NONEQUIVALENT $q$-ARY PERFECT CODES

TUVI ETZIONI

Abstract. We construct a set of $q^n$ nonequivalent $q$-ary perfect single error-correcting codes of length $n$ over $GF(q)$ for sufficiently large $n$ and a constant $c = \frac{1}{q} - \epsilon$. The construction is based on a small subcode $A$ of the $q$-ary Hamming code of length $n$ for which $A$ and $q - 1$ of its cosets $A_1, \ldots, A_{q - 1}$ cover the same subset $V$. We show a few isomorphic and nonisomorphic ways in which $A$ can be chosen, and we prove the uniqueness of these ways to choose $A$.

Key words. Hamming codes, isomorphism, nonequivalent codes, perfect codes

AMS subject classifications. 94B, 05B

1. Introduction. Let $F_q^n$ be a vector space of dimension $n$ over $GF(q)$. A subset of $F_q^n$ is a $q$-ary code of length $n$. Two codes $C_1, C_2 \subset F_q^n$ are said to be isomorphic if there exists a permutation $\pi$ such that $C_2 = \{\pi(c) : c \in C_1\}$. They are said to be equivalent if there exists a vector $v$ and a permutation $\pi$ such that $C_2 = \{v + \pi(c) : c \in C_1\}$. The Hamming distance between vectors $u, v \in F_q^n$, denoted $d(u, v)$, is the number of coordinates in which $u$ and $v$ differ. Without loss of generality (w.l.o.g.), we shall assume, unless stated otherwise, that the all-zero vector is in $C$.

A code $C$ of length $n$ is perfect if for some integer $r \geq 0$ every $x \in F_q^n$ is within distance $r$ from exactly one codeword of $C$. The study of perfect codes is one of the most fascinating subjects in coding theory. It is well known [3] that the only parameters for nontrivial perfect codes are those of the two Golay codes and the Hamming codes. The Hamming codes have length $n_m = \frac{2^m - 1}{q - 1}$, $m \geq 2$, and $r = 1$. They are single error-correcting codes, and henceforth when we use the words “perfect code” we will refer to codes with $r = 1$ and length $n_m$. The Hamming codes are the only linear codes with these parameters [3, p. 77]. For $q = 2$, constructions for nonequivalent perfect codes were presented by Phelps [5], [6], Etzion and Vardy [1], and others. For other $q$’s, constructions of nonlinear codes were presented by Schönheim [9], Lindström [2], and Mollard [4]. Nonequivalent perfect codes were generated by Phelps [7]. The construction for $q = 2$ given in Etzion and Vardy [1] has the advantage of obtaining the largest known set of nonequivalent perfect codes. It is also possible to obtain from the construction of [1] perfect codes with other properties as different ranks [1] and different kernels [8]. In this paper we generalize the construction of Etzion and Vardy [1] to any alphabet of size $q$, where $q$ is a power of a prime.

In §2 we present a construction of a set of $q^{\frac{n^2 - 1}{q - 1} \cdot \log_q(n + 1)}$ distinct perfect codes of length $n$. This set contains at least $q^{\frac{n^2 - 1}{q - 1} \cdot \log_q(n + 1)}$ nonequivalent codes. This is the largest known set of nonequivalent perfect codes. The construction is based on a small subcode $A$ of the $q$-ary Hamming code for which $A$ and $q - 1$ of its cosets $A_1, \ldots, A_{q - 1}$ cover the same subset $V$. This set $A$ is important

* Received by the editors December 5, 1994; accepted for publication (in revised form) August 25, 1995. This research was supported in part by the EPSRC of the United Kingdom under grant GR/K38847.
† Computer Science Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom (etzion@cs.technion.ac.il). The author is on leave of absence from the Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel.

413
in constructions of perfect codes with different ranks [1] and different kernels [8]. In §3 we show a few isomorphic and nonisomorphic ways in which this set $A$ can be chosen, and we prove the uniqueness of the ways in which $A$ is chosen.

