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Abstract
Two major efficiency parameters for garbage collectors are the
throughput overheads and the pause times that they introduce.
Highly responsive systems need to use collectors with as short
as possible pause times. Pause lengths have decreased significantly
during the years, especially through the use of concurrent garbage
collectors. For modern concurrent collectors, the longest pause is
typically created by the need to atomically scan the runtime stack.
All practical concurrent collectors that we are aware of must ob-
tain a snapshot of the pointers on each thread’s runtime stack, in
order to reclaim objects correctly. To further reduce the length
of the collector pauses, incremental stack scans were proposed.
However, previous such methods employ locks to stop the mutator
from accessing a stack frame while it is being scanned. Thus, these
methods introduce a potential long and unpredictable pauses for
a mutator thread. In this work we propose the first concurrent, in-
cremental, and lock-free stack scanning for garbage collectors, al-
lowing high responsiveness and support for programs that employ
fine-synchronization to avoid locks. Our solution can be employed
by all concurrent collectors that we are aware of, it is lock-free,
it imposes a negligible overhead on the program execution, and it
supports the special in-stack references existing in languages like
C#.

Categories and Subject Descriptors D.1.5 [Object-oriented Pro-
gramming]: Memory Management; D.3.3 [Language Constructs
and Features]: Dynamic storage management; D.3.4 [Proces-
sors]: Memory management (garbage collection); D.4.2 [Storage
Management]: Garbage Collection

General Terms Algorithms, Design, Performance, Reliability

Keywords Stack scanning, Lock-free data structures, Incremental
and Concurrent garbage collection
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1. Introduction
Garbage collection is widely acknowledged to speed up software
development while increasing security and reliability. Garbage-
collection has been incorporated into modern popular languages
such as C# or Java. However, garbage collectors may create pauses
in the execution of the application, and introduce an overhead that
reduces its efficiency. In this work, we concentrate on reducing
the pause times. We deal with the main disruptive element for
concurrent collectors and propose a method that reduces pauses
to the microsecond level, while hardly affecting the efficiency and
without using locks.

When garbage collection was first proposed and implemented,
the application was halted during garbage collection execution,
creating long pauses. In order to mitigate this problem, especially
on modern parallel platforms, concurrent garbage collectors were
proposed [26, 27, 12, 13, 8, 23, 6]. Concurrent garbage collectors
run concurrently with the application and only stop it for a short
synchronization phase in the beginning or end of the collection.
On-the-fly collectors are special concurrent collectors that never
need to stop all threads simultaneously. They stop the application
one thread at a time typically for scanning the thread runtime
stack [15, 14, 16, 17, 20, 3].

Thus, the major remaining pause bottleneck for modern on-the-
fly collectors is the stack scanning of a single thread. These collec-
tors require an atomic snapshot view of the stack in order to execute
correctly. In this paper, we propose an incremental, concurrent, and
lock-free stack scanning that is adequate for all known on-the-fly
collectors. Incremental means that the stack is not scanned at once,
but one frame at a time. Concurrent means that the collector may
scan the frames while the mutator thread is executing. This requires
some synchronization between the collector and mutator. However,
lock-freedom means that this synchronization is ensured at a fine-
grained level, without locks, and with progress guaranteed. In spite
of the incremental nature of the scan, the output of the stack scan-
ning procedure equals the one that would have been obtained by
an atomic snapshot of the stack. The main idea is to allow both the
collector and the mutator to scan the stack simultaneously. The mu-
tator thread is required to scan only a single frame at a time, only if
it is about to use or modify it, and only if the collector was not fast
enough to scan it earlier. This happens upon exit from a method,
and is executed with an efficient return barrier. It is expected that
much of the scanning work will be executed by the collector in par-
allel, off-loading management work from the application threads.

On top of being concurrent, incremental and lock-free, our
algorithm supports interaction between managed and unmanaged
code. In particular, it is possible to handle a stack that contains
frames of the managed language and frames that represent system



calls written using some low level language. It is also possible to
handle threads that are currently in the midst of performing system
calls and are not responding to the collector’s handshake requests1.

Our basic design is extended to support intra-stack pointers as
well as moving garbage collectors. Handling moving collectors
requires supporting a stack scan that may need to update pointers
to objects that have been relocated. In addition, we describe how
we deal with callee saved registers conventions.

