Linked Lists: The Role of
LocKing

Erez Petrank
Technion

Why Data Structures?

» Concurrent Data Structures are building blocks
— Used as libraries
— (Construction principles apply broadly

This Lecture

* Designing the first concurrent data structure: the
inked-list

— How do we use locks?
— How do we achieve progress guarantees

Proper Credit

Several drawings are taken
from the book, or from its
accompanying slides.

THE ART

()f

MULTIPROCESSOR
PROGRAMMING

1EX l/#
,?'.-,p "
/, . *}\..\)

»

L 1 >

Maurice Herlihy & Nir Shavit

Locking vs. Progress Guarantees

OCa
OCa

Counter Example

T1

‘= counter
++

counter := |local

OCa
OCa

12

‘= counter
++

counter := |local

concurrent execution is not safe |

OCa
OCa

Lock (L)

‘= counter
++

counter := |local
Unlock(L)

Synchronization:

Use a Lock

Only one thread can

acquire a lock L

Compare and Swap (CAS)

* CAS (addr, expected, new)

Atomically:
If (MEM[addr] == expected) {
MEM[addr] = new
return (TRUE)

}
else return (FALSE)

Use a Lock or a CAS

ocal ;= counter
ocCal++

counter := |local

START:

old := counter

new = old ++

if (| CAS(&counter,old,new))
goto START

Synchronization:
Only one thread changes

from old In a concurrent
CAS.

Use a Lock or a CAS

_ock (L) START:

ocal := counter old := counter

ocal++ new := old ++

counter := local if (! CAS(&counter,old,new))
Unlock(L) goto START

|lssues:

Efficiency, scalabillity, Fairness, progress guarantee,
design complexity.

What Does “"Lock-Free” Mean?

* First try: "never using a lock™.
* Well, is this using a lock” (word is initially zero.)

while ({CAS(&word,0,1)) {}
ocal := counter

ocal++
counter := local
word =0

* |tis not easy to say it something is a “lock”.

What Does “"Lock-Free” Mean?

* Better: "No matter which interleaving is scheduled, my program will
make progress.”.

* Ak.a. non-blocking.
* QOur second example is lock-free.

START:
old := counter

new := old ++
if (! CAS(&counter,old,new))
goto START

Lock-Freedom

Lock-Freedom

It you schedule enough steps across all threads, one of them will make
progress.

* Realistic (though difficult):
Various lock-free data structures exist in the literature (stack, queue,
hashing, skiplist, trees, etc.).

* Advantages:
Worst-case responsiveness, scalability, no deadlocks, no livelocks,

added robustness to threads fail-stop.

Linked List: Our First Example

Fine-grained locking and lock-freedom

The Linked List

poo|
Support: insert, delete, contains.

Implements a set: no duplicates, order maintained.

Sequential Implementation

« Delete 6:

* |nsert 7: .

But don’t try this concurrently!

* Delete 6 || Insert 7:

* A similar problem with concurrent deletes.

Solutions

vd B
* Coarse-grained locking. CIE—NZI{»

— Sequential with overhead...
* Fine-grained locking

— hand-over-hand, optimistic, lazy synchronization.
. (or wait-free) implementation.

A
Coarse-
Simplicity

Lock-free

>

scalability / performance

scalability / performance

Fine-Grained Locking
#1:

Hand-Over-Hand

Hand-over-Hand locking
[Bayer-Schkolnik 1977]

([ll3—kl3—]]

0

Art of Multiprocessor Programming

21

Operation 1: Remove a Node

Removing a Node

Removing a Node

Removing a Node

i

&
[]3— 3 E3—6D0

o o m
Art of Multiprocessor Programming

remove(b)

Removing a Node

Removing a Node

0
[[F—lely

(36D

Why do we need
remove(b) Jl[O e:!v%ays hold 2
OCKS ¢

Art of Multiprocessor Programming

27

Concurrent Removes

remove(b)
Art of Multiprocessor Programming

Concurrent Removes

([F=lel3—blF—]3]]

remove(b)
Art of Multiprocessor Programming

Concurrent Removes

[l Fbl5—]3]]

remove(b)
Art of Multiprocessor Programming

Concurrent Removes

([l 3—blF]3]]

remove(b)
Art of Multiprocessor Programming

Concurrent Removes

Concurrent Removes

L[bl]3]
O o .
33
Art of Multiprocessor Programming

Uh, Oh

ey 6t
T

Art of Multiprocessor Programming

e[l]