2. Construction for nonequivalent perfect codes. The parity check matrix of the Hamming code of length $n_{m+1} = \frac{q^{m+1}-1}{q-1} = q^m + q^{m-1} + \cdots + q + 1$, over $GF(q)$, consists of $n_{m+1}$ pairwise linear independent column vectors of length $m+1$ over $GF(q)$. We will take the $n_{m+1}$ column vectors of the form $(0 \cdots 01x_1 \cdots x_r)^T$ for all $0 \leq r \leq m$, where for $x_i \in GF(q)$, $1 \leq i \leq r$. Let $\alpha$ be a primitive element in $GF(q)$. Then the $2 \times (q+1)$ parity check matrix of the Hamming code of length $n_2$ has the form

$$H_2 = \begin{bmatrix} 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & \alpha^0 & \alpha^1 & \cdots & \alpha^{q-2} \end{bmatrix},$$

and its $(q-1) \times (q+1)$ generator matrix has the form

$$G_2 = \begin{bmatrix} 1 & \alpha^q & \cdots & \alpha^{q-1} \\ 1 & \alpha^{q-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha & 0 & \cdots & -\alpha \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ X \\ 1 \end{bmatrix},$$

where $X$ is a $(q-1) \times q$ matrix.

Assume the Hamming code of length $n_m = \frac{q^{m-1}-1}{q-1} = q^{m-1} + \cdots + q + 1$ with $m \geq 2$ has the $m \times n_m$ parity check matrix $H_m$ of the form

$$H_m = \begin{bmatrix} 0 \\ \vdots \\ S_1 \\ S_2 \\ \vdots \\ S_{n_m-1} \\ 0 \\ 1 \end{bmatrix},$$

where the $S_i$'s are column vectors.

Also assume that the $(n_m - m) \times n_m$ generator matrix $G_m$ has the form

$$G_m = \begin{bmatrix} 1 & X & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 1 & 1 & 0 & X & \cdots & \cdots & \cdots & 0 \\ 1 & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & \vdots & \vdots & \vdots & \cdots & \cdots & \ddots & \vdots \\ 1 & \vdots & \vdots & \vdots & \cdots & \cdots & \cdots & X \\ \vdots & \vdots & \vdots & \vdots & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & F \end{bmatrix},$$
where $F$ is a $t \times n_m$ matrix with $t = (n_m - m) - (q - 1)^{n_m - 1}_{q} = n_m - 1 - m$.

Now, we generate the following $(m + 1) \times (n_m q + 1)$ parity check matrix $H_{m+1}$:

$$H_{m+1} = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
0 & S_1 & S_1 & \cdots & S_{n_m - 1} & S_{n_m - 1} & \cdots & S_{n_m - 1} \\
0 & 1 & \alpha^0 & \cdots & \alpha^{q-2} & 0 & \alpha^0 & \cdots & \alpha^{q-2} \\
1 & 0 & \alpha^0 & \cdots & \alpha^{q-2} & 0 & \alpha^0 & \cdots & \alpha^{q-2}
\end{bmatrix}$$

**Lemma 2.1.** $H_{m+1}$ is a parity check matrix of the Hamming code of length $n_m q + 1$.

**Proof.** Assume $H_m$ has all the $n$ column vectors of length $m$ of the form $(0 \cdots 0 x_1 \cdots x_r)^T$ for all $r$, $0 \leq r \leq m - 1$, where $x_i \in GF(q)$, $1 \leq i \leq r$. By induction starting from the basis $H_2$, we can easily prove that $H_{m+1}$ is a parity check matrix of the Hamming code of length $n_m q + 1$.

Now, let $G_{m+1}$ be the following $(n_m q - m) \times (n_m q + 1)$ matrix:

$$G_{m+1} = \begin{bmatrix}
1 & 0 & \cdots & \cdots & 0 \\
1 & x & 0 & \cdots & \cdots \\
0 & x & \cdots & \cdots & 0 \\
1 & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & x \\
1 & & & & \\
\end{bmatrix}$$

where $F'$ is some $t' \times (n_m q + 1)$ matrix; $t' = n_m - m$.