Short pause times are needed most when high responsiveness
is required. Particularly in such cases, it is important that the syn-
chronization is fine-grained and locks are not taken. A program
task should not be delayed just because the collector acquires a
lock and is then preempted while holding it. Therefore, in order to
synchronize the concurrent actions of the collector and the muta-
tor thread in our method. The algorithm employs fine-grained syn-
chronization via a compare-and-swap (CAS) instruction which is
common to stock hardware. We do not employ the special DCAS
instruction, which typically simplifies synchronization but is not
commonly found on standard platforms.

We have implemented our algorithm on top of the BARTOK
compiler and runtime for C#. Measurements demonstrate pause
times at the level of a small number of microsecond and a negligible
throughput decrease.

Organization In Section 2 we survey some basic facts about on-
the-fly collectors and stack scanning for them. In Section 3 we de-
scribe the stack scanning method. In Section 4 we describe an ex-
tension for moving collectors and in Section 4.4 we describe an
extension to support for the intra-stack pointers of C#. Implemen-
tation and measurements are reported in Section 5 and related work
is described in Section 6. We conclude in Section 7.

2. On-the-fly Collection and Stack Scanning
Tracing garbage collectors trace the set of objects that are reachable
by the program, and then reclaim all objects not in this set. Mark-
sweep collectors mark the reachable objects and then sweep the
heap to reclaim all unmarked objects, whereas copying collectors
move all reachable objects to a reserved space, and then reclaim the
entire original space, which then becomes the reserved space for the
next collection. Reachability of objects relates to a set of pointers
that are directly accessible by the program, known as roots. This
set typically contains the runtime stack, the registers, and global
variables. The major component in this set and the one that typi-
cally requires most time to determine is the set of pointers on the
stack. Stack scanning is not only required for tracing collectors.
Reference-counting collectors maintain for each object a count of
pointers that reference it. Most reference-counting collectors em-
ploy the deferred reference counting method [11, 4, 20, 2, 7], which
also requires a stack scan during a collection. The pause times
of on-the-fly reference-counting collectors are mostly determined
by the time it takes to scan the stacks. Thus, on-the-fly tracing
and reference-counting collectors need an improved stack scanning
method if one needs to further reduce their pause times.

Since call stacks in principle can grow substantially in size, the
time it takes to scan the call stacks for roots can also grow substan-
tially. Garbage collectors that need to support high responsiveness
must therefore be able to bound the pause times caused by stack
scanning in order to provide any real-time guarantees.

On-the-fly collectors typically work in phases that are separated
by handshakes. For example, a collector may start with the stack
scanning phase, proceed with a heap tracing phase, a sweeping
phase, and finish by entering the idle phase. The mutator threads

1 Handshakes are a standard form of communication between the program
and an on-the-fly collector and they will be defined in Section 2.

are often required to be aware of the collector phase, so that they
can execute the appropriate memory barriers, or cooperate in scan-
ning their stacks, etc. In order to avoid intrusive messages that com-
municate a change of phase to the mutator threads, handshakes are
typically employed. To initiate a handshake, the collector raises a
global flag to announce a phase change. It then waits for all mu-
tator threads to acknowledge the change. A mutator thread checks
whether a request for a handshake has been issued once in a while
at its own pace. When it observes the request, the mutator thread
acknowledges the phase change by raising a flag that corresponds
to it. When all mutator threads acknowledge the change, the collec-
tor may proceed with performing the phase tasks. On a response to
a handshake request, the mutator thread is sometimes required to
perform some action. In particular, one of the handshakes is typi-
cally used to request all mutator threads to scan their stacks.

An important requirement that on-the-fly collectors make of
their stack scanning procedure is that it provides an atomic snapshot
of the stack. Namely, during the scan, the mutator thread is not al-
lowed to change the pointers on the stack. This seems to require that
the thread is halted during the scan. However, several researchers
have attempted to mitigate this requirement by letting the mutator
thread scan frames only before it is about to modify them and de-
lay the scanning of other frames to a later time [5, 9, 28]. The basic
idea that allows breaking the stack scanning into small increments,
is that recording the snapshot can be delayed for data that is not be-
ing modified. Thus, as the thread can only change the pointers on
the most recent stack frame, the scanning of the other frames can
be delayed until the thread finishes executing the current method.

