Question 1:

An interesting tester for pseudo-randomness of a distribution D of strings is the next-bit predictor. The predictor reads bit after bit from a string drawn from D and after reading \(i \) bits from the string it halts and outputs a prediction to the \(i+1 \)st bit. In this question you are asked to prove that there are no successful efficient predictors to an ensemble of distributions if and only if it is pseudo-random. Formally,

Definition: An ensemble \(\{X_n\} \) passes the next bit test if for all probabilistic polynomial time algorithms, any polynomial \(p() \), and all sufficiently large \(n \)'s, \(\Pr[A(w,1^n)=\sigma] < 0.5 + 1/p(n) \), where the probability is taken over a uniform choice of \(x \) according to \(X_n \), a uniform choice of a prefix \(w\sigma \) of \(x \), and the coin tosses of algorithm \(A \). The variable \(w \) represents a string and the variable \(\sigma \) represents a single bit.

Part a: Prove that all pseudo-random ensembles (i.e., ensembles that are polynomial-time indistinguishable from the uniform ensemble) pass the next bit test.

Part b: Prove that if an ensemble \(\{X_n\} \) passes the next bit test then it is pseudo-random. (Hint: use hybrids.)

Question 2:

(a) Show that for any function \(e() \), \(0 \leq e(n) \leq 1 \), there exist two sequences of distributions \(\{X_n\} \) and \(\{Y_n\} \) such that their statistical difference is exactly \(e(n) \).

(b) Show that a pseudo random generator with an expansion of one bit is a one way function.

(c) Show that if there exists a one-way permutation, then there exist two sequences of distributions \(\{X_n\} \) and \(\{Y_n\} \) such that their statistical difference is non-negligible, but are computationally indistinguishable.

(d) Prove that the two definitions given in class for the statistical difference between distributions are equivalent.

Question 3:

Suppose we have a PRG \(G \) which is defined only on inputs whose length is a power of 2. Convert it to a generator \(G' \) that is defined on all input lengths and is still a PRG.
Question 4:

In class we saw that given a pseudo random generator that expands one bit, it is possible to build a pseudo random generator that expands any polynomial number of bits. The construction was as follows. Given a seed s_0, we construct s_1,\ldots,s_m by $s_i=\text{n leftmost bits of } G(s_{i-1})$, and the rightmost bit is written at the output, yielding m bits in the output.

What happens to the construction if we also output s_m in the end of the output? Is the modified algorithm still a pseudo-random generator? Or does it loose its pseudo-randomness? Prove your answer.