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Abstract
Lock-freedom is a progress guarantee that ensures overall program
progress. Wait-freedom is a stronger progress guarantee that en-
sures the progress of each thread in the program. While many prac-
tical lock-free algorithms exist, wait-free algorithms are typically
inefficient and hardly used in practice. In this paper, we propose a
methodology called fast-path-slow-path for creating efficient wait-
free algorithms. The idea is to execute the efficient lock-free ver-
sion most of the time and revert to the wait-free version only when
things go wrong. The generality and effectiveness of this method-
ology is demonstrated by two examples. In this paper, we apply
this idea to a recent construction of a wait-free queue, bringing the
wait-free implementation to perform in practice as efficient as the
lock-free implementation. In another work, the fast-path-slow-path
methodology has been used for (dramatically) improving the per-
formance of a wait-free linked-list.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Concurrent program-
ming structures; E.1 [Data Structures]: Lists, stacks, and queues

General Terms Algorithms, Performance

Keywords Concurrent data structures, non-blocking synchroniza-
tion, wait-free queues, lock-free algorithms

1. Introduction
The evolution of multi-core systems necessitates the design of scal-
able and efficient concurrent data structures. A common approach
to achieve these goals is by constructing non-blocking algorithms.
Such algorithms ensure that no thread accessing the data structure
is postponed indefinitely while waiting for other threads that oper-
ate on that data structure.

Most non-blocking data structure implementations provide a
lock-free progress guarantee, ensuring that among all threads that
try to apply an operation, at least one will succeed. While some
lock-free algorithms are quite scalable and efficient [7, 20, 24], they
all allow workloads in which all but one thread starve. Such work-
loads cannot occur with wait-free algorithms, which ensure that
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each thread applies its operation in a bounded number of steps, in-
dependently of what other threads are doing. This property is valu-
able in real-time systems, operating systems or systems operating
under a service level agreement, with a (hard or soft) deadline on
the time required to complete each operation. It is valuable as well
in heterogeneous systems, in which threads may execute at differ-
ent speeds and where faster threads may repeatedly delay slower
ones, as might happen, for example, in systems composed of dif-
ferent computing units, such as CPUs and GPUs.

In practice, while having desirable properties, wait-free algo-
rithms are rightly considered inefficient and hard to design [6, 13].
Their inefficiency is said to be largely attributable to the helping
mechanism [12], which is a key mechanism employed by most
wait-free algorithms. This mechanism controls the way threads
help each other to complete their operations, and usually leads to
complicated algorithms, as each operation must be ensured to be
applied exactly once. In practice, this often results in the usage of a
greater number of expensive atomic operations, such as compare-
and-swap (CAS), which degrade the performance of wait-free al-
gorithms even when contention is low.

Moreover, most helping mechanisms known to us suffer from
two problematic properties. First, upon starting an operation, a
thread immediately begins to help other threads, sometimes inter-
fering with their operations and almost always creating higher con-
tention in the system. In most cases, the helped threads could have
finished their operations by themselves if only they were given
some time to execute without help. Second, the helping mecha-
nisms are designed to operate sequentially, in the sense that all
concurrently running threads help other operations in exactly the
same order. These two properties cause much useless work due to
high redundancy.

In this work, we propose a general methodology, denoted fast-
path-slow-path, for constructing wait-free data structures. This
methodology strives to be as scalable and fast as lock-free algo-
rithms, while guaranteeing a bound on the number of steps required
to complete each operation. To accomplish these goals, each oper-
ation is built from fast and slow paths, where the former ensures
good performance, while the latter serves as a fall-back to achieve
wait-freedom. Normally, the fast path is a customized version of
a lock-free algorithm, while the slow path is a customized version
of a wait-free one. A thread makes several attempts to apply an
operation on the fast path; only if it fails to complete, it switches
to the slow path, where the completion is guaranteed. We stress
that our design allows threads to execute operations on the fast and
slow paths in parallel. In particular, a thread that fails to apply its
operation on the fast path does not cause all other threads to waste
time waiting for its operation to be completed. Moreover, in con-
trast to the common definition of a fast path as “a shortcut through
a complex algorithm taken by a thread running alone“[13], our de-
sign allows several threads to run on the fast path and finish their
operations concurrently.



Similarly to other wait-free algorithms, our methodology em-
ploys a helping mechanism, but one that avoids the drawbacks dis-
cussed above. In particular, the helping is delayed and parallel.
The first property means that threads will delay any helping at-
tempts when concurrent operations exist. The opportunistic idea is
that during that delay, the contending operation might be finished,
and no further help will be required. The latter property means that
threads that do decide to help will attempt to help different op-
erations, reducing the contention and redundant work created by
sequential helping.

The applicability and effectiveness of our methodology is
demonstrated by two examples. First, we use it to create a fast
FIFO wait-free queue. The queue design is implemented in Java1.
It is evaluated and compared to the lock-free queue by Michael and
Scott [20], which is considered one of the most efficient and scal-
able lock-free queue implementations [13, 16, 25]. We also com-
pare it to the recent wait-free queue by Kogan and Petrank [15].
The evaluation shows that along with the proven wait-free progress
guarantee, the queue constructed in this paper delivers in practice
the same performance as the queue of Michael and Scott, while
both queues perform substantially better than the recent wait-free
queue of Kogan and Petrank. As a second example, the fast-path-
slow-path methodology has been also used on the wait-free linked-
list independently published in these proceedings [23]. There too,
this methodology yields a dramatic improvement in the algorithm’s
performance, while maintaining the wait-free progress guarantee.

In addition to making wait-free algorithms as fast as lock-free
ones, the fast-path-slow-path methodology can be used to provide
different level of progress guarantees to different entities. For ex-
ample, it can be used to run real-time threads side-by-side with non-
real-time threads, as the real-time threads use the slow path (or both
paths) to obtain a predictable maximum response time, whereas
the non-real-time threads only use the fast path without operation-
level progress guarantee. Another use of this methodology is in dis-
tinguishing phases in the execution. Sometimes emergent phases
require predictable guaranteed progress for each thread, while at
other times, the system can run only the fast path to achieve fast
execution in practice with no such progress guarantee. The inter-
operability of the two paths may be useful in any other scenario
that requires different progress guarantees according to various ex-
ecution parameters.