Previous work had the following shortcomings. Baker [5] re-
quired the use of memory barriers on stack access, which impose
a penalty on the performance. Cheng and Blelloch [9] used a lock
to coordinate the work of the program and the collector [9], which
does not support lock-free programs and may cause an unexpected
pause if a lock holder is preempted. Yuasa et al. [28] do not allow
the collector to work concurrently with the collector, so the collec-
tor is halted until the mutator finishes the stack scan using a work-
based scheduling. This avoids synchronization but reduces con-
currency and creates a reduced MMU because of the work-based
scheduling. In this work we provide a concurrent incremental stack
scanning method that does not sacrifise efficiency or lock-freedom.

The call stack may interleave program frames (of managed
code) and frames that represent native or system calls (that usually
executes unmanaged code). We assume that no live object in the
program heap is reachable only from frames of unmanaged code,
and so we may skip tracing such frames. With moving collectors,
we assume that objects that are directly pointed to by these frames
are pinned and cannot be moved.2 This is guaranteed for C#. Fi-
nally, we assume that there is enough known structure in the frames
of the unmanaged code so that it is possible to jump over them
and scan only frames of managed code. In our design, if a mutator
thread is running unmanaged code (e.g., performing some system
call), the collector is allowed to acknowledge the handshake on the
mutator’s behalf and scan the call stack for it. In this case, the muta-
tor must cooperate upon returning to the managed code. However,
unlike prior designs, the mutator is not blocked until the collector
finishes the stack scanning.

Stack scanning typically requires compiler support. The com-
piler produces stack maps that indicate which slots in each stack
frame hold pointers at a given code-line execution. To find the ap-
propriate stack map to use, the scanning procedure must find the
call site address, which in turn requires finding the beginning of the
relevant stack frame.

2 Pinned objects are objects that are especially marked unmoveable for a
moving collector.



3. The Stack Scanning Algorithm
The basic idea is that when stack scanning is required, it is enough
to scan only the frame that the mutator is currently running, and
the rest of the stack may be scanned later. If the mutator is not
modifying older frames, taking a snapshot of the pointers on the
stack can be delayed, while the mutator is able to continue running
concurrently. The time in which this newest frame is atomically
scanned, is the time at which the stack snapshot should be taken.
All values in the stack existing at this time will be (later) recorded
into the resulting stack-scan output. This process may be thought
of as an analogue of the snapshot-at-the-beginning technique used
with concurrent garbage collection. However, a snapshot-at-the-
beginning concurrent collector typically assumes that the stack is
scanned atomically, when the program is stopped. We allow that
initial atomic phase to be broken into several shorter incremental
atomic sections in the execution.

The simplest scenario is that the mutator scans its newest frame,
and then continues running using that frame (and maybe producing
newer frames by making calls to more methods), while the collector
concurrently scans all older frames. The pause for the mutator is
limited in this case to a single stack frame scan. Furthermore, the
size of the largest possible stack frame can be bounded statically.
However, this simple case does not always hold, as the mutator may
exit its current method and move to an older stack frame, while
the collector is still scanning its stack. One possible solution is to
lock further mutator activities when that happens, until the collector
finishes the stack scan. However, this may pause the mutator for the
whole stack scanning time and nothing is gained.

In this work, we provide a solution that lets the collector and
mutator scan frames one by one concurrently. If the mutator is slow
in exiting frames, then the collector scans the frames one by one
until the entire stack is scanned. If the mutator exits methods fast, it
may arrive at a frame that has not yet been scanned by the collector.
In this case, it scans that frame itself before running the code of the
method that uses that frame. Namely, the mutator scans a frame
only if it is about to modify a frame that the collector has not yet
scanned. Naively, this method requires adding a test to all method
exits, which would create a noticeable overhead. We propose to use
a return barrier [18, 10, 28]. The return barrier adds no overhead
to the execution except when scanning work (i.e., a frame scan) is
required. Usually the collector will perform all the scanning work
and the mutator will hardly see any execution overhead.

To avoid further pauses originating from synchronization, we
design the entire cooperation between the mutator and the collec-
tor to be lock-free. Lock-freedom typically requires a special data
structure whose access uses no locks and that can properly synchro-
nize all the activity. In our algorithm, we design a special lock-free
stack-summary data structure, denoted by Summary-DS. Whenever
the mutator or the collector scans a stack frame, they record the
result (a list of addresses referenced from the stack frame) in the
Summary-DS. A stack summary of each stack frame is added to the
Summary-DS only once. Eventually the Summary-DS contains a
list of all stack pointers, that provide a snapshot of the stack and
can be used by the collector as roots for a marking phase.