**Lemma 2.2.** The generator matrix of the Hamming code with parity check matrix $H_{m+1}$ has the form of $G_{m+1}$.

**Proof.** From the form of $H_2$ and $G_2$ it follows that the matrix

$$\begin{bmatrix}
0 & S & S & \cdots & S \\
1 & 0 & \alpha^0 & \alpha^1 & \cdots & \alpha^{q-2}
\end{bmatrix},$$

for any given column vector $S$, is orthogonal to the matrix

$$\begin{bmatrix}
1 & X \\
\vdots & \\
1 & 
\end{bmatrix}$$

Taking this fact into account the claim follows directly from the form of $H_{m+1}$ and $G_{m+1}$.

□
We say that a vector \( v \) covers the set \( U \) if for any \( u \in U \) we have \( d(v, u) \leq 1 \). A code \( C \) covers a set \( U \) if for every element \( u \in U \) there exists a codeword \( c \in C \) such that \( d(c, u) \leq 1 \). Let \( C(G) \) denote the code generated by a generator matrix \( G \).

**Lemma 2.3.** If \( G_{m+1}^{1} \) is the matrix consisting of the first \( n_{m}(q-1) \) rows of \( G_{m+1} \), then \( C(G_{m+1}^{1}) \) and \( (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \), \( j \geq 0 \), cover the same subset of \( F_{q}^{n_{m+1}} \).

**Proof.** Since \( G_{2} = G_{2}^{1} \) and \( C(G_{2}) \) is a perfect code, it follows that its coset \( (\alpha^{j}0 \cdots 0) + C(G_{2}) \) is also a perfect code and thus \( C(G_{2}^{1}) \) and \( (\alpha^{j}0 \cdots 0) + C(G_{2}^{1}) \) cover the same subset of \( F_{q}^{n+1} \). Let \( v = (\gamma: u_{1}, \ldots, u_{n_{m}}) \in C(G_{m+1}^{1}) \), where \( (\delta: u_{i}) \in C(G_{2}) \), \( u_{i} \in F_{q}^{n} \), \( \delta_{i} \in GF(q) \), and \( \gamma = \sum_{i=1}^{n_{m}} \delta_{i} \). This is the form of codewords from \( C(G_{m+1}^{1}) \) as follows from the form of \( G_{2} \) and \( G_{m+1}^{1} \). We will show that every vector which is covered by \( v \) is also covered by a codeword of \( (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \). Obviously, \( v + (\beta^{j}0 \cdots 0), \beta \in GF(q) \), is covered by \( v + (\alpha^{j}0 \cdots 0) \in (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \). So, we only have to show that any word of the form \( (\gamma: u_{1} \cdots u_{i-1} u_{i}' u_{i+1} \cdots u_{n_{m}}) \), where \( u_{i} \) and \( u_{i}' \) differ in exactly one position, is covered by a codeword of \( (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \). We know that the vector \( (\delta: u_{i}') \) is covered by a codeword \( v_{i}' \in (\alpha^{j}0 \cdots 0) + C(G_{2}) \) because \( (\alpha^{j}0 \cdots 0) + C(G_{2}) \) is a perfect code. Since \( (\delta: u_{i}) \in C(G_{2}) \) and since the minimum distance of \( C(G_{2}) \) is 3, it follows that a vector of the form \( (x: u_{i}') \) is not in \( C(G_{2}) \) and hence also not in \( (\alpha^{j}0 \cdots 0) + C(G_{2}) \). Therefore, \( v_{i}' = (\delta: u_{i}') \), where \( u_{i}' \) differs in exactly one position from \( u_{i} \) and in exactly two positions from \( u_{i} \). Since \( (\delta: u_{i}') \in (\alpha^{j}0 \cdots 0) + C(G_{2}) \), it follows that \( (\delta - \alpha^{j}2: u_{i}') \in C(G_{2}) \) and hence \( (\gamma - \alpha^{j}2: u_{1} \cdots u_{i-1} u_{i}' u_{i+1} \cdots u_{n_{m}}) \in C(G_{m+1}^{1}) \). Hence, \( (\gamma: u_{1} \cdots u_{i-1} u_{i}' u_{i+1} \cdots u_{n_{m}}) \) is covered by \( (\gamma: u_{1} \cdots u_{i-1} u_{i}' u_{i+1} \cdots u_{n_{m}}) \in (\gamma: u_{1} \cdots u_{i-1} u_{i}' u_{i+1} \cdots u_{n_{m}}) \in (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \). Thus, every vector which is covered by \( C(G_{m+1}^{1}) \) is also covered by \( (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \) and since \( C(G_{m+1}^{1}) \) and \( (\alpha^{j}0 \cdots 0) + C(G_{m+1}^{1}) \) have the same size the lemma follows. \( \Box \)