2. Related work
The idea of designing a concurrent algorithm with a fast path
intended for no contention and a slow path for a contended case has
been used in various domains of computer science. For example, it
appears in solutions for the mutual exclusion problem [2, 17, 26],
write barrier implementations in garbage collectors [18], and in
implementations of composite locks [13].

Despite (and, maybe, due to) having strong progress guarantees,
very few explicitly designed wait-free data structures are known
(for the few that do exist, see [15, 23] and references therein).
A common generic method for constructing wait-free data struc-
tures is to apply universal constructions, originally proposed by
Herlihy[10, 13]. (See [3] for an updated survey of various improve-
ments proposed since then.) Such constructions provide a generic
method for transforming any sequential data structure implementa-
tion into a linearizable wait-free implementation. The wait-freedom
is usually achieved by using a special announce array, in which
threads write details on the operations they intend to apply. The
contending threads traverse this array in a particular order and help
pending operations to complete. Threads help other threads in a
way that essentially reduces concurrency and creates large redun-

1 We also implemented our design in C (cf. Section 4.4).

dancy, especially when the number of contending threads is high:
All threads try to apply the same operations, and in exactly the same
order. In our work we show that trying to apply operations before
involving other threads (i.e., before using the announce array) is
crucial to the good performance of a wait-free algorithm. More-
over, the helping mechanism proposed in this paper allows parallel
and delayed helping, eliminating the drawbacks of most previous
wait-free constructions.

A related idea was considered by Moir [21], who proposed to
implement wait-free transactions by utilizing a lock-free version
of a multi-word CAS operation, denoted MWCAS2. A wait-free
transaction optimistically applies a MWCAS operation; if it fails,
it asks help from a transaction that did succeed. Our methodology
is different in many aspects. Most importantly, while Moir’s trans-
actions always go through the costly MWCAS operation, which
requires, among other things, (logically) locking and unlocking all
words referenced by the transaction using expensive atomic opera-
tions, our methodology lets most operations finish on the (efficient)
fast path, especially in the low contention scenario. The fast path is
in practice as fast as the underlying lock-free implementation (e.g.,
in the queue shown in Section 4, the dequeue operation on the fast
path requires just a single CAS).

Recently, Fatourou and Kallimanis [5] suggested a wait-free
universal construction, where they utilize the idea of operation
combining [8, 27]. There, a thread accessing the data structure cre-
ates a copy of the state of the global object, applies its operation
along with all other pending operations of threads accessing the
data structure concurrently, and tries to update the shared pointer
(to the state of the simulated object) to point to the local (modi-
fied) copy of the object’s state. This technique produces efficient
wait-free algorithms for data structures having a small state (in
particular, the queue and the stack), but is not efficient for data
structures with larger states (such as linked-lists, trees, or hash
tables). Moreover, the construction in [5] builds on the availabil-
ity of a Fetch&Add atomic primitive that has an additional ”wait-
free” guarantee in the hardware: it is required that when several
Fetch&Add operations conflict, they will be served in a starvation-
free manner. This Fetch&Add instruction, especially with the ad-
ditional guarantee, is not universally supported. Without this prim-
itive, the construction becomes lock-free, and the performance de-
grades significantly [5].

3. The fast-path-slow-path methodology
Our methodology for constructing fast wait-free data structures is
shown schematically in Figure 1. In a nutshell, the idea is that: each
operation is built from a fast path and a slow path, where the former
is a version of a lock-free implementation of that operation, and the
latter is a version of a wait-free implementation. Both implementa-
tions are customized to cooperate with each other. Each thread first
tries to apply its operation using the fast path. In most lock-free
algorithms known to us, a thread tries to apply its operation by per-
forming CAS (or equivalent) primitives on shared variables until it
succeeds; if it fails, the thread retries the operation from the begin-
ning (or some other earlier stage) (e.g., [4, 7, 9] and many others).
In our approach, we limit the number of such retries by a global
parameter, called MAX FAILURES (denoted by X in Figure 1).

If a thread succeeds in applying its operation on the data struc-
ture in less than MAX FAILURES trials, it finishes (i.e., returns
the execution to the caller of that operation). If a thread fails in
MAX FAILURES trials, it realizes there is high contention and moves
to the slow path. There, it publishes its intention to apply an opera-

2 Moir provides an implementation of MWCAS, which he calls ”condition-
ally wait-free”, i.e., a lock-free implementation that accepts a call-back for
an external helping mechanism. See [21] for details.



no

no

yes
Success? return

to help?
Do I need

yes

try to apply my op

try to apply my op

(at most X times)

help slow op

using a fast path

using a slow path
(until successful)

Figure 1. The fast-path-slow-path methodology.

tion in a special state array. This array holds one entry per thread,
and contains information on the type of operation being applied
and a phase number. The latter is a simple counter increased by
the thread every time it enters the slow path. After the operation is
published in state, the thread keeps trying to apply it by following
the slow path until it succeeds.

To achieve wait-freedom, we need to ensure that the number
of trials in the slow path is bounded. For this purpose, we employ
a delayed helping mechanism, which is based upon an auxiliary
array of helping records. Thus, in addition to an entry in the state
array, each thread maintains a helping record reci. There, it stores
the ID of another thread, curTidi, and a phase number, lastPhasei.
When a thread ti starts an operation on the data structure, and
before it enters the fast path, it checks whether the thread curTidi
is trying to apply an operation with the same phase number as was
recorded earlier in lastPhasei. If so, ti helps curTidi first to apply
the operation. In any case, ti updates its helping record with the ID
of the next thread (i.e., curTidi +1 modulo the number of threads)
and with the phase number of that next thread, which is read from
the state array. Only afterwards does ti proceed with the fast path
and, if necessary, with the slow path (cf. Figure 1).

Note that in contrast to many wait-free algorithms (e.g., [3, 5,
11, 15, 21]), this helping mechanism does not require a thread to
help another concurrently running operation the moment the thread
realizes there is contention. Rather, the helping is delayed to the
next time the thread accesses the data structure, in the hope that the
contending operation will be finished by that time and no further
helping will be necessary.

