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Why Data Structures?
• Concurrent Data Structures are building blocks 
– Used as libraries 
– Construction principles apply broadly



This Lecture
• Designing the first concurrent data structure: the 

linked-list  
– How do we use locks? 
– How do we achieve progress guarantees



Proper Credit
Several drawings are taken 
from the book, or from its 
accompanying slides. 



Locking vs. Progress Guarantees



Counter Example

local := counter 
local++ 
counter := local 

local := counter 
local++ 
counter := local

T1 T2

concurrent execution is not safe !



Use a Lock
Lock (L) 
local := counter 
local++ 
counter := local 
Unlock(L)

Synchronization:  
Only one thread can 
acquire a lock L



Compare and Swap (CAS)
• CAS (addr, expected, new)
 
Atomically:  
 If ( MEM[addr] == expected ) { 
  MEM[addr] = new 
  return (TRUE) 
  } 
 else return (FALSE)



Use a Lock or a CAS
Lock (L) 
local := counter 
local++ 
counter := local 
Unlock(L)

Synchronization:  
Only one thread can 
acquire a lock L

Synchronization:  
Only one thread changes 
from old in a concurrent 
CAS. 

START:  
old := counter 
new := old ++ 
if ( ! CAS(&counter,old,new) ) 
  goto START



Use a Lock or a CAS
Lock (L) 
local := counter 
local++ 
counter := local 
Unlock(L)

Issues: 
Efficiency, scalability, Fairness, progress guarantee,  
design complexity. 

START:  
old := counter 
new := old ++ 
if ( ! CAS(&counter,old,new) ) 
  goto START



What Does ״Lock-Free״ Mean?
• First try: “never using a lock”. 
• Well, is this using a lock? (word is initially zero.)  
 
 
 
 
 
 
 

• It is not easy to say if something is a “lock”. 

while (!CAS(&word,0,1)) {}
local := counter 
local++ 
counter := local 
word := 0



What Does ״Lock-Free״ Mean?
• Better: “No matter which interleaving is scheduled, my program will 

make progress.”. 
• A.k.a. non-blocking.  
• Our second example is lock-free. 

START:  
old := counter 
new := old ++ 
if ( ! CAS(&counter,old,new) ) 
  goto START



Lock-Freedom

• Realistic (though difficult):  
Various lock-free data structures exist in the literature (stack, queue, 
hashing, skiplist, trees, etc.).   

• Advantages: 
Worst-case responsiveness, scalability, no deadlocks, no livelocks, 
added robustness to threads fail-stop. 

Lock-Freedom 
If you schedule enough steps across all threads, one of them will make 
progress. 



Linked List: Our First Example

Fine-grained locking and lock-freedom



The Linked List

 
 
 
 
 
 
Support: insert, delete, contains.  
Implements a set: no duplicates, order maintained.

4 6 9-∞

+∞



Sequential Implementation 
• Delete 6:  
 
 
 
 
 

• Insert 7: 

4 6 9

4 6 9

7



But don’t try this concurrently! 

• Delete 6 || Insert 7:  
 
 
 
 
 
 
 

• A similar problem with concurrent deletes.

4 6 9

7



Solutions
• Coarse-grained locking.  
– Sequential with overhead… 

• Fine-grained locking 
– hand-over-hand, optimistic, lazy synchronization. 

• Lock-free (or wait-free) implementation.  
 
 
 
 
 

4 6 9

7

Simplicity

scalability / performance

Coarse-
grained

Lock-free

Fine- grained



scalability / performance



Fine-Grained Locking 
#1: 

Hand-Over-Hand
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Hand-over-Hand locking  
[Bayer-Schkolnik 1977]

a b c
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Operation 1: Remove a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a c d

remove(b)

Why do we need  
to always hold 2  
locks?
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Concurrent Removes

a b c d

remove(c)
remove(b)
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Concurrent Removes

a b c d

remove(b)
remove(c)



Art of Multiprocessor Programming
30

Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Uh, Oh

a c d

remove(b)
remove(c)

b
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Uh, Oh

a c d

Bad news, C not removed

remove(b)
remove(c)
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With Two Locks

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

Must acquire  
Lock of b

remove(c)
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Removing a Node

a b c d

Cannot acquire 
lock of b

remove(c)
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Removing a Node

a b c d

Wait!
remove(c)
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Removing a Node

a b d

Proceed to 
remove(b)
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Removing a Node

a b d

remove(b)
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Removing a Node

a b d

remove(b)
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Removing a Node

a d

remove(b)
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Removing a Node

a d
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Adding Nodes
• To add node e 
– Go hand-over-hand 
– Lock predecessor 
– Lock successor 

• Neither can be deleted 
• Actually it is enough to lock predecessor (for an insert).  
– But must go hand-over-hand. 