Now, we can write \( G_{m} \) as

\[
G_{m} = \begin{bmatrix} C_{m}^{1} \\
F \end{bmatrix}, \quad \text{where} \quad F = \begin{bmatrix} f_{1} \\
\vdots \\
f_{t} \end{bmatrix},
\]

where \( f_{i} \) is a \( 1 \times n \) matrix. Let \( c_{j}, 1 \leq j \leq q^{t} \), be the \( q^{t} \) codewords formed from \( F \).

By Lemma 2.3 we have that \( c_{j} + C(G_{m}^{1}) \) and \( (\alpha^{j}0 \cdots 0) + c_{j} + C(G_{m}^{1}) \) cover the same subset of \( F_{q}^{n_{m}} \).

**Lemma 2.4.** Given the vector \( (g_{1}, g_{2}, \ldots, g_{q^{t}}), g_{i} \in GF(q) \), \( 1 \leq i \leq q^{t} \), the code

\[
C = \bigcup_{i=1}^{q^{t}} ((g_{i}:0 \cdots 0) + c_{i} + C(G_{m}^{1}))
\]

forms a \( q \)-ary perfect code.

**Proof.** If \( g_{i} = 0 \) for all \( i \), then \( C \) is the Hamming code. The lemma now follows from the fact that \( c_{i} + C(G_{m}^{1}) \) and \( (g_{i}:0 \cdots 0) + c_{i} + C(G_{m}^{1}) \) cover the same subset of \( F_{q}^{n_{m}} \). \( \Box \)

Let \( \Omega(n_{m}) \) be the set of perfect codes constructed in Lemma 2.4. Obviously \( \left| \Omega(n_{m}) \right| = q^{t} = q^{n_{m}-1+1} = q^{n_{m}-1+1-\log_{2}(n_{m}(q-1))}. \) Given a perfect code \( C \) of length \( n_{m} \), there are at most \( q^{n_{m}2^{\log_{2}(n_{m}2^{n_{m}2^{n_{m}}})}} \) different perfect codes equivalent to \( C \). Hence we have Theorem 2.5.
Theorem 2.5. \( \Omega(n_m) \) contains at least \( q^{\frac{n_m-1}{q} + 1 - \log_q(n_m(q-1)+1) - n_m(1+\log_q n_m)} \) nonequivalent perfect codes.

A more precise enumeration will slightly improve the result of Theorem 2.5. Finally, we would like to mention that given a perfect code \( C \) one might permute symbols independently in each position to obtain another perfect code. If we consider these perfect codes as equivalent we will have that there are at most \( q^{n_m n_m! (q!)^{12}} \) different perfect codes equivalent to \( C \). But, this will hardly influence the result of Theorem 2.5.

3. Splitting submatrices of the Hamming code. In Lemma 2.3 we have proved that \( C(G^i_{m+1}) \) and \( \alpha^j0:0:0:0 \) \( + C(G^i_{m+1}) \), \( j \geq 0 \), cover the same subset of \( F_q^{n_m q+1} \). The following question is of interest and importance. For a given \( i, 2 \leq i \leq n_m q+1 \), does there exist an \( n_m(q-1) \times (n_m q+1) \) submatrix \( G^i_{m+1} \) of \( G_{m+1} \) such that \( C(G^i_{m+1}) \) and \( \alpha^ie_i + C(G^i_{m+1}) \), \( j \geq 0 \), where \( e_i = (0:0:0:0:0) \) with the 1 in position \( i \), cover the same subset of \( F_q^{n_m q+1} \)? For \( q = 2 \) these submatrices exist as proved in [1]. These subcodes together with \( C(G^i_{m+1}) \) were used in [1] to construct codes with various ranks and in [8] to construct codes with various kernels. This submatrix, \( G^i_{m+1}, 1 \leq i \leq n_m+1 \), will be called a splitting submatrix of \( G_{m+1} \) and these submatrices are the subject of this section.

