Algorithms for Dynamic Memory Management (236780)

Lecture 5

Lecturer: Erez Petrank
Topics last week

- Generational Garbage Collection.
- The Train Algorithm (for the old generation).
Today: Concurrent Garbage Collection
Plan (tentative)

- **On the fly collectors:**
 - [Dijkstra-Lamport-Martin-Scholten-Steffens 1977]
 - [Doligez-Gonthier-Leroy 1993-94]

- **Snapshot: the copy-on-write concurrent collector**
 - [Demers-Weiser-Hayes-Boehm-Bobrow-Shenker 1990] + [Furusou-Matsuoka-Yonezawa 1991]

- ** Mostly concurrent collection**

- ** Sliding Views:**
 - [Azatchi-Levanoni-Paz-Petrank 2003] following [Levanoni-Petrank 2001]
Platform in Mind

- Multiprocessors (SMP) and multicores. Yesterday’s servers, today’s desktops, laptops, and smartphones.
- Shared memory.
Terminology

- Stop-the-World
- Parallel
- Concurrent
- On-the-Fly

Informal Pause times:
- 500ms
- 50ms
- 5ms

Throughput Loss: 10%

© Erez Petrank
Part I: On-the-fly Garbage Collection

[Dijkstra-Martin-Steffens-Lamport-Scholten 1976]
Recall Three-Color Abstraction

- **Black** - objects that have been marked and their children have been marked as well.
- **Gray** - objects have been marked but their children have not been traced yet.
- **White** - objects that have not yet been marked.
An Intermediate Tracing View
Simplified Setting: A Graph

- Assume all objects are of fixed size and are represented as nodes in a directed graph.
- Possible manipulations: add a new edge, delete an edge, redirect an edge
- Free-list holds all nodes ready for allocation.
- A special nil node. All null edges point to the NIL node. Thus, no adds & deletes, only:
 - redirect edge &
 - Get/return object to the free-list.
Reachable Nodes

- Several nodes in graph are defined roots.
- Other nodes are reachable (or not) from the roots.
- Note: program redirects an edge only between reachable nodes (source & target).
- Final abstraction: define a special root for the free-list, and NIL as a root.
- Now all possible program operations are redirecting an outgoing edge of one reachable node to point to another reachable node.
Abstract Graph

Free List

NIL
Goals

- Find unreachable nodes concurrently with fine-grained synchronization between program and collector (short pauses).
- Low mutator overhead (low penalty on throughput).
- Correctness:
 - Do not reclaim reachable objects.
 - Some floating garbage allowed.
Terminology

- **Mutator** - program thread.
- **Collector** - the thread running the garbage collection.
- **Shading** - Changing white node to gray (no change for black or gray nodes).
- **Dijkstra et al.**:
 - Only one mutator is allowed.
 - The collector employs a mark & sweep algorithm.
Basic Collector Algorithm

- **Mark Phase**
 - Mark the roots gray.
 - For every gray node: shade its successors, and then mark it black.
 - Quit when there are no gray nodes.

- **Sweep phase**: Visit each node once:
 - If it is white – append it to the free-list.
 - If it is black – color it white.

- **Mutator cooperation**:
 - When changing an edge, shade the new target.
Basic Collector Algorithm - Example
Basic Marking Algorithm

- **Termination by monotonicity:**
 - Nodes only grow darker during marking phase.

- **Correctness invariant:**
 - No black to white edge during marking phase.

- **Problem:** invariant assume that pointer modification operation is atomic:
 - Change an edge and shade the new target.
Basic Marking Algorithm - Problem

- We do not want to use a critical section in the write barrier, so we must break it into two atomic actions. Either:
 - Option 1: Change and then shade, or
 - Option 2: Shade and then change.

- But:
 - Change and then shade violates the invariant.
 - Shade and then change: a concurrent sweep can erase the shade...
The Plan

- Use “change and then shade”, but employ a better analysis.
- Indeed the “no black to white” invariant is not preserved.
- We’ll use a finer invariant, actually, two.
The Invariants

- Two invariants (P_1 and P_2) hold simultaneously during the marking phase:

 - P_1: For any white reachable node v, there exists a "propagation path" starting at a gray node, continuing through white nodes and ending in v.

 - P_2: A black to white edge is allowed once in the graph: the edge most recently written by the mutator.
Observation

- If there are no black to white edges, then the two invariants trivially hold.

1. \(P_1 \) - For any white reachable node \(v \), there exists a "propagation path" starting at a gray node, continuing through white nodes and ending in \(v \).