No Deadlock
• In general, no deadlock if locks are always acquired in the same order.



Why Is It Correct
• The idea: snapshot. 

• Each thread sees all operations executed “earlier”, and no operation that 
started “afterwards”.  

• Start time: take head’s lock. 

• Implications:  

• sequentialization of operations 

• Good only for “hierarchical” data structures. 



Properties 
• Scalability better than coarse-grained locking.  
• But long chains of threads waiting for the first thread to advance.  
– Limited parallelism.  

• Excessive locking harms performance.  

• Can we obtain more parallelism and better performance? 



Second List: 
Optimistic

(First was hand-over-hand.)
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Optimistic Synchronization  
[Herlihy-Shavit 2008]

• Find nodes without locking 
• Lock nodes 
• Check that everything is OK
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Optimistic: Traverse without Locking

b d ea

add(c) Aha!
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Optimistic: Lock and Load

b d ea

add(c)
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What could go wrong?

b d ea

add(c)

remove(b)
Aha!



First node must be in the list!
• While holding the lock, check that first node is reachable from the head 

• While we hold the lock this node cannot be removed.  
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Validate – Part 1  
(while holding locks)

b d ea

add(c) Yes, b still 
reachable from 

head (after locks 
acquired!)
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What Else Can Go Wrong?

b d ea

add(c)
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What Else Can Go Wrong?

b d ea

add(c)

add(b’)

b’
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What Else Can Go Wrong?

b d ea

add(c)

b’

Aha!



First node must still point to 
second!

• Validation 1: first node still reachable. 
• While we hold the lock the node cannot be removed.   

• Validation 2: first node pointing to second. 
• While we hold the lock the pointer from the first node 

cannot be modified (no adding and no removing). 
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Validate Part 2  
(while holding locks)

b d ea

add(c)
Yes, b still points 
to d (after locks 
were acquired!)



Validation Failure? 
• Upon failure to validate start from scratch.  
• Assumed to happen infrequently. 
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Insert (After Validation)

b d ea

add(c)

c
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Optimistic Synchronization
• More parallelism, better scalability.  
– Only lock nodes where actually modifying.  
– Scalability depends on the actual workload.  

• Excessive work on validation (double traversal). 
– Less efficient.   

• There is another fine-grained locking methodology.  
– But let’s jump to lock-freedom  



Third List: Lock-Free
We did hand-over-hand and optimistic



Lock-Freedom
• Don’t use locks.  
• And more important: guarantee progress! 
– Complete robustness against worst-case scheduling 
– No swapping problems 
– Even when a thread dies, the other threads will continue to make progress.  

 
 

• Design by [Harris 2001], improvement by [Michael 2002]. 



Lock-Free Linked Lists  
[Harris-Michael 2001-2]

• First attempt: insert/delete using CAS instead of a regular read/write 
operation. 



First Attempt: Use CASes Instead of Locks

• Delete 6:  
 
 
 
 
 

• Insert 7: 

4 6 9

4 6 9

7

CAS

CAS



The original problem still exists

• Outcome for deleting 6 and inserting 7 in parallel:  
 
 
 
 
 

4 6 9

7



We Keep the Simple Insert

• A single CAS to insert 7, after locally allocating and initializing it.

4 6 9

7

• But delete will be more complicated.



Recall the Problem

• Outcome for deleting 6 and inserting 7 in parallel:  
 
 
 
 
 

4 6 9

7



The Crux of the Problem
• When deleting 6, we want to block changes both on the pointer that points at 6, 

as well as the pointer that points out of 6.  
 
 
 
 
 
 
 

4 6 9



The Crux of the Problem
• When deleting 6, we want to block changes both on the pointer that points at 6, 

as well as the pointer that points out of 6.  
 
 
 
 
 
 
 

• Harris’s idea:  
1.“mark” the pointer out of 6, and then  
2.“modify” the pointer out of 4.  

4 6 9



Solution: Mark & Delete

• Logically delete 6 by marking the outgoing pointer of 6.  
 
 

• Physically delete 6 by unlinking it from the list. 

4 6 9

4 6 9



Implementing a “Red Pointer”
• Use least bit.  
• Essentially unused with pointers as words are composed of 4 

or 8 bytes.  