In this section we will prove that for each \( i, 1 \leq i \leq n_m+1 \), a splitting submatrix \( G^i_{m+1} \) of \( G_{m+1} \) exists. We will also prove the uniqueness of these submatrices. In order to simplify the understanding of the construction for \( G^i_{m+1} \) we will permute the columns of the code such that column \( i \) will become the first column.

We start by considering the Hamming code of length \( q+1 \). As shown in §2, a parity check matrix of the code \( H_2 \) has the form

\[
H_2 = \begin{bmatrix}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & \alpha^0 & \alpha^1 & \cdots & \alpha^{q-2}
\end{bmatrix},
\]

the generator matrix of the code has the form

\[
\begin{bmatrix}
\alpha^0 - 0 & 1 & -1 & 0 & \cdots & 0 & 0 \\
\alpha^1 - \alpha^0 & 0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha^{q-2} - \alpha^{q-3} & 0 & 0 & 0 & \cdots & 1 & -1
\end{bmatrix},
\]

and from this matrix we can immediately compute

\[
G_2 = \begin{bmatrix} 1 \\ \vdots \\ X \\ 1 \end{bmatrix}
\]

as given is §2.

If \( q = p \) then we can take instead of \( H_2 \) the check matrix

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & 2 & \cdots & p-1
\end{bmatrix},
\]

and its generator matrix has the form

\[
\begin{bmatrix}
1 & 1 & -1 & 0 & \cdots & 0 & 0 \\
1 & 0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & 0 & \cdots & 1 & -1
\end{bmatrix}
\]
For a given $\beta \in GF(q)$, if the parity check matrix has the column $(\begin{smallmatrix}1 \\ \beta \end{smallmatrix})$ as the first column then we take the parity check matrix

$$H^*_2 = \begin{bmatrix} 1 & 0 & 1 & 1 & \cdots & 1 \\ \beta & 1 & \beta + \alpha^0 & \beta + \alpha^1 & \cdots & \beta + \alpha^{q-2} \end{bmatrix},$$

and its generator matrix is

$$G^*_2 = \begin{bmatrix} 1 & \alpha^0 & -1 & 0 & \cdots & 0 \\ 1 & \alpha^1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{q-2} & 0 & 0 & \cdots & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ \vdots \end{bmatrix} Y,$$

where $Y$ is a $(q - 1) \times q$ matrix.

The proof that $H^*_2$ is a parity check matrix of the Hamming code is based on the following simple lemma.

**Lemma 3.1.** If $\beta$ is an element in $GF(q)$ then the set of elements $\{\beta + \alpha^i : 0 \leq i \leq q - 2\}$ consists of all the elements of $GF(q)$.

We will make extensive use of this lemma in our constructions to prove that the parity check matrix of the codes, which we will construct, has all the columns of length $m + 1$ and the form $(0 \cdots 0 \alpha_1 \cdots \alpha_r)^T$ for all $r, 0 \leq r \leq m$, where $\alpha_i \in GF(q), 1 \leq i \leq r$.

Now, we want to form the Hamming code of length $n_{m+1}$, which has as the first column in the parity check matrix the column vector of length $m+1$, $(0 \cdots 0 \alpha_1 \cdots \alpha_r)^T$ for some $r, 0 \leq r \leq m$, and some $\alpha_i$'s, $\alpha_i \in GF(q), 1 \leq i \leq r$. We start with the parity check matrix $H_{m+1-r}$ and the splitting submatrix $G^*_1 = H_{m+1-r}$ given in §2. For $r = m$ we take $H_1 = [1]$ and $G^*_1$ is an empty matrix. Now, let $H^*_m = H_{m+1-r}$ and $G^*_m = G^*_m$. Assume we have constructed the $i \times n_i$ parity check matrix $H^*_i, i \geq m + 1 - r$, where $S = (0 \cdots 0 \alpha_1 \cdots \alpha_{m+1-r})^T$ is the first column of $H^*_i$, and the $(q^{i-1} - 1) \times n_i$ splitting submatrix $G^*_i$ which is a submatrix of the generator matrix of the Hamming code with the parity check matrix $H^*_i$. Assume further that $G^*_i$ has the form