The entire algorithm is lock-free (and even wait-free from the
mutator point of view) in the sense that a mutator thread never
needs to wait for the collector. Thus, it can be used with collectors
that support lock-freedom, such as [22, 21]. Two problems arise
from the lock-freedom requirement. First, the collector and the mu-
tator may concurrently update the Summary-DS. Thus, consistency
and uniqueness of the Summary-DS must be preserved. Second,
the collector may scan an outdated stack frame while the mutator is
changing the stack content. This may happen if the mutator has al-
ready scanned that frame, but the collector has not yet noticed this
fact. These issues will be addressed in the design below.

We use an important design principle that only the mutator is
allowed to write to the stack. The collector may read the stack and
help to gather information, but it never modifies the mutator’s stack.
This helps preventing races and is particularly important for the
moving-collector design.

3.1 The Return Barrier Mechanism
Return barrier [18, 10, 28] is a mechanism for trapping a return
from a specific method without adding a test code to the exit
procedure of all methods. This mechanism overwrites the return
address of the target method F on the stack with the address of
the return barrier code location, and saves the overwritten return
address in a predefined location (e.g., in the thread object). This
change does not effect any further execution, including entry to and
exit of any method except an exit from the specific instance of F
whose return address on the stack is replaced. When that instance
of F finishes executing and returns, the control is automatically
transferred to the return barrier code. At the end of the return
barrier code, the saved return address is retrieved and used to
return to the appropriate code location, which is the instruction that
immediately follows the call to F . Thus, after executing the return
barrier method, the program resumes at the original return address.

The return barrier mechanism is used to “trap” the mutator
thread just before it is about to return to a stack frame that existed in
the stack when the snapshot was requested, but was not yet scanned.
We employ only a single return barrier for any thread stack at any
point in time. Algorithm 1 describes the return barrier pseudo code.

Algorithm 1 General structure of the return barrier function
return barrier function

if the current stack frame has not yet been scanned
Scan it and insert a summary record into the Summary-DS ;

// Place a return barrier on the next frame in the stack
InstallNextReturnBarrier();
return to the previously saved address.

InstallNextReturnBarrier()
Find the next stack frame and record its return address;
Replace the return address of that stack frame with the
return barrier code location;

The return barrier mechanism must also cope with exceptions.
When an exception is thrown, the stack from the throwing location
to the catching location is scanned as well, by inspecting each stack
frame while unwinding the exception. If a return barrier is found,
then it is executed as part of the exception unwinding code and a
subsequent return barrier is placed at the next stack frame.

There are a number of alternatives to using the return barrier.
The most obvious one is the insertion of conditional statements
guarding the use of a stack frame prior to or after the return from
a method call. The return barrier mechanism is superior in two
respects. First, it allows dynamically enabling the trapping only
when required. Second, the return barrier we use has a minimal
overhead. It is executed by the mutator once for each stack frame
that exists on the stack when the stack scanning request is made and
doesn’t affect the execution at all otherwise. In particular, if a return
barrier is placed on a specific stack frame, then until the execution
returns from that method it can enter and leave any method without
any overhead whatsoever. When exiting a method associated with
the frame that has the barrier, it is moved to the next frame, and
thus, each frame on the stack is associated with a single barrier
execution. Note that many times the collector will scan the frame
before the mutator and then the barrier will only execute a move of
itself to the next frame without imposing any additional overhead.



3.2 Synchronizing the start of a scan
To initiate a stack scan, the collector raises a request flag for
each mutator thread with a new scan number. It then waits for all
mutators to acknowledge the request. Threads that are currently
executing unmanaged code do not acknowledge the request. In this
case, the collector starts scanning their stacks without waiting for
an acknowledgement. Special care needs to be taken when such
threads return from the unmanaged code. This special care is the
focus of this subsection. It is crucial to note that for managed
languages like C# or Java there is no inter-thread races at this point.
Each thread uses its own local stack that no other thread can access.
Thus, we only need to worry about the interaction of one mutator
thread with the collector.

Each mutator thread may be in one of two states. We say that
a thread is in a Managed state if it is currently executing code of
the managed language. We say that a thread is in a Dormant state
if it is currently executing in the unmanaged space. We will need
to guard transitions between the different states, and we assume
the compiler allows adding code to the transition so that collector-
related code can execute when the mutator thread becomes dormant
or when it returns to executing managed code. These barriers in the
execution of a thread will be denoted GoToUnmanagedSpace()
and ReturnToManagedSpace().

