;
8: Put t into nQueue;
9: for each binary clause (t, u) do

10: res ← BinaryWalk (u, (t, u));
11: if res �= undefined then
12: return res;
13: return undefined;

FindUIP (Literal set S)
1: mark all variables in S;
2: count ← |S|;
3: while count > 1 do
4: v ← latest marked variable in the

assignment stack
5: unmark v; count −−;
6: Let (u, L) be antecedent clause of

v, s.t. var(L) = v.
7: if var(u) not marked then
8: mark var(u); count + +;
9: res ← last marked literal in assign-

ment stack.
10: unmark var(res);
11: return res;

426 R. Gershman and O. Strichman

evaluated to false and removing satisfied clauses. The simplification may result
in shortening of some n-ary clauses to binary clauses, which change the Binary
Implications Graph. In line 6 we perform a restricted version of what Hypre
does in such cases: while Hypre marks as weak (i.e. nodes that should still be
processed) all ancestor nodes, HyperBinFast only marks root ancestor nodes.
Further, while Hypre invokes this process every time an n-ary clause is being
shortened, HyperBinFast only does so for clauses that become binary. The
reduced overhead due to these changes is clear. In the second stage (line 8), we
invoke FastVisit for some weak root node, a procedure that we will describe
next. FastVisit can change the graph as well, so HyperBinFast iterates until
convergence.

Computing the Binary Transitive Closure. Before describing FastVisit,
we concentrate on the auxiliary function BinaryWalk, which FastVisit calls
several times. The goal of BinaryWalk is to mark all literals that are in BTC(v)
or return a failed literal, which can be either v itself or some descendant of v.
It also updates a queue, called nQueue with those literals in BTC(v) for future
processing by FastVisit. BinaryWalk performs DFS from a given literal on
the Binary Implications Graph. In each recursive-call, if t is already set to false
(i.e. t is already set to true in the current call to FastVisit), it means that
there is a path in the binary implication graph from t to t, and hence t is a failed
literal. This is a direct consequence of the following lemma:

Lemma 1. In a DFS-traversal on a Binary Implications Graph from a literal u
that marks all nodes it visits, if when visiting a node t another node t is already
marked, and this is the first time such a ‘collision’ is detected, then t

∗→ t.

When BinaryWalk detects such a failed literal it returns t all the way out (due
to lines 11-12) and back to FastVisit and then to HyperBinFast.

The other case is when t does not have a value yet. In this case BinaryWalk
sets it to true and places it in nQueue, which is a queue of literals to be
propagated later on by FastVisit. It also places t in the (global) assignment
stack, and stores for var(t) its antecedent clause (the clause that led to this
assignment), both for later use in FindUIP.

From Binary Transitive Closure to Propagation Closure. We now de-
scribe FastVisit. Recall that FastVisit is invoked for each root node in the
Binary Implications Graph. FastVisit combines Unit Propagation with Binary
Learning based on single assignments, i.e. learning of new clauses by propagating
a single decision at a time. It relies on the simple observation that if u ∈ UP (v)
then v → u. It is too costly to add an edge for every such pair v, u, because this
corresponds to at least computing the transitive closure [1]. Since our stated
goal is to form a binary graph in which UP (v) = BTC(v) for each root node,
it is enough to focus on a vertex u only if u ∈ UP (v) but u �∈ BTC(v). Fur-
ther, given such a vertex u, although adding the edge v → u achieves this goal,
we rather find a vertex w, a descendant of v that also implies u, in the spirit of
the First Unique-Implication-Point (UIP) scheme. The FindUIP function called

Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas 427

by FastVisit can in fact be seen as a variation of the standard algorithm for
finding first UIPs [4]: unlike the standard usage of such a function in analyzing
conflicts, here there are no decision levels and the clauses are binary. On the
other hand it can receive as input an arbitrary set of assigned literals, and not
just a conflict clause.