00010…1010010101110000100Unmarked:

00010…1010010101110000101Marked:
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Logical Deletion

a 0 0 0a b c 0e1c

Logical Removal = 
Set Mark Bit

Physical 
Removal 
CAS

0d

Mark-Bit and Pointer 
are CASed together

An attempted insert 
will fail the CAS after 
logical removal
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Concurrent Removal

a b d

remove b

remove c

cCASCAS

failed
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Removing a Node

a b d

remove b

remove c

c
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Removing a Node

a d

remove b

remove c



Art of Multiprocessor Programming
86

Traversing the List
• When you find a “logically” deleted node in your path: 
– Finish the job: 
• CAS the predecessor’s next field, 

– Proceed (repeat as needed).
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Lock-Free Traversal  
(only Add and Remove)

a b c d
CAS

Uh-oh

pred currpred curr



CAS Failures
• Node removal: 
– Logical remove fails: start from scratch.  
– Physical remove fails: ignore.  
• Why?  

• Node insert:  
– CAS fails: start from scratch. 



Why is it Lock-Free?
• Node removal: 
– Logical remove fails:  

either someone else has succeeded to remove this node, or 
someone else has inserted a node.  

– Logical remove succeeds:  
I succeeded to delete a node (and will finish the operation after 
trying the physical remove once).  

• Node insert:  
– CAS fails: someone else succeeded to insert or delete a node. 
– CAS succeeds: I succeeded in inserting a node.  



The Main Intuition
• Logical marking locks the next pointer from being modified.  
• But this “lock” can be unlocked by anyone (by trimming the node 

from the list), so no one is stuck.  
• Different from “normal” locking that only the owner can unlock.  
• This is the methodology in all lock-free algorithms:  

– Make a change in the data structure, leaving it “unstable”. 
– Anyone can stabilize the data structure and continue to work on it. 

4 6 9



Progress Guarantees are good for
• Real-time, OS, interactive systems, service level agreements, etc. 
• But it’s always good to have.  
– Avoid deadlock, live-lock, convoying, priority inversion, etc. 

• Scalability.  



Progress Guarantees

Lock-Freedom
If you schedule enough 
steps across all threads, 
one of them will make 
progress. 

Great guarantee! 
Until recently considered  difficult 

to achieve and inefficient. Wait-Freedom
If you schedule enough 
steps of any thread, it 
will make progress.



Contains is Wait-Free
• Contains(key);  
– curr = head; 
– while (curr.key < key) 
• curr = removeMark ( curr.next ) 
• succ = removeMark ( curr.next ) 

– return (curr.key == key && !marked(curr.next) )

Contains is important!



Fourth List:  
Third (and Best) Fine-Grained Locking:  

Lazy List
We discussed hand-over-hand, optimistic, and lock-free. 



Lazy Synchronization  
[Heller et al. 2005]

• Lock only relevant nodes 
• Do not validate reachability 
• Instead, leave a mark on deleted nodes, like in lock-free 

algorithm.  

• To remove a node:  
– Logically remove it by marking it “removed’’. 
– Physically remove it by unlinking it. 



Remove or Add
• Scan through the list 
• Lock predecessor and current nodes 
• validate that  
– both are not deleted, and that  
– predecessor points to current.  

• Perform the add or the remove.  

• Search can simply traverse the list. 
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Lazy List

a b c
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Lazy List

a b c
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Lazy List

a b c
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Lazy List

a b c

remove(b)
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Lazy List

a b c

a not marked
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Lazy List

a b c

b not marked
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Lazy List

a b c

a still 
points to b
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Lazy List

a b c

Logical 
delete
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Lazy List

a b c

physical 
delete
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Lazy List

a b c
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Invariant
• If a node is not marked then its key is in the set 
– and reachable from head 



The contains Method
• Simply traverses the list and reports finding.  
• Very efficient, progress guaranteed.  
– Wait-free 

• Most “popular” method. 



Properties of Lazy List
• Good performance  
– no rescanning,  
– a small number of locks,  
– hopefully not too many validation failures 

• Good scalability 
– Lock only relevant nodes.  

• Still standard locking problems 
– No progress guarantee 
– A thread holding a lock may face a cache-miss, page-fault, swap-

out, etc.  
– Worst-case scalability issues, scheduler critical here…



Summary
• Starting data structures 
• Locking and Lock-freedom 
• Linked list (ordered for sets) 
• Parallization problems 
• Fine grained locking:  

• Hand-over-hand 
• Optimistic 
• Lazy 

• Lock-Free version



Which List Should You Use?
• If little contention: coarse-grained locking. 
• To handle contention pretty well: lazy list. 
• To handle high contention and provide a progress 

guarantee: lock-free list.



The End