Each of the two states is further partitioned into two sub-states
according to whether a scan has been requested by the collector
(and not yet acknowledged by the mutator). The transitions are de-
picted in Figure 1 and occur when the collector sets the scan-
Request flag, the mutator resets it, and when the mutator en-
ters or leaves unmanaged code (becomes Dormant or returns to
managed code). We denote the transition between the dormant
and managed states by TakeManagedControl() and Take-
DormantControl(). The state of each mutator is signified in a
thread-local variable State, which can be inspected by the collec-
tor and the mutator and is modified only via a CAS operation.

The collector initiates the scan by invoking the Collector-
StackScan() method, described in Algorithm 2. A unique
global scan number is assigned first. As will be clear later, this
number is required for consistency of the Summary-DS because the
mutator may return from a dormant state after several collections
have been executed. The collector then raises a ScanRequest
bit for each mutator. If the mutator is not Dormant, then the col-
lector waits for it to acknowledge the handshake by clearing the
ScanRequest bit and then starts scanning its stack concurrently.

The reason the collector must wait for the mutator to respond is
that the mutator is modifying the stack continuously, while running
in managed code. Thus, some sort of synchronization must be set
up before the concurrent scan can begin. In particular, the collector
and the mutator must agree on the point in time in which the
snapshot is taken. This is done by letting the mutator fix the first
return barrier and record an initiation information in the Summary-
DS. Only then, the mutator acknowledges the ScanRequest and
lets the collector join the scanning concurrently.

We still need to address the case in which the mutator is
Dormant. In this scenario, the collector immediately proceeds to
scan the mutator’s stack. This can be done because the mutator is
not modifying the managed stack frames at this time. But care must
be taken to coordinate the return of the mutator from the dormant
space. Mutator’s actions related to the unmanaged space are de-
scribed in Algorithm 3. Before the mutator invokes any unmanaged
function call, it records the stack pointer in a thread local variable
stackPointers (this is required for the collector to be able to
start the scan without waiting for the mutator) and switches into a
Dormant state. Upon returning to the managed space, the mutator
switches back to the Managed state and then starts cooperating
with the regular stack scanning protocol described below. When

Figure 1. Mutator States Diagram

a mutator thread notices that the ScanRequest bit is set (when
running regular managed code or upon returning from unmanaged
space), it initiates the stack scanning and then clears the Scan-
Request bit (MutatorScanResponse() method). Notice,
however, that if the mutator is Dormant, the collector is able to
finish scanning its stack and exit the CollectorStackScan()
method without ever waiting for the mutator.

Algorithm 2 Initiating a Scan
CollectorStackScan()

scanNumber++
for each mutator i do

SetScanRequest(i)
for each mutator i do

loop
if InDormantState(i) then

Summary-DSi.ScanRootsByCollector(i, scanNumber);
break

else
if HasScanRequest(i) then

Wait(some-time);
else

// Mutator already started scanning - join him
Summary-DSi.ScanRootsByCollector(i, scanNumber);

break

MutatorScanResponse()
if HasScanRequest(currThread) then

Summary-DScurrThread.ScanRootsByMutator(scanNumber);
ClearScanRequest(currentThread);

Algorithm 3 Unmanaged space support
GoToUnManagedSpace()

stackPointers[currentThread] = Current Stack Pointer;
TakeDormantControl(currentThread);

ReturnToManagedSpace()
TakeManagedControl(currentThread);
MutatorScanResponse();

A simple optimization can be used when the collector finishes
scanning the entire stack while there is still a pending Scan-
Request for the mutator. In this case, there is no need for the mu-
tator to perform any stack scanning work at all. Thus, the collector
could clear the ScanRequest bit, if the mutator is still dormant.



This is done with a CAS operation to avoid races. Of-course the
algorithm works also without clearing this flag. In particular, this
optimization cannot be used with moving collectors that are dis-
cussed in Section 4. For such collectors, the mutator must be aware
and take action for each stack scan, even if it does not participate
in the actual scan at all.

The above handshake mechanism guarantees that each mutator
thread executes the ScanRootsByMutator() method with the
latest scanNumber (as long as it is not in Dormant state), and
the collector thread will execute ScanRootsByCollector()
method for every mutator call stack. The mutator may even skip
a number of scan cycles. This does not create any problem. The
ability of the collector to make progress does not depend on the
mutator in this case, since the collector can finish the stack scanning
itself and proceed to reclaiming garbage. This also does not violate
any safety property w.r.t. the application, as the mutator takes care
to not foil the scan upon returning to the managed space.