In line 4 FastVisit starts to process the literals in nQueue. For each literal p
in this queue, it checks all the n-ary clauses (n > 2) watched by p. As usual, each
such clause can be of interest if it is either conflicting or unit. If it is conflicting,
then FastVisit calls FindUIP, which returns the first UIP causing this conflict.
This UIP is a failed literal and is returned to HyperBinFast, which adds its
negation as a unit clause in line 11. If the processed clause is a unit clause,
the unassigned literal, denoted by toLit, is a literal implied by v that is not
in BTC(v) (otherwise it would be marked as true in BinaryWalk). In other
words, toLit ∈ UP (v) and toLit �∈ BTC(v), which is exactly what we are looking
for. At this point we can add a clause (v, toLit) but rather we call FindUIP,
which returns a first UIP denoted by fromLit. The clause (fromLit, toLit)
is stronger than (v, toLit) because the former also adds the information that
tolit → fromlit. Note that this is an unusual use of this function, because
clause is not conflicting. Because the addition of this clause changes the Binary
Implications Graph, we need to mark as weak all the ancestor nodes of fromLit
and of toLit, and to continue with BinaryWalk from toLit. This in effect
continues to compute BTC(v) with the added clause.

4 Experiments, Conclusions and Future Research

Table 1 shows experiments on an Intel 2.5Ghz computer with 1GB memory
running Linux. The benchmark set is comprised of 165 industrial instances used
in various SAT competitions. The number in brackets for each benchmark set
denotes the number of instances. The global timeout for each instance was set to
3000 seconds. The timeout for HyperBinFast was set to 300 seconds, and for
Hypre was set to 3000 seconds (Hypre is not implemented as anytime, and only
full preprocessing is allowed). The timeout for the SAT solver was dynamically
reduced to 3000 minus the time spent during preprocessing. All times in the
table include preprocessing time when relevant. We count each failure as 3000
seconds as well. We used our experimental solver HaifaSat which participates in
the SAT05 competition and Siege v1 [3]. The full version of this article includes
also a detailed comparison to zChaff 2004. Briefly, zChaff’s total run-time is
212,508 sec. (56 fails) and with HyperBinFast it is 179,997 (44 fails).

The table shows that: 1) HyperBinFast helps each of the tested solvers to
solve more instances in the given time bound on average 2) When the instance
is solvable without HyperBinFast, still HyperBinFast typically reduces the
overall run time 3) Whenever HyperBinFast does not help, its overhead in
time is relatively small 4) It is very rare that an instance can be solved without
HyperBinFast but cannot be solved with HyperBinFast. 5) On average, the
total gain in time is about 20-25% relative to the pure configuration. 6) Some-

428 R. Gershman and O. Strichman

Table 1. Run-times (in seconds) and failures (denoted by ‘F’) for various SAT solvers
with and without HyperBinFast. Times which are smaller by 10% than in competing
configurations with the same SAT solver are bolded. Failures denoted by * are partially
caused by bugs in the SAT solver

