
Linked Lists: The Role of
Locking

Erez Petrank
Technion

Why Data Structures?
• Concurrent Data Structures are building blocks
– Used as libraries
– Construction principles apply broadly

This Lecture
• Designing the first concurrent data structure: the

linked-list
– How do we use locks?
– How do we achieve progress guarantees

Proper Credit
Several drawings are taken
from the book, or from its
accompanying slides.

Locking vs. Progress Guarantees

Counter Example

local := counter
local++
counter := local

local := counter
local++
counter := local

T1 T2

concurrent execution is not safe !

Use a Lock
Lock (L)
local := counter
local++
counter := local
Unlock(L)

Synchronization:
Only one thread can
acquire a lock L

Compare and Swap (CAS)
• CAS (addr, expected, new)
 
Atomically:
 If (MEM[addr] == expected) {
 MEM[addr] = new
 return (TRUE)
 }
 else return (FALSE)

Use a Lock or a CAS
Lock (L)
local := counter
local++
counter := local
Unlock(L)

Synchronization:
Only one thread can
acquire a lock L

Synchronization:
Only one thread changes
from old in a concurrent
CAS.

START:
old := counter
new := old ++
if (! CAS(&counter,old,new))
 goto START

Use a Lock or a CAS
Lock (L)
local := counter
local++
counter := local
Unlock(L)

Issues:
Efficiency, scalability, Fairness, progress guarantee,  
design complexity.

START:
old := counter
new := old ++
if (! CAS(&counter,old,new))
 goto START

What Does ״Lock-Free״ Mean?
• First try: “never using a lock”.
• Well, is this using a lock? (word is initially zero.)  
 
 
 
 
 
 
 

• It is not easy to say if something is a “lock”.

while (!CAS(&word,0,1)) {}
local := counter
local++
counter := local
word := 0

What Does ״Lock-Free״ Mean?
• Better: “No matter which interleaving is scheduled, my program will

make progress.”.
• A.k.a. non-blocking.
• Our second example is lock-free.

START:
old := counter
new := old ++
if (! CAS(&counter,old,new))
 goto START

Lock-Freedom

• Realistic (though difficult):  
Various lock-free data structures exist in the literature (stack, queue,
hashing, skiplist, trees, etc.).  

• Advantages: 
Worst-case responsiveness, scalability, no deadlocks, no livelocks,
added robustness to threads fail-stop.

Lock-Freedom
If you schedule enough steps across all threads, one of them will make
progress.

Linked List: Our First Example

Fine-grained locking and lock-freedom

The Linked List

 
 
 
 
 
 
Support: insert, delete, contains.
Implements a set: no duplicates, order maintained.

4 6 9-∞

+∞

Sequential Implementation
• Delete 6:  
 
 
 
 
 

• Insert 7:

4 6 9

4 6 9

7

But don’t try this concurrently!

• Delete 6 || Insert 7:  
 
 
 
 
 
 
 

• A similar problem with concurrent deletes.

4 6 9

7

Solutions
• Coarse-grained locking.
– Sequential with overhead…

• Fine-grained locking
– hand-over-hand, optimistic, lazy synchronization.

• Lock-free (or wait-free) implementation.  
 
 
 
 
 

4 6 9

7

Simplicity

scalability / performance

Coarse-
grained

Lock-free

Fine- grained

scalability / performance

Fine-Grained Locking
#1:

Hand-Over-Hand

Art of Multiprocessor Programming
21

Hand-over-Hand locking  
[Bayer-Schkolnik 1977]

a b c

Art of Multiprocessor Programming
22

Operation 1: Remove a Node

a b c d

remove(b)

Art of Multiprocessor Programming
23

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming
24

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming
25

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming
26

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming
27

Removing a Node

a c d

remove(b)

Why do we need
to always hold 2
locks?

Art of Multiprocessor Programming
28

Concurrent Removes

a b c d

remove(c)
remove(b)

Art of Multiprocessor Programming
29

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
30

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
31

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
32

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
33

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
34

Uh, Oh

a c d

remove(b)
remove(c)

b

Art of Multiprocessor Programming
35

Uh, Oh

a c d

Bad news, C not removed

remove(b)
remove(c)

Art of Multiprocessor Programming
36

With Two Locks

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
37

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
38

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
39

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
40

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
41

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
42

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
43

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming
44

Removing a Node

a b c d

Must acquire
Lock of b

remove(c)

Art of Multiprocessor Programming
45

Removing a Node

a b c d

Cannot acquire
lock of b

remove(c)

Art of Multiprocessor Programming
46

Removing a Node

a b c d

Wait!
remove(c)

Art of Multiprocessor Programming
47

Removing a Node

a b d

Proceed to
remove(b)

Art of Multiprocessor Programming
48

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming
49

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming
50

Removing a Node

a d

remove(b)

Art of Multiprocessor Programming
51

Removing a Node

a d

Art of Multiprocessor Programming
52

Adding Nodes
• To add node e
– Go hand-over-hand
– Lock predecessor
– Lock successor

• Neither can be deleted
• Actually it is enough to lock predecessor (for an insert).
– But must go hand-over-hand.