34

Uh, Oh

Bad news, C not removed

remove(

Art of Multiprocessor Programming

35

With Two Locks

remove(b)
Art of Multiprocessor Programming

Removing a Node

remove(b)
Art of Multiprocessor Programming

Removing a Node

([3—E[3~E3—ED—ED

remove(b)
Art of Multiprocessor Programming

Removing a Node

([l F—blF—]3]]

remove(b)
Art of Multiprocessor Programming

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6

0
[[3—ilel=

an af]

v

Removing a Node

Removing a Node

remove(b)
o o m
Art of Multiprocessor Programming

50

Removing a Node

Scplan

Adding Nodes

To add node e

— Go hand-over-hand

— Lock predecessor

— Lock successor

Neither can be deleted

Actually it is enough to lock predecessor (for an insert).
— But must go hand-over-hand.

Art of Multiprocessor Programming

52

No Deadlock

* In general, no deadlock if locks are always acquired in the same order.

Why Is It Correct

The idea: snapshot.

Each thread sees all operations executed “earlier”, and no operation that
started “afterwards”.

Start time: take head'’s lock. \
Implications:
e sequentialization of operations

 Good only for “hierarchical” data structures.

. N

Properties

Scalability better than coarse-grained locking.

But long chains of threads waiting for the first thread to advance.
— Limited parallelism.

Excessive locking harms performance.

Can we obtain more parallelism and better performance?

Second List:
Optimistic

(First was hand-over-hand.)

Optimistic Synchronization
[Herliny-Shavit 2008]

Find nodes without locking
Lock nodes
Check that everything is OK

Art of Multiprocessor Programming

57

Optimistic: Traverse without Locking

Art of Multiprocessor Programming

58

Optimistic: Lock and Load

59

What could go wrong?

2K m

60

First node must be In the list!

While holding the lock, check that first node is reachable from the head

While we hold the lock this node cannot be removed.

Validate — Part 1
(while holding locks)

Yes, b still
reachable from
head (after locks
acauired!)

Art of Multiprocessor Programming

62

What Else Can Go Wrong?

63

What Else Can Go Wrong?

65

~irst node must still point to
second!

e \alidation 1: first node still reachable.

* Validation 2: first node pointing to second.

Validate Part 2
(while holding locks)

Yes, b still points
to d (after locks
were acquired!)

Art of Multiprocessor Programming

67

Validation Falilure?

Upon failure to validate start from scratch.
Assumed to happen infrequently.

Insert (After Validation)

Art of Multiprocessor Programming

69

Optimistic Synchronization

More parallelism, better scalabillity.
— Only lock nodes where actually moditying.
— Scalability depends on the actual workload.

Excessive work on validation (double traversal).
— Less efficient.

There is another fine-grained locking methodology.
— But let’'s jump to lock-freedom

70

Third List: Lock-Free

We did hand-over-hand and optimistic

Lock-Freedom

 Don't use locks.
* And more important: guarantee progress!
— Complete robustness against worst-case scheduling
— No swapping problems
— Even when a thread dies, the other threads will continue to make progress.

« Design by [Harris 2001], improvement by [Michael 2002].

Lock-Free Linked Lists

[Harris-Michael 2001-2]

First attempt: insert/delete using CAS instead of a regular read/write
operation.

First Attempt: Use CASes Instead of Locks

« Delete 6:

CAS

e |nsert 7:

7l

CAS

[F—llF—le]- %D

The original problem still exists

* Qutcome for deleting 6 and inserting 7 in parallel:

We Keep the Simple Insert

* A single CAS to insert 7, after locally allocating and initializing it.

L —tl—

* But delete will be more complicated.

Recall the Problem

* Qutcome for deleting 6 and inserting 7 in parallel:

7l

e w

The Crux of the Problem

When deleting 6, we want to block changes both on the pointer that points at 6,
as well as the pointer that points out of 6.

([3—a3—~k3—

The Crux of the Problem

When deleting 6, we want to block changes both on the pointer that points at 6,
as well as the pointer that points out of 6.

([3—a3—~k3—

Harris’s idea:
1.“mark” the pointer out of 6, and then

2.“modify” the pointer out of 4.

Solution: Mark & Delete

Logically delete 6 by marking the outgoing pointer of 6.

Physically delete 6 by unlinking it from the list.

([bl

Implementing a "Red Pointer”

« Use least bit.