In order to reduce the amortized management cost of helping
records, we enhance the helping mechanism further by adding a
counter, called nextChecki, to each helping record reci. Each time a
thread ti creates a new helping record, ti sets the nextChecki counter
to a predefined HELPING DELAY constant. On ti’s next operations

on the data structure, ti decrements the nextChecki counter for
each operation. Only when this counter reaches zero, does ti check
whether its help to curTidi is required. Thus, ti actually checks
whether its help is required only once in its HELPING DELAY op-
erations.

4. Fast wait-free queue
In this section, we show how the design methodology presented in
Section 3 is applied to construct a fast wait-free queue. The design
of the fast path and the slow path is based on the lock-free queue by
Michael and Scott [20] (referred to hereafter as the MS-queue) and
the recent wait-free queue by Kogan and Petrank [15] (referred to as
the KP-queue), respectively. A brief description of the key design
features of these two algorithms can be found in Appendix A.

Since the design of the MS-queue was published, several papers
have proposed various optimized lock-free queues (e.g., [16, 22]).
Yet, we chose to base our example on the MS-queue mainly due
to its simplicity. We stress that the main purpose of this work
is to create a wait-free implementation that is in practice as fast
as the lock-free one, thus, obtaining wait-freedom without paying
a performance cost. We do not presume to improve on the most
efficient concurrent data structures available today.

4.1 Implementation details
4.1.1 Auxiliary structures
Similarly to many dynamically-allocated queues, our queue is
based on an internal singly-linked list with references maintained
to its head and tail, denoted, respectively, as head and tail. The
auxiliary structures for list nodes, as well as for helping records
and entries of the state array that were described in Section 3, are
given in Figure 2. Notice the enqTid field added to the Node class.
As described in Appendix A.2, this field is used in the KP-queue to
identify threads that are in the middle of their enqueue operations
in order to help them to complete these operation. In our case, this
field serves a similar purpose and helps to synchronize between
enqueue operations running on the slow and fast paths, as will be
explained in Section 4.1.2. For the dequeue operation, we use a
different mechanism (described below in this section) and thus do
not require an additional field in the Node class.

The OpDesc class serves to hold descriptors of operations exe-
cuted by threads on the slow path. Each thread maintains one in-
stance of this class in the array called state. OpDesc contains the
phase number (which counts the number of thread’s operations on
the slow path), the flags specifying whether the thread has a pend-
ing operation on the slow path and if so, its type, and a reference
to a list node; this reference has a meaning specific to the type of
operation. In addition, each thread maintains one helping record,
which is an instance of the HelpRecord class. The structure of
HelpRecord follows the design presented in Section 3. In partic-
ular, it contains fields for the ID of a thread that might need help,
the phase number recorded for that thread, and a counter used to
determine when the next check for helping should be performed.

The internal fields of the queue are given in Figure 3, and the
queue constructor is in Figure 4. While the tail reference main-
tained in our queue is implemented as an AtomicReference ob-
ject (like in the MS-queue [13]), the head reference is implemented
as an AtomicStampedReference object. The latter encapsulates a
reference to an object along with an integer stamp. Both reference
and stamp fields can be updated atomically, either together or in-
dividually (for more information, including how this object can be
implemented in C/C++ languages, refer to [13], pp. 235–236). In
our case, the stamp has a role similar to the enqTid field in Node,
i.e., to identify the thread that is in the middle of its dequeue oper-
ation on the slow path. More details are provided in Section 4.1.2.



1 class Node {
2 int value;
3 AtomRef<Node> next;
4 int enqTid;

5 Node (int val) {
6 value = val;
7 next = new

AtomRef<Node>();
8 enqTid = −1;
9 }

10 }

11 class OpDesc {
12 long phase;
13 boolean pending;
14 boolean enqueue;
15 Node node;

16 OpDesc (long ph, boolean pend,
boolean enq, Node n) {

17 phase = ph; pending = pend;
18 enqueue = enq; node = n;
19 }
20 }

21 class HelpRecord {
22 int curTid;
23 long lastPhase;
24 long nextCheck;

25 HelpRecord() { curTid = −1; reset(); }

26 void reset() {
27 curTid = (curTid + 1) %

NUM THRDS;
28 lastPhase = state.get(curTid).phase;
29 nextCheck = HELPING DELAY;
30 }
31 }

Figure 2. Auxiliary structures.

32 AtomStampedRef<Node> head;
33 AtomRef<Node> tail;

34 AtomRefArray<OpDesc> state;
35 HelpRecord helpRecords[];

Figure 3. Queue class fields.

36 FastWFQueue () {
37 Node sentinel = new Node(−1);
38 head = new AtomicStampedReference<Node>(sentinel, −1);
39 tail = new AtomicReference<Node>(sentinel);

40 state = new AtomicReferenceArray<OpDesc>(NUM THRDS);
41 helpRecords = new HelpRecord[NUM THRDS];

42 for (int i = 0; i < state.length(); i++) {
43 state.set(i, new OpDesc(−1, false, true, null));
44 helpRecords[i] = new HelpRecord();
45 }
46 }

Figure 4. Queue constructor.

47 void help if needed() {
48 HelpRecord rec = helpRecords[TID];
49 if (rec.nextCheck−− == 0) {
50 OpDesc desc = state.get(rec.curTid);
51 if (desc.pending && desc.phase == rec.lastPhase) {
52 if (desc.enqueue) help enq(rec.curTid, rec.lastPhase);
53 else help deq(rec.curTid, rec.lastPhase);
54 }
55 rec.reset();
56 }
57 }

Figure 5. The method called by threads at the entrance to the fast path.
It helps an operation on the slow path if this help is necessary.

4.1.2 Fast path
Do I need to help? Before attempting to apply an operation on
the fast path, a thread ti invokes the help if needed() method,
where it checks whether some other thread needs its help (Fig-
ure 5). The thread ti executing this method reads its helping record
(Line 48). According to the value of the nextCheck counter, ti de-
cides whether it has to check the status of the thread whose ID is
written in the record (Line 49). If so, it accesses the entry of that
thread (denote it as t j) in state, and checks if t j has a pending op-
eration with a phase number equal to lastPhase (from ti’s helping
record) (Lines 50–51). In such a case, ti helps to complete t j’s oper-
ation according to the type of operation written in t j’s operation de-
scriptor (Lines 52–53). The methods help deq() and help enq()
are part of the slow path and are explained in Section 4.1.3. Fi-
nally, ti resets its helping record (Line 55), recording the current
phase number of the next thread (in a cyclic order) and setting the
nextCheck counter to the HELPING DELAY value (cf. Figure 2).