$$G^*_i = \begin{bmatrix} 1 & Z_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & Z_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & Z_{n_{i-1}} \end{bmatrix},$$

where $Z_i$ is either the $(q - 1) \times q$ matrix $X$ given in §2 or the $(q - 1) \times q$ matrix $Y$ given in this section. W.l.o.g. we will further assume that there exists an integer $l$, ...
0 \leq l \leq n_{i-1}, such that for each \( j, 1 \leq j \leq l \), \( Z_j = X \), and for each \( j, l+1 \leq j \leq n_{i-1} \), \( Z_j = Y \). Now, assume \( H_i^* \) has the form

\[
H_i^* = \begin{bmatrix}
S & T_1 & T_2 & \cdots & T_{n_{i-1}}
\end{bmatrix},
\]

where \( T_j, 1 \leq j \leq n_{i-1} \) is an \( i \times q \) matrix.

We distinguish between two cases.

Case 1. If \( a_{i-m+r} = 0 \), we generate the following \((i+1) \times n_{i+1}\) parity check matrix \( H_{i+1}^* \):

\[
H_{i+1}^* = \begin{bmatrix}
S & \cdots & T_j & T_j & \cdots & T_j \\
0 & \cdots & 0 \cdot L & \alpha^0 \cdot L & \cdots & \alpha^{q-2} \cdot L \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 \cdot K & \alpha^0 \cdot K & \cdots & \alpha^{q-2} \cdot K \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]

where \( 1 \leq j \leq l, l+1 \leq k \leq n_{i-1} \), \( L \) is an \( 1 \times q \) matrix of the form \( L = [1 \cdots 1] \), and \( K \) is a \( 1 \times q \) matrix of the form \( K = [\alpha^0 \alpha^0 \alpha^1 \cdots \alpha^{q-2}] \).

Case 2. If \( a_{i-m+r} = \alpha^c \), we generate the following \((i+1) \times n_{i+1}\) parity check matrix \( H_{i+1}^* \):

\[
H_{i+1}^* = \begin{bmatrix}
S & \cdots & T_j & T_j & \cdots & T_j & T_k & T_k \\
\alpha^c & \cdots & M + 0 & M + \alpha^0 & \cdots & M + \alpha^{q-2} & N + 0 \cdot K & N + \alpha^0 \cdot K \\
\cdots & \cdots \\
\cdots & \cdots \\
\cdots & \cdots \\
\end{bmatrix}
\]

where \( 1 \leq j \leq l, l+1 \leq k \leq n_{i-1} \), \( M \) is an \( 1 \times q \) matrix of the form \( M = [0 \alpha^c \alpha^{c+1} \cdots \alpha^{c+q-2}] \), and \( N \) is a \( 1 \times q \) matrix of the form \( N = [0 \alpha^c \cdots \alpha^c] \).

**Lemma 3.2.** \( H_{i+1}^* \) is a parity check matrix for the Hamming code.

**Proof.** This is an immediate consequence from the fact that \( H_i^* \) is a parity check matrix of the Hamming code, Lemma 3.1, and the observation that in the four \( q \times q \) matrices,

\[
\begin{bmatrix}
0 \cdot L \\
\alpha^0 \cdot L \\
\vdots \\
\alpha^{q-2} \cdot L
\end{bmatrix}, \begin{bmatrix}
0 \cdot K \\
\alpha^0 \cdot K \\
\vdots \\
\alpha^{q-2} \cdot K
\end{bmatrix}, \begin{bmatrix}
M + 0 \\
M + \alpha^0 \\
\vdots \\
M + \alpha^{q-2}
\end{bmatrix}, \begin{bmatrix}
N + 0 \cdot K \\
N + \alpha^0 \cdot K \\
\vdots \\
N + \alpha^{q-2} \cdot K
\end{bmatrix}
\]

each column is a permutation of the elements of \( GF(q) \). □
Note that the definition of $H_{i+1}^\ast$ coincides with the definition of $H_2^\ast$ given in §2 and hence there is no ambiguity. Now, we are in a stage to produce $G_{i+1}^\ast$.