2. \(P_2 \) - A black to white edge is allowed once in the graph: the edge most recently written by the mutator.
The invariants depicted
Remarks:

- The statement of P2 assumes that there is only one mutator. There exists the last modification operation.
- We only need P1 for the proof: P₁ is enough to claim that all white nodes, at the end of marking, are unreachable.
 - With no gray nodes (in the end of marking phase) there are no reachable white nodes.
- P₁ is too weak to be shown as invariant --> P₂ is needed.
Proof Base

- After root scanning P1 and P2 hold.
 - No black to white edge
 - Everything reachable is reachable from a gray node by a path of white nodes.

- Next we show that each action, if it acts on a graph that satisfies P1 & P2, then it preserves P1 & P2.

- For simplicity and w.l.o.g. actions do not happen simultaneously.
Mutator Actions

- Mutator actions
 - Mutator actions sequence look like:
 - Change edge e_1
 - Shade new target of edge e_1
 - Change edge e_2
 - Shade new target of edge e_2
 - Change edge e_3
 - Shade new target of edge e_3
 - The interesting points in the sequence are after change and before shade.
 - At other times, there are no black-white edges.
Mutator Preserves Invariants

- We need to show that mutator’s changing an edge preserves the invariant “P_1 and P_2”.

- Preserving P_2 is easy.
 - After “change e_i”, e_i may become a black to white edge. It is the recently modified edge.
 - After “shade target” e_i is not a black-white edge anymore. At this time there are no black-white edges at all.
 - By induction, P_2 is preserved.
We show that P_1 holds, given that P_2 holds.

Shading a vertex cannot destroy any propagation path.

Thus, we concentrate on the “change” operation.

We separate the analysis into two cases:

- Source of modified edge was black
- Source of modified edge was white or gray.
Preserving P_1 (black source)

- Suppose source of the modified edge was black.

Preserving propagation paths: the edge that “disappeared” could not have been part of a propagation path since the source is black. Thus, all white reachable vertices must still have propagation paths.

- Note that for $P1$ we do not care about the new link, we only care about destroyed links.
Preserving P_1 (non-black source)

- Suppose source of the edge was white or gray: By P2, after the modification there are no black to white edges. (The recently modified edge has a gray/white source.) Thus, P1 holds trivially!

- (This is enough for the proof but:) what happens if (the last) propagation path is eliminated to the "previous" child?

- Answer: if there are no other propagation paths than this child is not reachable anymore.
Preserving P_1 (non-black source)

- **Conclusion**: Mutator actions do not break the invariant relation.
Collector Preserves Invariant

- To check that the collector preserves the invariants we need to take a look into the algorithmic details.
Marking phase: (M nodes, in array)

for each root j do “shade the root j”;
while (gray nodes exist)
{
 chose a gray node N;
 shade N’s children and make N black
}
Sweep: Pseudo-Code

Sweep phase:

\[N = \text{first node}; \]
\[\text{while (} N \text{ not NULL)} \}
\[\{ \]
\[\quad \text{if ("N is white") } \{ \]
\[\quad \quad \text{“append } N \text{ to the free-list”} \]
\[\} \text{ else } \{ \]
\[\quad \text{“make } N \text{ white”} \]
\[\} \]
\[\text{set } N \text{ to next node;} \]
\[\} \]
Collector Actions (Makring phase)

- The collector may
 - C1: Shade a single root
 - C2: Check the color of a node
 - C3: Shade the successors of a node and make the node black.

- Run atomically, none of c1, c2, c3 can break (P_1 and P_2):
 Propagation paths cannot be eliminated, black-to-white edge cannot be created.
Collector Actions (Makring phase)

- Problem: C3 is a compound operation!
 - C3: Shade the successors of a node and make the node black.

- Details:
 1. For each child of N
 1. C = next child of N
 2. shade C
 2. make N black
Collector Actions (Makring phase)

- Details:
 1. For each child of N
 1. $C = \text{next child of } N$
 2. shade C
 2. make N black

- 1-1 and 1-2 clearly preserve P1 and P2. Shading a node cannot destroy a propagation path and cannot create a black-to-white edge.

- Let’s check Operation 2...
Operation 2
(Making the node black after shading its children.)

- If mutator does not interfere all along:
 - All is well: Blackened node is not on a propagation path (P1) and black-to-white edge is not created (P2).

- If mutator concurrently shades:
 - Shade a child or the father - no problem.

- If mutator concurrently redirects an edge from father to a new son:
 - Black-to-white edge may be created, legitimately.
 - A propagation path cannot be eliminated since previous descendants are gray.
Conclusion of proof

- P1 and P2 are preserved.
- By P1: collection is safe.