Enqueue operation The details of the enqueue operation exe-
cuted by threads running on the fast path are provided in Fig-
ure 6. A thread ti starts with a call to the help if needed()
method (Line 59), which was explained above. Next, ti initializes
the trials counter and tries to append a new node to the end of
the internal linked-list. The number of such trials is limited by the
MAX FAILURES parameter, which controls when ti will give up and
switch to the slow path. Each trial is similar to the one performed in
the MS-queue, that is, ti identifies the last node in the list by reading
tail (Line 63) and tries to append a new node after that last node
with a CAS (Line 67). The only difference from the MS-queue is
in the way tail is fixed when ti identifies that some enqueue op-
eration is in progress (i.e., tail references some node whose next
reference is different from null). In the MS-queue, the fix is done
by simply updating tail to refer to the new last node. In our case,
the fix is carried out by the fixTail() method, which is aware of
the existence of the slow path. In particular, it checks whether the

enqTid field of the last node in the list is set to a default value −1
(Line 79). If so, it means that the last node was inserted into the list
from the fast path, and thus tail can simply be updated to refer
to it (as done in the MS-queue). Otherwise, the last node was in-
serted from the slow path. Thus, we need first to update the entry
in the state array corresponding to the thread whose ID = enqTid
(clearing its pending flag), and only after that can we update tail.
(Without updating state, we may create a race between threads
trying to help the same enqueue operation on the slow path). This
functionality is carried out by help finish enq(), explained in
Section 4.1.3.

Finally, if ti fails to append a new node within MAX FAILURES
trials, it calls the wf enq() method (Line 76), which transfers the
execution of the enqueue operation to the slow path.

Dequeue operation Figure 7 provides the details of the dequeue
operation executed by threads running on the fast path. Sim-
ilarly to enqueue, the dequeue operation starts with calling
help if needed() (Line 86) and initializing the trials counter
(Line 87). In the while loop (Lines 88–108), a thread tries to update
head to refer to the next element in the queue (or throw an excep-
tion if it finds the queue empty). If the thread fails to complete this
in MAX FAILURES trials, it switches to the slow path, calling the
wf deq() method (Line 109).

We use a slightly modified version of the while loop of the
dequeue operation in the MS-queue [20]: as in the MS-queue,
when a queue is found to be empty (Line 93) but there is an
enqueue operation in progress (Line 97), the dequeuing thread
helps to complete that enqueue first. In our case, however, the
dequeuing thread needs to be aware of the path on which the
enqueue operation is progressing. For this purpose, we use the
fixTail() method described above.

We also modify the original MS-queue implementation with re-
gard to how the removal of the first element of the queue is handled.
As in the case of enqueue, we need to synchronize between con-



58 void enq(int value) {
59 help if needed(); // check first if help is needed
60 Node node = new Node(value);
61 int trials = 0; // init the trials counter
62 while (trials++ < MAX FAILURES) {
63 Node last = tail.get();
64 Node next = last.next.get();
65 if (last == tail.get()) {
66 if (next == null) { // enqueue can be applied
67 if (last.next.compareAndSet(next, node)) {
68 tail.compareAndSet(last, node);
69 return;
70 }
71 } else { // some enqueue operation is in progress
72 fixTail(last, next); // fix tail, then retry
73 }
74 }
75 }
76 wf enq(node); // switch to the slow path
77 }

78 void fixTail(Node last, Node next) {
79 if (next.enqTid == −1) { // next node was appended on the fast path
80 tail.compareAndSet(last, next);
81 } else { // next node was appended on the slow path
82 help finish enq();
83 }
84 }

Figure 6. The enqueue operation on the fast path.

85 int deq() throws EmptyException {
86 help if needed(); // check first if help is needed
87 int trials = 0; // init the trials counter
88 while (trials++ < MAX FAILURES) {
89 Node first = head.getReference();
90 Node last = tail.get();
91 Node next = first.next.get();
92 if (first == head.getReference()) {
93 if (first == last) { // queue might be empty
94 if (next == null) { // queue is empty
95 throw new EmptyException();
96 }
97 fixTail(last, next); // some enqueue operation is in progress
98 } else if (head.getStamp() == −1) {
99 // no dequeue was linearized on the slow path

100 int value = next.value;
101 if (head.compareAndSet(first, next, −1, −1)) {
102 return value;
103 }
104 } else { // some dequeue was linearized on the slow path
105 help finish deq(); // help it to complete, then retry
106 }
107 }
108 }
109 return wf deq(); // switch to the slow path
110 }

Figure 7. The dequeue operation on the fast path.

current dequeue operations running on the fast and slow paths. For
this purpose, we use the stamp of the head reference. As explained
in Section 4.1.3, the dequeue operation run by a thread t j on the
slow path is linearized when t j writes the ID of the thread for which
the dequeue is performed (i.e., j or the ID of the thread helped by
t j) into the head’s stamp. Thus, in the fast path, a thread ti checks
first if the head’s stamp holds a default (−1) value (Line 98). If
so, then as in the original MS-queue, ti tries to update head to re-
fer to the next node in the underlying list (Line 101). Otherwise, ti
realizes that the first element of the queue has been removed by a
dequeue operation that runs on the slow path. Thus, ti helps first to
complete that dequeue operation (Line 105) by updating the state
of the thread whose ID is written in the head’s stamp and swinging
head to refer to the next node in the linked-list. This is done by the
help finish deq() method, which is explained in Section 4.1.3.

4.1.3 Slow path
Enqueue operation The enqueue operation run by a thread ti
on the slow path is given in Figure 8. It starts from writing a new
operation descriptor into the entry of ti in the state array. The new
descriptor is created with a phase number increased by 1 from the
value that appears in the previous descriptor of ti. Essentially, the
phase number counts the number of operations run by a thread on
the slow path. Also, ti updates the enqTid field of the new node
it tries to insert into the linked-list, with its ID (i in this example).
Afterwards, ti calls the help enq() method.