3.3 Synchronizing a frame scan
We now proceed to discuss the scan of a single frame. Since both
the collector and the mutator potentially scan the same stack frame
concurrently, some synchronization is needed to coordinate their
actions and is achieved via the Summary-DS data structure, now
described. For simplicity, we discuss stack frames, but the scanned
stack segments may be larger and may contain more than one
frame, depending on the system needs. We chose to scan one frame
at a time in our system, because responsiveness was our top priority.

The Summary-DS is a designated data structure used to main-
tain records of the stack frames that were already scanned. It holds
a stack-frame record for every frame of the stack, denoted Frame-
Record, which consists of a variable length linked list of pointers
(object addresses) residing in this frame on the stack. The Frame-
Record also holds a next pointer pointing to the next Frame-
Record in the chain and a StackPointer pointing to the end
of the frame corresponding to this FrameRecord.

The object addresses recorded in the FrameRecord are part of
the root set of pointers that need to be traced by a mark-sweep col-
lector or modified by a moving collector. There is one Summary-
DS structure per mutator stack and it is being updated coopera-
tively and concurrently by its corresponding mutator and the col-
lector thread. The update is lock-free, i.e., one of the two threads is
bound to make progress within a bounded number of steps.

The Summary-DS data structure is implemented as a linked list
of frame records with a header pointer named head that always
points to a first dummy empty record. The next pointer is used to
link the list and the records are stored in a chronological order, so
that new records are added to the tail. The StackPointer points
to the end of the frame of the corresponding FrameRecord and it
allows the collector to find where the next stack frame starts in the
case it needs to skip a number of frames.

Both the mutator and the collector hold a local pointer to what
they conceive as the last record (tail) of the list. Figure 2 depicts
an example of a stack and a corresponding Summary-DS. In this
example, the mutator has already exited three top (most recently
created) stack frames and the return barrier is guarding the access
to the next stack frame. The mutator’s tail thus points to the third
FrameRecord. On the other hand, the collector has already cre-
ated summaries for five frames and is about to scan the sixth.

As mentioned in Algorithm 2, the mutator starts a new stack
scanning by invoking the ScanRootsByMutator() method,
which is described in Algorithm 5. This procedure starts by in-
voking InitiateHeader() on the Summary-DS structure (Al-
gorithm 6). This methods starts by saving the pointer to the head
frame record locally (in tmp). This allows testing the number on

Figure 2. The call stack and the Summary-DS

Algorithm 4 ScanRootsByCollector(int threadId, int scanNum)
InitiateHeader(scanNum, stackPointers[threadId]);
collectorTail = head;
while collectorTail.addr != end of the stack

if collectorTail.next = NULL then
FrameRecord record = ScanFrame(collectorTail.addr);
CAS(&collectorTail.next, record, NULL);

collectorTail = collectorTail.next;
ApplyRecord(collectorTail, TRUE);

Algorithm 5 ScanRootsByMutator(int scanNumber)
InitiateHeader(scanNumber, stackPointers[currentThread]);
mutatorTail = head;
Eliminate the return barrier from the previous scanning cycle;
InstallNextReturnBarrier();

Algorithm 6 InitiateHeader(int scanNumber, int* startAddr)
tmp = head;
if tmp.number != scanNumber then

newHead = new FrameRecord(scanNumber, startAddr);
CAS(&head, newHead, tmp);

Algorithm 7 return barrier function
if mutatorTail.next = NULL then

// The current stack frame has not been scanned yet
FrameRecord record = ScanFrame(mutatorTail.addr);
CAS(&mutatorTail.next, record, NULL);

mutatorTail = mutatorTail.next;
ApplyRecord(mutatorTail, FALSE);
// Move the return barrier one frame up the stack;
InstallNextReturnBarrier();
return to the previously saved address.

Algorithm 8 ApplyRecord(FrameRecord record, bool isCol-
lector)

if isCollector then
mark and trace addresses in the record;



the same head record as a previous value for the later CAS op-
eration. After initiating the header, the mutator installs a new re-
turn barrier. Every subsequent stack scanning and Summary-DS
updates by the mutator will be performed from within the return
barrier method. Thus, the mutator scans the stack incrementally.

The collector starts with the ScanRootsByCollector(),
which calls InitiateHeader() on the Summary-DS as well,
and then scans the whole stack, updating the Summary-DS with
each frame record that was not previously installed by the mutator.