No Deadlock
• In general, no deadlock if locks are always acquired in the same order.

Why Is It Correct
• The idea: snapshot.

• Each thread sees all operations executed “earlier”, and no operation that
started “afterwards”.

• Start time: take head’s lock.

• Implications:

• sequentialization of operations

• Good only for “hierarchical” data structures.

Properties
• Scalability better than coarse-grained locking.
• But long chains of threads waiting for the first thread to advance.
– Limited parallelism.

• Excessive locking harms performance.

• Can we obtain more parallelism and better performance?

Second List:
Optimistic

(First was hand-over-hand.)

Art of Multiprocessor Programming
57

Optimistic Synchronization  
[Herlihy-Shavit 2008]

• Find nodes without locking
• Lock nodes
• Check that everything is OK

Art of Multiprocessor Programming
58

Optimistic: Traverse without Locking

b d ea

add(c) Aha!

Art of Multiprocessor Programming
59

Optimistic: Lock and Load

b d ea

add(c)

Art of Multiprocessor Programming
60

What could go wrong?

b d ea

add(c)

remove(b)
Aha!

First node must be in the list!
• While holding the lock, check that first node is reachable from the head

• While we hold the lock this node cannot be removed.

Art of Multiprocessor Programming
62

Validate – Part 1  
(while holding locks)

b d ea

add(c) Yes, b still
reachable from

head (after locks
acquired!)

Art of Multiprocessor Programming
63

What Else Can Go Wrong?

b d ea

add(c)

Art of Multiprocessor Programming
64

What Else Can Go Wrong?

b d ea

add(c)

add(b’)

b’

Art of Multiprocessor Programming
65

What Else Can Go Wrong?

b d ea

add(c)

b’

Aha!

First node must still point to
second!

• Validation 1: first node still reachable.
• While we hold the lock the node cannot be removed.

• Validation 2: first node pointing to second.
• While we hold the lock the pointer from the first node

cannot be modified (no adding and no removing).

Art of Multiprocessor Programming
67

Validate Part 2  
(while holding locks)

b d ea

add(c)
Yes, b still points
to d (after locks
were acquired!)

Validation Failure?
• Upon failure to validate start from scratch.
• Assumed to happen infrequently.

Art of Multiprocessor Programming
69

Insert (After Validation)

b d ea

add(c)

c

70

Optimistic Synchronization
• More parallelism, better scalability.
– Only lock nodes where actually modifying.
– Scalability depends on the actual workload.

• Excessive work on validation (double traversal).
– Less efficient.  

• There is another fine-grained locking methodology.
– But let’s jump to lock-freedom  

Third List: Lock-Free
We did hand-over-hand and optimistic

Lock-Freedom
• Don’t use locks.
• And more important: guarantee progress!
– Complete robustness against worst-case scheduling
– No swapping problems
– Even when a thread dies, the other threads will continue to make progress.  

 
 

• Design by [Harris 2001], improvement by [Michael 2002].

Lock-Free Linked Lists  
[Harris-Michael 2001-2]

• First attempt: insert/delete using CAS instead of a regular read/write
operation.

First Attempt: Use CASes Instead of Locks

• Delete 6:  
 
 
 
 
 

• Insert 7:

4 6 9

4 6 9

7

CAS

CAS

The original problem still exists

• Outcome for deleting 6 and inserting 7 in parallel:  
 
 
 
 
 

4 6 9

7

We Keep the Simple Insert

• A single CAS to insert 7, after locally allocating and initializing it.

4 6 9

7

• But delete will be more complicated.

Recall the Problem

• Outcome for deleting 6 and inserting 7 in parallel:  
 
 
 
 
 

4 6 9

7

The Crux of the Problem
• When deleting 6, we want to block changes both on the pointer that points at 6,

as well as the pointer that points out of 6.  
 
 
 
 
 
 
 

4 6 9

The Crux of the Problem
• When deleting 6, we want to block changes both on the pointer that points at 6,

as well as the pointer that points out of 6.  
 
 
 
 
 
 
 

• Harris’s idea:
1.“mark” the pointer out of 6, and then
2.“modify” the pointer out of 4.

4 6 9

Solution: Mark & Delete

• Logically delete 6 by marking the outgoing pointer of 6.  
 
 

• Physically delete 6 by unlinking it from the list.

4 6 9

4 6 9

Implementing a “Red Pointer”
• Use least bit.
• Essentially unused with pointers as words are composed of 4

or 8 bytes.