The help enq() method is executed either by a thread that
tries to enqueue a new element on the slow path, or by a thread
that starts a fast path and has decided to help another thread (this is
the method called from help if needed()). Its implementation is
similar to that of the KP-queue. A thread tries to append a new node
to the end of the linked-list as long as the corresponding enqueue
operation remains pending, i.e., as long as it was not completed
by another concurrently running and helping thread. When the
thread succeeds to append the new node (by swinging the next
reference of the last node in the list to refer to the new node), it
calls help finish enq(), where it clears the pending flag in the

entry in state of the thread for which it executed help enq() and
updates tail to refer to the newly appended node.

Dequeue operation Similarly to enqueue, the dequeue opera-
tion run by threads on the slow path starts with writing a new
operation descriptor into the state array (cf. Figure 9). After-
wards, the help deq() method is called. This method is also
called by threads that decide to help another dequeue operation
in help if needed().

In help deq(), assuming the queue is not empty, a thread
ti tries to write its ID (or the ID of the thread that it helps in
help if needed()) into the stamp in head. Once ti succeeds in
doing so, the dequeue operation of ti (or the thread helped by ti)
has been linearized. This explains why we actually need head to be
stamped. If, for instance, we used a deqTid field in list nodes and
linearize an operation on the slow path at a successful update of this
field (as done in the KP-queue), a race between dequeue operations
run on the fast and slow paths might ensue: While the operation
on the fast path is linearized at the instant the head reference is
updated, the operation on the slow path would be linearized when
the deqTid field of the first node in the queue is modified.

Following the write of thread’s ID into the stamp, ti calls
help finish deq(), where the pending flag of the linearized
dequeue operation is cleared and head is fixed to refer to the next
node in the underlying linked-list.

4.2 Correctness
In the short version of our paper, we provide only the highlights
of the proof that the given implementation of the concurrent queue
is correct and wait-free, deferring the further details to the longer
version. In particular, we review the computation model, define
linearization points for queue operations, and explain why our
algorithm guarantees wait-freedom.

4.2.1 Computation model
Our model of a concurrent multithreaded system follows the lin-
earizability model defined in [14]. In particular, we assume that
programs are run by n deterministic threads, which communicate
by executing atomic operations on shared variables from some pre-



111 void wf enq(Node node) {
112 long phase = state.get(TID).phase + 1; // increase the phase counter
113 node.enqTid = TID;
114 // announce enqueue
115 state.set(TID, new OpDesc(phase, true, true, node));
116 help enq(TID, phase); // help your own operation to complete
117 help finish enq(); // make sure tail is properly updated[15]
118 }

119 void help enq(int tid, long phase) {
120 while (isStillPending(tid, phase)) {
121 Node last = tail.get();
122 Node next = last.next.get();
123 if (last == tail.get()) {
124 if (next == null) { // enqueue can be applied
125 // avoid racing with other helping threads [15]
126 if (isStillPending(tid, phase)) {
127 // try to append the new node to the list
128 if (last.next.compareAndSet(next,state.get(tid).node)) {
129 help finish enq();
130 return;
131 }
132 }
133 } else { // some enqueue operation is in progress
134 help finish enq(); // help it first, then retry
135 }
136 }
137 }
138 }

139 void help finish enq() {
140 Node last = tail.get();
141 Node next = last.next.get();
142 if (next != null) {
143 // read the enqTid field of the last node in the list
144 int tid = next.enqTid;
145 if (tid != −1) { // last node was appended on the slow path
146 OpDesc curDesc = state.get(tid);
147 if (last == tail.get() && state.get(tid).node == next) {
148 // switch the pending flag off
149 OpDesc newDesc =

new OpDesc(state.get(tid).phase, false, true, next);
150 state.compareAndSet(tid, curDesc, newDesc);
151 tail.compareAndSet(last, next); // update tail
152 }
153 } else { // last node was appended on the fast path
154 tail.compareAndSet(last, next); // update tail
155 }
156 }
157 }

Figure 8. The enqueue operation on the slow path.

defined, finite set. Threads are run on computing cores, or proces-
sors, and the decision which thread will run when and on which
processor is made solely by a scheduler. Normally, the number of
processors is much smaller than the number of threads. Each thread
is assumed to have an ID in a range between 0 and n− 1. In fact,
this assumption can be easily relaxed by means of a wait-free re-
naming algorithm (e.g., [1]). We also assume that each thread can
access its ID and the value of n.

When scheduled to run, a thread performs a sequence of com-
putation steps. Each step is either a local computation or an atomic
operation on at most one shared variable. We assume that the shared
memory supports atomic reads, writes, and compare-and-swap op-
erations. The latter, abbreviated as CAS, is defined with the follow-
ing semantics: CAS(v, old, new) changes the value of the shared
variable v to new (and returns true) if and only if its value just
before CAS is applied is equal to old. We refer to such CAS opera-
tions as successful. Otherwise, the value of v is unchanged, false
is returned, and we refer to such CAS operations as unsuccess-
ful. Note that we do not require any special operations to sup-
port stamped shared variables. Such variables, required by our im-
plementation, can be implemented with atomic operations men-

158 int wf deq() throws EmptyException {
159 long phase = state.get(TID).phase + 1; // increase the phase counter
160 // announce dequeue
161 state.set(TID, new OpDesc(phase, true, false, null));
162 help deq(TID, phase); // help your own operation to complete
163 help finish deq(); // make sure head is properly updated [15]

164 Node node = state.get(TID).node; // check the node recorded in state
165 if (node == null) { // dequeue was linearized on the empty queue
166 throw new EmptyException();
167 }
168 // return the value of the first non−dummy node [15]
169 return node.next.get().value;
170 }