**Lemma 3.3.** The $(q^i - 1) \times n_{i+1}$ matrix

\[
G_{i+1}^\ast = \begin{bmatrix}
1 & Z_1 & 0 & \ldots & \ldots & \ldots & 0 \\
1 & & & \ddots & \ddots & \ddots & \vdots \\
1 & 0 & Z_2 & \ldots & \ldots & \ldots & 0 \\
1 & & & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
1 & 0 & 0 & \ldots & \ldots & \ldots & Z_{n_i}
\end{bmatrix}
\]

is a splitting submatrix of the generator matrix of the Hamming code which is orthogonal to $H_{i+1}^\ast$. Moreover, for each $j$, $1 \leq j \leq lq$, $Z_j = X$ and for each $j$, $lq + 1 \leq j \leq n_i$, $Z_j = Y$.

Proof. Lemma 3.3 follows immediately after a careful analysis of the structure of $G_i^\ast$, $H_i^\ast$, $H_{i+1}^\ast$, and $G_{i+1}^\ast$ together with the structure of $H_2$, $G_2$, $H_2^\ast$, and $G_2^\ast$. \(\square\)

An immediate consequence is Theorem 3.4.

**Theorem 3.4.** For each $i$, $2 \leq i \leq n_m q + 1$, there exists a splitting submatrix $G_{m+1}^i$ of the Hamming code of length $n_{m+1}$.

Similar lemmas and theorems such as Lemmas 2.3 and 2.4 and Theorem 2.5 can be obtained by using the splitting submatrix $G_{m+1}^i$.

Given the first column of the parity check matrix of the Hamming code, an interesting question is whether there exist different splitting submatrices for the code by proper rearrangement of the other columns. If $q = 2$ then $G_2 = G_2^\ast = [1 1 1]$ and all the splitting submatrices are isomorphic. This structure was used to construct perfect codes with different ranks in [1] and different kernels in [8]. Although we can obtain similar results from different splitting submatrices (isomorphic splitting submatrices were not vital in those constructions), it is of interest to examine if there are nonisomorphic splitting submatrices given the first column of the parity check matrix of the Hamming code. Now, we will prove that the splitting submatrix is unique, given the first column of the parity check matrix.

We start by examining the vectors, starting with either 0 or 1, which are orthogonal to the rows of $G_2$ and $G_2^\ast$. From the structure of $H_2$ we have that the vectors starting with either 0 or 1, which are orthogonal to the rows of $G_2$, have the form

(1) \((0 : \beta, \ldots, \beta), \beta \in GF(q)\),

(2) \((1 : \beta, \beta + \alpha^0, \ldots, \beta + \alpha^{q-2}), \beta \in GF(q)\).

From the structure of $H_2^\ast$ we have that the vectors, starting with either 0 or 1, which are orthogonal to rows of $G_2^\ast$, have the form

(3) \((0 : \beta, \beta \alpha^0, \ldots, \beta \alpha^{q-2}), \beta \in GF(q)\),
For a row $v = (\gamma: u_1 u_2 \cdots u_r)$, $\gamma \in GF(q)$, $u_i \in F_q^r$, $1 \leq i \leq r$, of the Hamming code, we say that $(\gamma: u_i)$ is a subrow of $v$ for $1 \leq i \leq r$. Now, assume that we are constructing the parity check matrix $H$ of the Hamming code of length $n_{m+1}$ which have as a first column in the parity check matrix the column vector of length $m+1$, $S = (0 \cdots 0a_1 \cdots a_r)^T = (s_1 \cdots s_{m+1})^T$ for some $r$, $0 \leq r \leq m$, and some $a_i$'s, $a_i \in GF(q)$, $1 \leq i \leq r$. Now, we distinguish between two cases.