00010…1010010101110000100Unmarked:

00010…1010010101110000101Marked:

Art of Multiprocessor Programming
82

Logical Deletion

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0d

Mark-Bit and Pointer
are CASed together

An attempted insert
will fail the CAS after
logical removal

Art of Multiprocessor Programming
83

Concurrent Removal

a b d

remove b

remove c

cCASCAS

failed

Art of Multiprocessor Programming
84

Removing a Node

a b d

remove b

remove c

c

Art of Multiprocessor Programming
85

Removing a Node

a d

remove b

remove c

Art of Multiprocessor Programming
86

Traversing the List
• When you find a “logically” deleted node in your path:
– Finish the job:
• CAS the predecessor’s next field,

– Proceed (repeat as needed).

Art of Multiprocessor Programming
87

Lock-Free Traversal  
(only Add and Remove)

a b c d
CAS

Uh-oh

pred currpred curr

CAS Failures
• Node removal:
– Logical remove fails: start from scratch.
– Physical remove fails: ignore.
• Why?

• Node insert:
– CAS fails: start from scratch.

Why is it Lock-Free?
• Node removal:
– Logical remove fails:  

either someone else has succeeded to remove this node, or
someone else has inserted a node.

– Logical remove succeeds:  
I succeeded to delete a node (and will finish the operation after
trying the physical remove once).

• Node insert:
– CAS fails: someone else succeeded to insert or delete a node.
– CAS succeeds: I succeeded in inserting a node.

The Main Intuition
• Logical marking locks the next pointer from being modified.
• But this “lock” can be unlocked by anyone (by trimming the node

from the list), so no one is stuck.
• Different from “normal” locking that only the owner can unlock.
• This is the methodology in all lock-free algorithms:

– Make a change in the data structure, leaving it “unstable”.
– Anyone can stabilize the data structure and continue to work on it.

4 6 9

Progress Guarantees are good for
• Real-time, OS, interactive systems, service level agreements, etc.
• But it’s always good to have.
– Avoid deadlock, live-lock, convoying, priority inversion, etc.

• Scalability.  

Progress Guarantees

Lock-Freedom
If you schedule enough
steps across all threads,
one of them will make
progress.

Great guarantee!
Until recently considered difficult

to achieve and inefficient. Wait-Freedom
If you schedule enough
steps of any thread, it
will make progress.

Contains is Wait-Free
• Contains(key);
– curr = head;
– while (curr.key < key)
• curr = removeMark (curr.next)
• succ = removeMark (curr.next)

– return (curr.key == key && !marked(curr.next))

Contains is important!

Fourth List:
Third (and Best) Fine-Grained Locking:

Lazy List
We discussed hand-over-hand, optimistic, and lock-free.

Lazy Synchronization  
[Heller et al. 2005]

• Lock only relevant nodes
• Do not validate reachability
• Instead, leave a mark on deleted nodes, like in lock-free

algorithm.  

• To remove a node:
– Logically remove it by marking it “removed’’.
– Physically remove it by unlinking it.

Remove or Add
• Scan through the list
• Lock predecessor and current nodes
• validate that
– both are not deleted, and that
– predecessor points to current.

• Perform the add or the remove.  

• Search can simply traverse the list.

Art of Multiprocessor Programming
97

Lazy List

a b c

Art of Multiprocessor Programming
98

Lazy List

a b c

Art of Multiprocessor Programming
99

Lazy List

a b c

Art of Multiprocessor Programming
100

Lazy List

a b c

remove(b)

Art of Multiprocessor Programming
101

Lazy List

a b c

a not marked

Art of Multiprocessor Programming
102

Lazy List

a b c

b not marked

Art of Multiprocessor Programming
103

Lazy List

a b c

a still
points to b

Art of Multiprocessor Programming
104

Lazy List

a b c

Logical
delete

Art of Multiprocessor Programming
105

Lazy List

a b c

physical
delete

Art of Multiprocessor Programming
106

Lazy List

a b c

Art of Multiprocessor Programming
107

Invariant
• If a node is not marked then its key is in the set
– and reachable from head

The contains Method
• Simply traverses the list and reports finding.
• Very efficient, progress guaranteed.
– Wait-free

• Most “popular” method.

Properties of Lazy List
• Good performance
– no rescanning,
– a small number of locks,
– hopefully not too many validation failures

• Good scalability
– Lock only relevant nodes.

• Still standard locking problems
– No progress guarantee
– A thread holding a lock may face a cache-miss, page-fault, swap-

out, etc.
– Worst-case scalability issues, scheduler critical here…

Summary
• Starting data structures
• Locking and Lock-freedom
• Linked list (ordered for sets)
• Parallization problems
• Fine grained locking:

• Hand-over-hand
• Optimistic
• Lazy

• Lock-Free version

Which List Should You Use?
• If little contention: coarse-grained locking.
• To handle contention pretty well: lazy list.
• To handle high contention and provide a progress

guarantee: lock-free list.

The End