171 void help deq(int tid, long phase) {
172 while (isStillPending(tid, phase)) {
173 Node first = head.getReference();
174 Node last = tail.get();
175 Node next = first.next.get();
176 if (first == head.getReference()) {
177 if (first == last) { // queue might be empty
178 if (next == null) { // queue is empty
179 OpDesc curDesc = state.get(tid);
180 if (last == tail.get() && isStillPending(tid, phase)) {
181 // record null in the node field,
182 // indicating that the queue is empty
183 OpDesc newDesc =

new OpDesc(state.get(tid).phase, false, false, null);
184 state.compareAndSet(tid, curDesc, newDesc);
185 }
186 } else { // some enqueue operation is in progress}
187 help finish enq(); // help it first, then retry
188 }
189 } else {
190 OpDesc curDesc = state.get(tid);
191 Node node = curDesc.node;
192 // avoid racing with other helping threads [15]
193 if (!isStillPending(tid, phase)) break;
194 if (first == head.getReference() && node != first) {
195 OpDesc newDesc =

new OpDesc(state.get(tid).phase, true, false, first);
196 // try to record a reference to the first node in the list
197 if (!state.compareAndSet(tid, curDesc, newDesc)) {
198 continue;
199 }
200 }
201 head.compareAndSet(first, first, −1, tid); // try to stamp head
202 help finish deq(); // help thread that won the stamp to complete
203 }
204 }
205 }
206 }

207 void help finish deq() {
208 Node first = head.getReference();
209 Node next = first.next.get();
210 int tid = head.getStamp(); // read the stamp on head
211 if (tid != −1) { // last dequeue was linearized on the slow path
212 OpDesc curDesc = state.get(tid);
213 if (first == head.getReference() && next != null) {
214 // switch the pending flag off
215 OpDesc newDesc =

new OpDesc(state.get(tid).phase, false, false, state.get(tid).node);
216 state.compareAndSet(tid, curDesc, newDesc);
217 head.compareAndSet(first, next, tid, −1); // update head
218 }
219 } // last dequeue was linearized on the fast path − nothing to do here
220 }

221 boolean isStillPending(int tid, long ph) {
222 return state.get(tid).pending && state.get(tid).phase <= ph;
223 }

Figure 9. The dequeue operation on the slow path.



tioned above either by introducing a level of indirection (this is how
AtomicStampedReference in Java is implemented) or by stealing
a few bits from the value of the variable [13].

A concurrent queue is a data structure with operations lineariz-
able [14] to those of a sequential queue. The latter supports two op-
erations: enqueue and dequeue. The first operation accepts an el-
ement as an argument and inserts it into the queue. The second op-
eration does not accept any argument, and removes and returns the
oldest element from the queue. If the queue is empty, the dequeue
operation returns a special value (or throws an exception).

4.2.2 Linearizability
The operations of the concurrent queue presented above are com-
posed of the fast and slow paths. Thus, each operation has lin-
earization points on each of the two paths, where the points on the
slow path can be reached only if the points on the fast path are
not reached. Given an operation executed by a thread ti, note that
the source lines corresponding to the linearization points on the fast
path can be executed only by ti, while the lines corresponding to the
linearization points on the slow path can be executed either by ti or
by any other thread t j that tries to help ti by running help enq()
or help deq() from help if needed(). In the definition below,
we refer to a dequeue operation that returns a value as successful,
while a dequeue that ends by throwing an exception is referred to
as unsuccessful. An enqueue operation is always successful.

Definition 1. The linearization points for operations applied on
the fast path are as follows:

• An enqueue operation is linearized at the successful CAS in
Line 67.

• A successful dequeue operation is linearized at the successful
CAS in Line 101.

• An unsuccessful dequeue operation is linearized in Line 90.

The linearization points for operations applied on the slow path
are as follows:

• An enqueue operation is linearized at the successful CAS in
Line 128.

• A successful dequeue operation is linearized at the successful
CAS in Line 201.

• An unsuccessful dequeue operation is linearized in Line 174.

Note that the linearization points on the fast path correspond
to the linearization points of the MS-queue [20]. Similarly, the lin-
earization points for operations applied on the slow path correspond
to the points of the KP-queue [15]. The proof of correctness of
the linearization points defined above is far beyond the scope of
this short paper. Our full proof is composed of two parts. First, we
show that nodes corresponding to queue elements are inserted and
removed to/from the queue according to the FIFO semantics. In the
second part of the proof, we show that each operation executed on
the slow path is linearized exactly once.

4.2.3 Wait-freedom
We provide an overview of the proof of the wait-free progress guar-
antee. This proof also has two parts. First, we show that the al-
gorithm is lock-free. For this purpose, we prove that every time
a thread fails to linearize an operation, either by applying an un-
successful CAS or by failing to pass one of the verification con-
ditions in the if-statements (e.g., in Lines 65, 66, 92, etc.), some
other thread makes progress and does succeed in linearizing an op-
eration. The proof is based on a straightforward inspection of code
lines that modify the underlying linked-list, in a way similar to the
lock-freedom proof in [20].

The second part of our proof shows that the number of steps
taken by a thread before its pending operation is linearized, is

limited. The following lemma is at the heart of this part. For brevity,
we refer to the HELPING DELAY and MAX FAILURES constants by D
and F , respectively.

Lemma 1. The number of steps required for a thread to complete
an operation on the queue is bounded by O(F +D ·n2).

Sketch of proof: Consider a pending operation run by a thread ti
on the slow path. In the worst case, this operation will remain
pending until all other threads in the system decide to help it to
complete (in Line 52 or Line 53). A thread t j will decide to help
ti after it completes at most O(D · n) operations. This is because
t j might complete up to D operations before it decides to help a
thread whose ID is written in t j’s helping record, and t j might help
all other n− 1 threads before it gets to ti. However, once t j starts
helping ti, it will not stop helping it until ti actually makes progress.
Thus, the number of operations that might linearize before all
other threads decide to help ti is O(D · n2). Furthermore, since
the algorithm is lock-free, it is guaranteed that once all threads
are helping ti, the operation of ti will be completed in a constant
number of steps.

Now consider the thread ti when it starts its operation on the
queue on the fast path. It may realize in help if needed() that it
needs to help another thread tk before attempting to execute its own
operation. Following similar arguments, the number of operations
that might linearize before ti returns from help if needed() is
bounded by O(D · n2). Afterwards, ti makes several attempts to
linearize its operation on the fast path. Given that the algorithm
is lock-free, it might fail if during its attempts other operations
succeed to linearize. As the number of such attempts is limited by
MAX FAILURES, after at most O(F) steps ti will switch into the slow
path, and by the above argument will complete its operation in at
most O(D ·n2) steps. Thus, after at most O(F+D ·n2) steps in total,
ti will complete its operation.