- Does this algorithm work with multithreading?
Intuition of proof

- If a black-white pointer is created, then the new white child must be reachable from somewhere else. That route must contain a propagation path because it has no black-to-white edges.

- This heavily relies on the fact that there is only one black-to-white edge and no other thread foils its propagation path.
Multi-Threaded User Code

- The algorithm fails with multi-threaded programs (= many mutators)
- \((P_1 \text{ and } P_2)\) can’t be kept invariant.
 - \(P_2\) is not even well defined.
- Let’s look at a bad example.
Multi-Threaded Program – Example
Multi-Threaded Program – Example

Mutator 1 in red
Mutator 2 in green
Multi-Threaded Program - Example

Mutator 1 in red
Mutator 2 in green
Multi-Threaded Program - Example

Mutator 1 in red
Mutator 2 in green
Multi-Threaded Program - Example

Mutator 1 in red
Mutator 2 in green
Properties of Dijkstra’s Collector

- On the fly with no synchronization.
- The presentation is theoretical.
 - Marking the free list is problematic,
 - Write barrier on roots is costly.
 - Unable to deal with multithreading.
- But, the ideas are innovative.
 - [Doligez-Leroy-Gonthier94] solved some of the issues.
 - [Domani et al. 00] made it practical and incorporated it into the IBM JVM.
Dijkstra, in Retrospect

“Our exercise has not only been very instructive, but at times even humiliating, as we have fallen into nearly every logical trap possible.”

“It has been surprisingly hard to find the published solution and justification. It was only too easy to design what looked -- sometimes even for weeks and to many people -- like a perfectly valid solution, until the effort to prove it to be correct revealed a (sometimes deep) bug.”
Plan (tentative)

- **On the fly collectors:**
 - [Dijkstra-Lamport-Martin-Scholten-Steffens 1977]
 - [Doligez-Gonthier-Leroy 1993-94]

- **Snapshot: the copy-on-write concurrent collector**
 - [Demers-Weiser-Hayes-Boehm-Bobrow-Shenker 1990] + [Furusou-Matsuoka-Yonezawa 1991]

- **Mostly concurrent collection**

- **Sliding Views:**
The DLG Algorithm

[Doligez-Leroy 1993] A concurrent, generational garbage collector for a multithreaded implementation of ML

[Doligez-Gonthier 1994] Portable, Unobtrusive Garbage Collection for Multiprocessor Systems

• Implementation for OCAML.
• Semi-generational, local heaps for immutable objects.
• We will concentrate on the main idea.
 • No local heaps, No semi-generations, No use of immutable objects
• We will not study the full algorithm and proof, but only point out some relevant problems and solutions.
Topics

- Eliminating free-list traversal.
- Using handshakes to accommodate “shade and then change”.
- Eliminating write-barrier on local variables.
- A race between allocation and sweep.
- Avoid repeated heap traversals.
Eliminating the free-list scan

- Dijkstra’s algorithm traverses the free-list. This does not make sense in practice.
- DLG added a fourth color:
 - Blue = free list (neither traced, nor reclaimed)
 - White = unmarked
 - Gray = marked, children not visited
 - Black = marked and children visited.
Recall Basic Write Barrier Problem

- Write barrier with atomic actions. Either:
 - Option 1: Change and then shade, or
 - Option 2: Shade and then change.

- But:
 - Change and then shade violates the invariant.
 - Shade and then change can violate that relation if there was sweeping phase in the middle.

- Dijkstra used option (1) with the extra P2. P2 is not relevant for multithreading.
Write Barrier & Coordination

- DLG use the other option: “Shade and then change”
- Problem: shading may disappear before the change. (sweep terminates & marking starts again.)
- Such a scenario is prevented by coordinating a new collection with the mutators.
- Before starting a new collection the collector makes sure that all mutators are not in the middle of a write.
- Simple option: stop all threads before starting the collection, make sure none is in the middle of a write, and start the collection.
On-the-fly Garbage Collection

- The goal: reduce pauses further.
- On-the-fly collectors do not stop all threads simultaneously for the collection.
- Instead --- a handshake: each thread cooperates at its own pace. Collector waits.
- Especially useful for systems in which stopping the threads is inefficient.
Handshakes

- Stopping all threads and making sure they are all “in a good state” is costly and unnecessary.
- We only need to know that each of them is not stuck in a write.
- We can check them one-by-one using a handshake.