The main synchronization point happens when the mutator or
the collector are done with creating a frame record and are trying to
install it into the Summary-DS structure. Consider first the mutator
actions in Algorithm 5. A new stack scanning is started by invoking
the InitiateHeader() method, in which a new head is being
initialized, implying a new Summary-DS structure for this scan. It
is assigned with a unique scan number and with the location of the
first frame (from which the scan should start). A CAS is used to
make sure that only one header is installed for the scan.

Before scanning the next stack frame in the return barrier
function (Algorithm 7), the mutator checks if it has already been
scanned by the collector. If not, the mutator scans the next stack
frame and attempts to add a new FrameRecord to the mutator’s
tail by applying a CAS operation on the mutatorTail.next
pointer. Failing the CAS means that the collector has already in-
stalled the frame record and the mutator can just use it. Otherwise,
the ScanFrame() method scans the next stack frame and records
the list of encountered pointers in the FrameRecord structure,
according to the compiler generated maps. Finally, the mutator
then updates its mutatorTail and installs new return barrier.

The collector follows a similar procedure, i.e., initiating a
header and then attempting to scan each un-scanned frame and add
it to Summary-DS. The main difference is that it executes this pro-
cedure in a loop rather than via a return barrier. If the mutator was
faster and the collector needs to skip the already scanned frames,
the collector can find the beginning of the last un-scanned frame
from the StackPointer recorded in the last FrameRecord.
The collector also ”applies” the records, i.e., handles the obtained
pointers to aid the collection. Normally, this means marking the
referenced objects and tracing their descendants.

3.4 An Important Race to Note
The obvious races of initiating the header and installing new frame
records have been handled by CASes in the previous description.
But there is an additional implicit race to handle. This race occurs
when the collector is scanning a frame that the mutator has finished
scanning and has started to modify.

In its simplest form this means that the mutator modifies the
same stack frame that is currently being scanned by the collector.
This results in the collector’s reading wrong values from the stack.
In a more elaborated form, this race happens when the mutator
has popped the frame on which the collector is working and has
pushed new different frames. This could result in the collector’s
both reading wrong values and misinterpreting frame boundaries.

We explain why this race does not create a problem by not-
ing some important invariant and properties. First, the above races
only happen when the mutator has started modifying the frame, and
that can only happen after the mutator has finished scanning that
frame and has already inserted a frame record into the Summary-
DS structure. It follows that whenever such a race happens, the
collector will never be able to insert its frame record into Summary-
DS. When it attempts to do so, the CAS fails because the mutator
has already inserted the record that corresponds to that frame. Sec-
ond, we maintain a strong invariant that only the mutator modifies
the stack itself. The collector can only read values from the stack,

but it never modifies it.3 Thus, whatever the collector does when
encountering the above race, cannot affect mutator’s execution.

Finally, it remains to make sure that the collector does not get
”stuck” because of working on a frame with irrelevant data. To see
that, we look closer at the operations that the collector executes dur-
ing a frame scan. It first uses a (static) compiler map to determine
the length of the frame and which of its slots contain pointers. It
then copies the values of these slots into its local frame record. This
operation terminates after the collector copies all relevant slots. It
doesn’t matter that the slots values are not valid anymore. These
irrelevant values are later ignored when the collector fails to insert
this frame record into the Summary-DS structure.

3.5 Simple Optimizations
There is a number of possible optimizations that can be easily
applied to the above algorithm. First, currently the return barrier
lets the mutator move the barrier one frame up at a time. How-
ever, if the collector has already scanned some frames, the mutator
does not need to scan or install the return barrier for these frames
and the barrier can move further up. We let the mutator follow
the mutatorTail.next pointer until it is not NULL (in Algo-
rithm 7) and install the return barrier only for the frame immedi-
ately following the last frame scanned by the collector.

Another optimization relieves the collector from performing
some unnecessary work. The collector does not need to scan the
stack frames that were not modified by the mutator since the last
collection cycle. To allow this optimization, we must retain the
FrameRecords from the previous collection cycle and also main-
tain a watermark of the last, top-most stack frame modified by the
mutator. Such a watermark could be maintained via a similar return
barrier mechanism. Notice, however, that for languages that sup-
port reference parameters like C# maintaining such a watermark is
more complicated and may require a usage of write barrier on the
indirect-reference accesses.