4.3 Performance
In our performance study, we compare our fast wait-free queue
with the lock-free MS-queue and the wait-free KP-queue. For the
MS-queue, we use the Java implementation given in [13]. The KP-
queue has several versions presented in [15]; for our study, we
use the optimized one. We employ several versions of the fast
wait-free queue, each configured with different MAX FAILURES and
HELPING DELAY parameters. We denote by WF(x,y) the version
with MAX FAILURES set to x and HELPING DELAY set to y.

The study was carried out on a machine featuring a shared-
memory NUMA server with 8 quadcore AMD 2.3GHz processors
(32 physical cores in total), operating under Ubuntu 10.10 and in-
stalled with 16GB RAM attached to each processor. All tests were
run in OpenJDK Runtime version 1.6.0 update 20, using the 64-Bit
Server VM, with -Xmx16G -Xms16G flags. In our tests, we varied
the number of threads between 1 and 64. Starting with an empty
queue, we performed two common queue benchmarks [15, 16, 20].
First, we ran the enqueue-dequeue benchmark, where each thread
performs numerous (100000, in our case) iterations of an enqueue
operation followed by a dequeue operation. Second, we ran the
50%-enqueue benchmark, where on each iteration every thread
randomly chooses which operation to perform with equal chances
to enqueue and dequeue (with 100000 iterations per thread). Note
that the queue in both benchmarks remains short or even empty,
maximizing the contention between threads performing enqueue
and dequeue. To mimic local computations performed by threads
after accessing the queue, we inserted a small and random delay af-
ter each operation on the queue [16, 20]. The delay was achieved by
running some simple calculation in a loop with a randomly chosen
number of iterations [16]. We note that the results in tests without
local computations were qualitatively the same.
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Figure 10. Total completion time for various queues and the enqueue-dequeue benchmark.
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Figure 12. Percentage of operations that help other operations
(enqueue-dequeue benchmark).

We report the total completion time for each of the tested
queues, as well as some interesting statistics on the number of
operations that actually use the slow path and those that actually
decide to help. Each reported point is an average of ten experiments
run with the same parameters. We note that the standard deviation
(not shown for the sake of readability) for the total completion time
figures was up to 15%, with the majority of results having devi-
ation around 8% and below. (In our tests on other machines with
fewer cores, the standard deviation was smaller than that). Other
results, concerning the statistics of the executions, were much nois-
ier, as they depended on the actual execution interleaving created
by the system scheduler. Nonetheless, every reported performance
phenomenon was reproduced in several repeated runs of our bench-
marks.

Figure 10 summarizes the total completion time numbers for
various queue implementations and the enqueue-dequeue bench-
mark. In particular, Figure 10a shows that the WF(0,0) version

exhibits performance very close to that of the KP-queue, while
both queues perform roughly 3 times worse than the MS-queue.
This happens since all operations in WF(0,0) use only the slow
path, which is far less efficient then the MS-queue. Increasing the
MAX FAILURES and HELPING DELAY parameters reduces the num-
ber of operations that require the slow path. In fact, when both pa-
rameters are set to 100, the fast wait-free queue steadily achieves
performance similar to that of the MS-queue. Consequently, these
results demonstrate that our wait-free design can achieve the per-
formance and scalability of a lock-free algorithm.

Our other experiments (as shown in Figure 10b) suggest that
giving threads the chance to complete their operation on the fast
path (i.e., increasing the number of trials) is highly effective (e.g.,
the performance of WF(10,0) is similar to WF(10,10)). On the
other hand, reducing their helping work (by increasing the delay
in making an attempt to help other threads) does not change the
performance significantly (e.g., the performance of WF(0,10) is
similar to WF(0,0)). Note that even when a thread ti provides help
on each operation (i.e., when HELPING DELAY=0), it only helps
another thread t j that did not make progress since ti’s previous
operation. As shown below, this small delay already ensures that
the amount of work put into the helping effort is limited.

Figure 11 shows the performance results for the 50%-enqueue
benchmark. In general, all queue implementations exhibit similar
behavior as in the enqueue-dequeue benchmarks, but the total
completion time numbers are 2 time smaller. This is because in
the 50%-enqueue benchmark, each thread performs half of the
operations of the first benchmark. We note that all measured queues
produced similar relative behavior in both benchmarks. Thus, due
to lack of space, we will focus only on the enqueue-dequeue
benchmark for the rest of this section.

Figure 12 shows the percentage of queue operations that de-
cide to help other operations in the help if needed() method.
Here, increasing the MAX FAILURES parameter decreases the num-
ber of times threads help other operations to complete. As we
will see below, this is a side-effect of the fact that, with a higher
MAX FAILURES parameter, fewer operations enter the slow path and
request help. At the same time, increasing the HELPING DELAY pa-
rameter has a much greater effect even though all operations hav-
ing MAX FAILURES set to 0 enter the slow path. This shows that the
delayed helping can potentially reduce the amount of redundant
work created by threads helping each other. It is interesting also
to note that the percentage of helping operations for all queues in-
creases until the number of threads reaches the number of available
cores (32) and then slightly, but continuously decreases. The first
phenomenon is explained by increased contention, i.e., more op-
erations are repeatedly delayed due to contention and thus helped
by others. When the number of threads goes beyond the number
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Figure 13. Percentage of enqueue (a) and dequeue (b) operations completing on the slow path (enqueue-dequeue benchmark).

of cores, at every moment of execution some threads are switched
off. Attempts to help them either return immediately because these
threads have no active pending operations, or require one help op-
eration. Once this help is done, no further help operations are exe-
cuted until the thread regains execution. Thus, a smaller percentage
of the total number of operations actually help other operations.

Finally, Figures 13a and 13b show the percentage of dequeue
and enqueue operations that enter the slow path, respectively. For
the former, 3 trials are almost always sufficient to ensure that only
20–30% of the operations complete on the slow path. At the same
time, for the latter, in order to avoid many operations from enter-
ing the slow path, a higher value of MAX FAILURES is required.
This might be because dequeue is more efficient, requiring just
one CAS. Thus, the chances are greater that a dequeue operation
running on the fast path will complete with just a few trials. Note
that for both operations, setting MAX FAILURES to 100 almost elim-
inates the use of the slow path. Essentially, this number depends on
the maximal contention level in the system. (In our tests on other
machines with fewer cores, not reported here due to space limits,
this number was significantly lower).