* Essentially unused with pointers as words are composed of 4
or 8 bytes.

Wsla-14 CClelil 00010...1010010101110000100

Marked: 00010...1010010101110000101

Logical Deletion

(L 3>l 5

Mark-Bit and Pointer
are CASed together

Logical Removal =
Set Mark Bit

Removal
CAS

Art of Multiprocessor Programming

An attempted insert
will fail the CAS after
logical removal

82

Concurrent Removal

Removing a Node

remove b
oc l& @
Art of Multiprocessor Programming

Removing a Node

[[F—lely el

remove b
O oo
Art of Multiprocessor Programming

85

Traversing the List

* When you find a “logically” deleted node in your path:
— Finish the job:
» CAS the predecessor’s next field,
— Proceed (repeat as needed).

Art of Multiprocessor Programming

86

Lock-Free Traversal
(only Add and Remove)

CAS Failures

* Node removal:
— Logical remove tails: start from scratch.

— Physical remove fails: ignore.
« Why?

« Node insert:
— CAS fails; start from scratch.

Why is it Lock-Free?

* Node removal:

— Logical remove tails:
either someone else has succeeded to remove this node, or
someone else has inserted a node.

— Logical remove succeeds:
| succeeded to delete a node (and will finish the operation after
trying the physical remove once).
* Node insert:
— CAGS fails: someone else succeeded to insert or delete a node.

— CAS succeeds: | succeeded in inserting a node.

The Main Intuition

Logical marking locks the next pointer from being modified.

But this “lock™ can be unlocked by anyone (by trimming the node
from the list), so no one is stuck.

Ditterent from “normal” locking that only the owner can unlock.

This is the methodology in all lock-free algorithms:

— Make a change in the data structure, leaving it “unstable”.
— Anyone can stabilize the data structure and continue to work on it.

([bl

Progress Guarantees are good for

* Real-time, OS, interactive systems, service level agreements, etc.

* But it's always good to have.
— Avoid deadlock, live-lock, convoying, priority inversion, etc.

« Scalability.

Progress Guarantees

Great guaranteel
Until recently considered difficult
to achieve and inefficient.

Wait-Freedom

If you schedule enough

steps of any thread, it
will make progress.

Lock-Freedom
If you schedule enough

steps across all threads,
one of them will make

Contains is Wait-Free

» Contains(key);
— curr = head;

— while (curr.key < key)
« curr = removeMark (curr.next)
e succ = removeMark (curr.next)

— return (curr.key == key && !marked(curr.next))

Fourth List:

Third (and Best) Fine-Grained Locking:

We discussed hand-over-hand, optimistic, and lock-free.

Lazy Synchronization
[Heller et al. 2005]

_ock only relevant nodes
Do not validate reachabillity

nstead, leave a mark on deleted nodes, like in lock-free
algorithm.

To remove a node:
— Logically remove it by marking it “removed’.
— Physically remove it by unlinking it.

Remove or Add

Scan through the list
Lock predecessor and current nodes

validate that

— pboth are not deleted, and that
— predecessor points to current.

Perform the add or the remove.

Search can simply traverse the list.

Lazy List

Art of Multiprocessor Programming

Lazy List

Art of Multiprocessor Programming

Lazy List

Art of Multiprocessor Programming

99

Lazy List

Lazy List

Lazy List

Lazy List

Lazy List

Lazy List

(el e~
/

Art of Multiprocessor Programming

Lazy List

106

Invariant

* |t anode is not marked then its key Is in the set
— and reachable from head

107

Art of Multiprocessor Programming

The contains Method

« Simply traverses the list and reports finding.

* \Very efficient, progress guaranteed.
— Wait-free

* Most "popular” method.

Properties of Lazy List

* Good performance
— NO rescanning,
— a small number of locks,
— hopefully not too many validation failures

* (Good scalability
— Lock only relevant nodes.

 Still standard locking problems
— No progress guarantee

— A thread holding a lock may face a cache-miss, page-fault, swap-
out, etc.

— Worst-case scalability issues, scheduler critical here...

summary

Starting data structures
Locking and Lock-freedom
Linked list (ordered for sets)
Parallization problems

Fine grained locking:

* Hand-over-hand

* Optimistic

e Lazy

| ock-Free version

Which List Should You Use?

* |t little contention: coarse-grained locking.
* Jo handle contention pretty well: lazy list.

* Jo handle high contention and provide a progress
guarantee: lock-free list.

The End