Handshake:
- Collector tells mutators that it has started tracing by raising a flag.
- Each mutator responds by raising a local flag.
- Response does not happen during a write!
- Handshake ends when all mutators respond.
Write-Barrier on Local Variables

- The majority of program updates are executed on the local variables (the roots).
- Modern collector design involves an effort to avoid a write-barrier on the roots.
- The positive side: this is a (relatively) small set of pointers, which are traced together at the beginning of the mark phase.
- But can we avoid the write barrier and not miss marking live objects?
Eliminating stack write barrier

- With Dijkstra, target of modification was shaded.
- Can it work without a write barrier on the roots?
- Assume an atomic “shade and change” for this discussion. (Even that would not work...)
Concurrent modification (cont.)

- Shading target values (only for heap pointers)
A Second Try (no stack write barrier)

- Will it work better if we shaded the old value of the pointer (instead of the new target)?
Halting all Threads

- If we
 - stop all threads
 - Scan all roots while threads stopped
 - Initiate write barrier (shading old for any heap pointer update)
 - Resume threads
- Then all is OK.
- Because anything reachable from the roots during the halt time must be blackened by the end of the concurrent trace.
Using Handshakes

- If we
 - stop one thread at a time
 - Scan its roots while halted
 - Initiate its write barrier (shading old for any heap pointer update)
 - Resume the thread
- Then it doesn’t work.
A Problem with Using a Handshake

T1

• T1 scans roots (none) & starts w.b.
• T1 grabs A
• T2 eliminates B → A
• T2 scan roots and starts w.b.

Let's use Two handshakes; still problems exist...
Handshakes

- To summarize, 3 handshakes are used:
 - Tell mutators to start the write-barrier
 - Tell mutators that root marking is approaching
 - Tell mutators to mark their roots (marking started)

- After responding to the first handshake and before responding to the third, the mutator’s write barrier marks “old” + “target”.

During the rest of the marking phase, only “old” is marked.

- No real proofs provided…
Timing diagram for global variables

Step: Clear ———— Mark ———— Scan ———— Sweep ———— Clear

Phase: Async ——— Sync 1 ——— Sync 2 ——— Async

Status C

Status m

Marking

Swept

Allocation color: Black ——— Gray ——— White

Scanned

Cache overflow

Dirty

End

0

−∞

End

0

−∞

true

false
The Color of New Objects

- If we allocate white - it may be reclaimed.
- During mark
 - black - it is true that they are reachable and their sons (none exist) have been traversed.
 - (gray is also OK, but no termination guarantee.)
- During sweep
 - Depending on object location.
 - white, if already swept
 - gray otherwise - to avoid reclamation
Race Allocation - Sweep

Allocation:
- If phase = marking then
 - Set object to black
- Else
 - If address(object) < sweep_pointer then
 - Set object to white
 - Else
 - Set object to black

Sweep:
- If object(sweep_pointer) is black set to white
- If object(sweep_pointer) is white reclaim.

Two problems:
- Using an “old” phase value
- Using an “old” sweep_pointer
The Solution

- It is always safe to set an object to gray
 - Allocation:

 1. if phase = marking then
 2. set the object to black;
 3. if phase = sweeping then
 4. set the object to gray;
 5. else
 6. if address(object) < sweep_pointer then
 7. set the object to white;
 8. else
 9. set the object to gray;

- Sweep:
 - If object(sweep_pointer) is black: set to white
 - If object(sweep_pointer) is white: reclaim.
Avoid Repeated Heap Traversals

- Marking terminates when there are no gray objects in the heap.

- Saving heap traversals:
 - DLG went over the heap to find gray objects.
 - The practical Java implementations used a markstack.
 - Parallel access to a markstack must be addressed in a modern implementation. We will elaborate in future lectures.
No Proofs, No Algorithm

- We will not fully present or partially prove the DLG collector.
- We only discussed major issues in the design.
- The proof that appears in the paper cannot be taught in (this) class.
- Producing a simpler proof = a project!
Properties

- On-the-fly.
- No write barrier on local variables.
- Adequate for multithreading.
- Handshakes & write-barriers overhead small.
- Made practical in a series of works.
- A modern version of the algorithm (adapted for Java) was/is used with the IBM production JVM on some IBM platforms.
Summary

- **Dijkstra et al.**:
 - Concurrent GC
 - Full proof (on abstraction)
 - But: theoretical, only one mutator.

- **DLG**:
 - On-the-fly
 - Full proof (less abstract)
 - Practical: several threads, no write barrier on roots, no scan of free-list.
 - Extension implemented on commercial products.