**Case 1.** $s_1 = 1$. Since the first row of $H$ consists only of 0's and 1's, it follows that only subrows of type (4) with $\beta = 0$ appear in the first row of $H$ and hence only

$$G = \begin{bmatrix} 
1 & Y & 0 & \cdots & \cdots & 0 \\
\vdots & & & & & \\
1 & & & & & \\
1 & 0 & Y & \cdots & \cdots & 0 \\
\vdots & & & & & \\
1 & & & & & \\
\vdots & & & & & \\
0 & 0 & \cdots & \cdots & 0 \\
1 & & & & & 
\end{bmatrix}$$

can be a splitting submatrix of the generator matrix of the code.

**Case 2.** $s_1 = 0$. All the 1's in the first row of $H$ must participate in subrows of type (1). This implies that we can write any splitting submatrix of the code as

$$G = \begin{bmatrix} 
1 & Z_1 & 0 & \cdots & \cdots & 0 \\
\vdots & & & & & \\
1 & & & & & \\
1 & 0 & Z_2 & \cdots & \cdots & 0 \\
\vdots & & & & & \\
1 & & & & & \\
\vdots & & & & & \\
1 & 0 & \cdots & \cdots & 0 \\
1 & & & & & 
\end{bmatrix}$$
where $Z_i = X_i$, $1 \leq i \leq q^{m-1}$, and $H$ has the form

$$H = \begin{bmatrix}
0 & 1 & \ldots & 1 & 0 & \ldots & 0 \\
S_2 \\
\vdots \\
S_{m+1} \\
\end{bmatrix}$$

The matrix

$$\bar{H} = \begin{bmatrix}
S_2 \\
\vdots \\
S_{m+1} \\
\end{bmatrix} \bar{H}_2$$

is the parity check matrix of the Hamming code of length $n_m$, with a splitting submatrix

$$\bar{G} = \begin{bmatrix}
1 \\
\vdots \\
1 \\
\vdots \\
Z_{q^{m-1}+1} & 0 & \ldots & \ldots & 0 \\
1 \\
\vdots \\
1 \\
\vdots \\
0 & Z_{q^{m-1}+2} & \ldots & \ldots & 0 \\
1 \\
\vdots \\
1 \\
\vdots \\
0 & 0 & \ldots & \ldots & Z_{n_m} \\
1 \\
\vdots \\
1 \\
\end{bmatrix}$$

We proceed to examine $\bar{H}$ and $\bar{G}$ inductively in the same manner until we reach $s_j = 1$, $j = m + 1 - r$, using Cases 1 and 2. This process and the constructions of §2 and this section lead to Theorem 3.5.

**Theorem 3.5.** Given the parity check matrix

$$H_{m+1}^* = \begin{bmatrix} S & H' \end{bmatrix}$$

of the Hamming code, then by ordering the columns of $H'$ we can obtain the unique splitting submatrix of the generator matrix of the code. This unique splitting submatrix $G_{m+1}^*$ has the form
\[ G_{m+1}^* = \begin{bmatrix}
  1 & Z_1 & 0 & \ldots & \ldots & 0 \\
  1 & 1 & Z_2 & \ldots & \ldots & 0 \\
  1 & \vdots & 1 & \vdots & \ddots & \vdots \\
  1 & \vdots & \vdots & 1 & \ddots & \vdots \\
  1 & \vdots & \vdots & \vdots & 1 & Z_{n_m} \\
  1 & 0 & 0 & \ldots & \ldots & Z_{n_m} 
\end{bmatrix}, \]

where \( Z_i = X \) for \( 1 \leq i \leq l \) and \( Z_i = Y \) for \( l + 1 \leq i \leq n_m \), \( l = \sum_{j=r}^{m-1} q^j \).

Finally, we will mention that the intersection between \( C(G_{m+1}^{i_1}) \) and \( C(G_{m+1}^{i_2}) \) for \( i_1 \neq i_2 \) is not empty since the zero codeword belongs to both of them. Also, \( C(G_{m+1}^{i_1}) \neq C(G_{m+1}^{i_2}) \) and the proof is done by a careful analysis of the codewords of weight 3 in the codes. But finding \( C(G_{m+1}^{i_1}) \cap C(G_{m+1}^{i_2}) \) is not easy, except for the case \( q = 2 \) which was dealt with in [1].

**Acknowledgment.** The author would like to thank Alexander Vardy for his constructive comments.

**REFERENCES**