Given these results, one may ask why not just always use large
values for both parameters so that the slow path will not be used?
The proof sketch of the wait-freedom property in Section 4.2 shows
that these parameters govern the bound on the worst-case time re-
quired to complete each operation on the queue. Thus, they control
the tradeoff between the practical performance and the theoretical
bound on the worst-case completion time of each operation.

4.4 Memory management
The implementation of our queue is provided in Java, a garbage-
collected language, which simplifies the memory management and
avoids problems related to it, such as the ABA problem [13]. We
have also implemented our queue in C using the Hazard Pointers
technique [19] for memory management. Although only minor
modifications to the algorithm are required, their precise details are
beyond the scope of this short paper.

5. Summary
We presented the fast-path-slow-path methodology for creating
fast and scalable wait-free data structures. The key feature in this
methodology is designing each operation as a combination of the
fast path and the slow path. Good performance is achieved when
the fast path is extensively utilized and due to the fact that con-
current operations can proceed on both paths in parallel. Our mea-
surements show that most operations can complete without facing
too many failed attempts, even in a highly concurrent environment.
Thus, operations almost always complete using the fast path only,
and the execution is fast. The application of our methodology is

demonstrated in this paper by constructing a new wait-free queue.
The performance evaluation of the obtained queue shows that it can
be as fast as the efficient lock-free queue of Michael and Scott [20].
Subsequent work [23] utilizes our methodology to improve the per-
formance of a wait-free linked-list.
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A. Building blocks
In our work we show a design methodology, which, when applied
on a lock-free and a wait-free version of a data structure, can
derive a new wait-free algorithm that will be as fast and scalable
as the given lock-free algorithm. In this paper, the application of
this methodology is exemplified by a construction of a new and
fast wait-free queue algorithm. In order to provide the required
background for understanding the design of this construction, we
briefly review the principle ideas behind the lock-free queue by
Michael and Scott [20] and the recent wait-free queue by Kogan
and Petrank [15]. These two queues are referred to in the paper as
the MS-queue and the KP-queue respectively, and serve as a basis
for our new wait-free queue construction.

A.1 The lock-free MS-queue
The MS-queue [20] utilizes an internal singly-linked list of nodes,
which keeps elements of the queue. The algorithm maintains two
references to the head and tail of the list with corresponding names:
head and tail. In order to enqueue a new element, a thread creates
a new node with this element and verifies that tail indeed refers
the last node of the list (i.e., a node with the next reference set
to null). If not, the thread fixes tail first. Otherwise, the thread
tries to swing the next reference of that last node to refer to the
new node (using a CAS operation). If it succeeds, the thread fixes
tail to refer to the new node (using another CAS). Otherwise, it
realizes that some concurrently running thread has changed the list,
and restarts the operation.

The dequeue operation is even simpler. A thread reads the value
of the first node in the list and tries to swing head to refer to
the second node in the list (using CAS). If it succeeds, the thread

returns the value it has read; otherwise, it restarts the operation.
Special care is given to the case of an empty queue: If a thread
finds both head and tail referencing the same node and there is
no enqueue in progress (i.e., the next reference of that node is
null), an exception is thrown (or some other action is taken, such
as returning a special ⊥ value). If head and tail reference the
same node, but the next reference of that node is not null, the
dequeuing thread realizes that there is some enqueue in progress.
Thus, it first helps this enqueue to complete (by fixing tail) and
then reattempts its dequeue operation.

A.2 The wait-free KP-queue
The KP-queue [15] extends the ideas of the MS-queue in two
main directions. First, to guarantee wait-free progress, the KP-
queue utilizes a dynamic priority-based helping mechanism where
younger threads (having lower logical priority) help older threads
to apply their operations. The mechanism is implemented by means
of (1) an auxiliary state array, in which each thread writes details
on its current operation, and (2) phase numbers chosen by threads
in monotonically increasing order before they try to apply their
operations on the queue. Thus, when a thread ti wants to apply an
operation on the queue, it chooses a phase number that is higher
than phases of threads that have previously chosen phase numbers
for their operations. Then ti helps all threads with the phase number
smaller than or equal to ti’s phase (including itself) to apply their
pending operations. It learns about pending operations from the
state array.

Second, to ensure correctness, and in particular, to avoid ap-
plying the same operation more than once, the authors propose a
three-step scheme used to design each of the two queue opera-
tions, enqueue and dequeue. This scheme requires two new fields,
enqTid and deqTid, to be added to each node in the underlying
linked-list. These fields hold the ID of a thread that tries to insert
(or remove) a node to (from, respectively) the list. They are used
by other concurrently running threads to identify the thread that is
in the middle of an operation on the queue, and help it to complete
its operation in progress.

In more detail, in order to enqueue a new element, a thread ti
creates a new node with the enqTid field set to i. Then it writes a
reference to this node along with the chosen phase number into the
state array. Afterwards, ti proceeds by helping all threads with
a phase smaller than or equal to ti’s phase. When it reaches its
own operation, and provided its own operation was not completed
yet by another concurrently running and helping thread, ti tries to
put its new element at the end of the underlying list (using CAS).
If it succeeds, ti marks its operation as linearized (i.e., clears the
pending flag) in state (using another CAS) and attempts to fix
the tail reference (using a third CAS). If ti finds a node X behind
the node referred by tail, it reads the enqTid field stored in X,
marks the operation of the corresponding thread as having been
linearized, and only then fixes the tail reference and tries again to
insert its own node.

In order to dequeue an element from the queue, a thread t j
passes through the following four stages (after writing a new phase
in state and helping other threads, if necessary, and provided the
queue is not empty): (1) stores a reference to the first node of
the list in its entry in state; (2) tries to write its ID, j, into the
deqTid field of the first node in the list; (3) if successful, marks
its operation as linearized in its entry in state, and (4) swings the
head reference to the next element in the list. Each of the stages
corresponds to a CAS operation. Similarly to enqueue, if t j fails
in Stage (2), it reads the deqTid field stored in the first node of the
list, marks the operation of the corresponding thread as linearized,
fixes the head reference and tries again to remove another node
from the list.