SAT solver → HaifaSat Siege v1

Preprocessor → — H-B-Fast Hypre — H-B-Fast Hypre

Time F Time F Time F Time F Time F Time F

01 rule(20) 19,172 2 7,379 0 10,758 1 20,730 4 11,408 1 5,318 0

11 rule 2(20) 22,975 6 7,491 0 21,247 0 29,303 8 17,733 2 20,178 1

22 rule(20) 27,597 8 22,226 5 16,825 2 31,839 10 29,044 9 17,510 3

bmc2(6) 1,262 0 81 0 163 0 3,335 1 85 0 156 0

CheckerI-C(4) 682 0 902 0 989 0 4,114 0 3,541 0 2,492 0

comb(3) 4,131 1 4,171 1 4,056 1 5,679 1 6,027 1 4,439 1

f2clk(3) 4,059 1 4,060 1 3,448 1 6,105 2 6,063 2 5,078 1

fifo8(4) 1,833 0 554 0 1,756 0 5,555 1 2,420 0 1,159 0

fvp2(22) 1,995 0 2,117 0 3,288 0 1,860 0 2,009 0 2,431 0

hanoi(5) 131 0 285 0 119 0 357 0 1,231 0 802 0

hanoi03(4) 427 0 533 0 979 0 6,026 2 6,028 2 6,014 2

IBM02(9) 3,876 0 5,070 0 11,072 3 10,442 4 7,881 0 12,653 3

ip(4) 203 0 172 0 365 0 630 0 548 0 349 0

pipe03(3) 1,339 0 1,266 0 1,809 0 2,006 0 1,275 0 1,822 0

pipe-sat-1-1(10) 3,310 0 5,147 0 27,130 10 2,445 0 5,249 0 30,029 10

sat02(9) 17,330 4 14,797 4 16,669 4 24,182 7 18,843 5 17,662 4

vis-bmc(8) 13,768 3 10,717 2 10,139 2 10,449 2 6,989 1 5,715 0

vliw unsat 2.0(8) 19,425 5 19,862 6 20,421 6 16,983 6 17,891 6 20,375 6

w08(3) 2,681 0 1,421 0 2,899 0 4,387 1 1,711 0 2,726 0

Total(165) 146,194 30 108,251 19 154,132 30 186,426 49 145,978 29 156,910 31

times HyperBinFast is weaker than Hypre (it does not simplify the formula
enough), so the SAT solver fails on the corresponding instance but succeeds after
applying Hypre. 7) With HaifaSat, Hypre is not cost-effective, neither in the
total number of failures or the total run time, while HyperBinFast reduces
HaifaSat’s failures by 35% and reduces its total solving time by 25%.

Preprocessing Vs. SAT : For the above benchmark, it took HaifaSat 97,909 sec-
onds after HyperBinFast and only 54,567 seconds after Hypre, which indi-
cates that indeed the quality of the CNF generated by Hypre is better, as
expected. But these numbers may mislead because, recall, the timeouts for the
two preprocessors are different, which, in turn, is because HyperBinFast is an
anytime algorithm. In Table 2 we list several benchmarks for which both pre-
processors terminated before their respective timeouts, together with the time
it took the preprocessor and then HaifaSat to solve them. Therefore, this ta-
ble shows performance of HyperBinFast comparing to Hypre without taking
into consideration the anytime aspect. To the extent that these instances are
representative, it can be seen that typically the SAT solving time is longer after

Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas 429

Table 2. Few representative single instances for which both Hypre and HyperBin-
Fast terminated before their respective (different) timeouts. The SAT times refer to
HaifaSat’s solving time. It can be seen that typically the solving time is longer after
HyperBinFast, but together with the SAT solver time it is more cost effective than
Hypre

Benchmark: Hypre SAT HyperBinFast SAT

01 rule.k95.cnf 377 1679 4 1504
11 rule2.k70.cnf 1387 47 71 285
22 rule.k70.cnf 671 251 51 1410
fifo8 400.cnf 164 1226 12 309
7pipe.cnf 651 258 147 416
ip50.cnf 109 82 6 79
w08 14.cnf 1231 5 267 298

Total: 4590 3548 558 4301

HyperBinFast, but together with the SAT solver time it is more cost effective
than Hypre.

Conclusions and future research. Our preprocessor HyperBinFast is a
compromise between the original Hypre and a pure SAT solver: it tries to
benefit from the preprocessing when possible while reducing the overhead when
it is not effective. With HyperBinFast, preprocessing is generally cost-effective
when combined with modern SAT solvers, as is evident from our experiments
with 165 industrial CNF instances from previous SAT competitions. We pointed
to two directions for future research: develop more efficient dynamic strategies for
determining the amount of time spent for preprocessing, and make preprocessing
decide on the set of variables from which it begins its traversal of the Binary
Implications Graph (and not just choose all the root nodes as we do now). This
concept can be generalized to preprocessing in general: while SAT solvers focus
on the semantics of the formula, that is, they attempt to find the ‘important’
variables, preprocessors focus on the syntactical characteristics of the formula,
and are therefore much more sensitive to its size. Hence, attempting to build a
semantic preprocessor seems like a worthwhile direction to pursue next.

References

1. F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equal-
ity reduction. In SAT2003, volume 2919 of Lect. Notes in Comp. Sci., pages 341–355,
2003.

2. Roman Gershman and Ofer Strichman. Cost-effective hyper-resolution for pre-
processing cnf formulas(full version), 2005. www.cs.technion.ac.il/∼gershman/
papers/sat05 full.pdf.

3. L.Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University, 2004.

4. J.P.M. Silva and K.A. Sakallah. GRASP - a new search algorithm for satisfiability.
Technical Report TR-CSE-292996, Univerisity of Michigen, 1996.

	Introduction
	Definitions and Motivation
	The PD1OT1cmrcmrmmnnnscHyperBinFast Algorithm
	Experiments, Conclusions and Future Research