3.6 Supporting C#
In languages that support passing parameters by reference (like C#
or C++) a reference on the stack can point to a different location
on the stack, which in turn points to some heap object. We denote
such a reference an intra-stack reference. An example is depicted
in Figure 3. The location A on the stack, which is a part of stack
frame number 3, holds an address of another location B, which is
a part of stack frame number 6 further up on the stack, which holds
an address of a heap object C. If no special care is taken, the above
algorithm could fail to provide a snapshot of the stack of a thread.
The reason is that the mutator only scans the most recent frame,
but may change older frames using intra-stack pointers. Changing
pointers before scanning their frame could foil the snapshot prop-
erty of the scan, and may violate the collector’s safety guarantees.

To solve this problem, we employ a write barrier on indirect
stack access. In practice this is obtained by changing the imple-
mentation of the special MSIL instruction that executes an indirect
access. The barrier is activated by the collector when it raises the
ScanRequest flag and can be deactivated for each mutator af-
ter the collector has finished scanning its stack. The barrier records
the old value of the modified location, thus allowing the record-
ing of a true snapshot of the stack. Notice that the barrier is used
only during the stack scanning period and only on indirect stack
accesses, i.e., on frames that are not the current one. Thus, the bar-
rier is seldom used in practice, and imposes negligible overhead. In
addition, some concurrent garbage collectors already employ such
a write barrier during the scanning phase of garbage collection, in

3 This strong invariant is also maintained with the moving collector de-
scribed in Section 4



Figure 3. Reference Parameters example

which case the “addition” of the write barrier for stack scanning
purposes will not add any overhead.

3.7 Callee-Saved Registers
Callee-saved registers (when they are saved on the stack) create a
complication to incremental stack scanning (as well as atomic stack
scanning). The reason is that their value is known at the called
method, but their type (specifically, whether they are pointers) is
known only at the calling routine. Furthermore, if the register has
not been used by several recently-executed methods, then its type
can only be determined at an unbounded distant frame. The good
property that one can use is that saved values of registered are not
modified by the saving method or by any method called by it. Thus,
these values are not scanned in those later frames. Nevertheless,
they should be scanned with the most recent frame that used the
registers. The values of callee-saved registers are propagated from
stack frame to stack frame. When the scan encounters a frame that
modifies a callee saved register, its type can be determined by the
compiler maps, and if it is a pointer, its value (propagated from
newer frames) is scanned.

3.8 Use for Real-Time Collectors
Real-time collectors must provide a bounded pause time and guar-
anteed progress pace, so that events can be handled by the appli-
cation within given deadlines. It is desirable that events can be
handled as soon as possible. But predictability is more important
than efficiency. Our method allows predicting and arguing about
response time. Pause times incurred by the stack scanning are usu-
ally short and predictable: they originate from a single stack frame
scan, and the length of scanning the worst possible frame can be
predicted statically by inspecting the program methods. A source
of unpredictability is a possible quick succession of method ex-
its. A method exit incurs an overhead during normal execution, but
this overhead may increase due to the return barrier of our method.
Again, this increase is statically predictable for any method. Fur-
thermore, exiting a method usually means a completion of an oper-
ation, which implies progress. Thus, pace of progress and overhead
can be determined by a static analysis of the program code (or by
manually inspecting the code).

4. Supporting Moving Collectors
Until now, we have provided a stack scanning mechanism that
works well for non-moving collectors. When a collector needs to
move objects and update pointers on the stack while scanning it,
more care is required. In this section we extend the algorithm to
handle moving collectors, i.e., compacting collectors or copying
collectors. The non-moving collector has been implemented and
measured. But the extension for moving collectors is presented as
a design and has not been implemented in our system.

An assumption we make here is that for each pointer in the stack
there is a clear action that should be taken when encountering it.
For some pointers no action is required, and for others an update of
the pointer (and maybe a move of the referent) are required. When
moving is required, the information on where to move the object
is available from the collector, and similarly, when pointer updates
are required, the new value to be written to the pointer is available.

For moving collector, the stack scanning process must make
sure that before any pointer is accessed by the mutator, the ap-
propriate operation is applied on it. For example, if an object has
moved, then a stack scan may be required to update all pointers on
the stack to the object. Indeed, our incremental scan will update all
pointers before the mutator accesses any of them.

For reasons that will be specified below, when objects are re-
located, we will need to record the new location of the object for
later use in the ApplyRecord() method or in the next scan. This
requires some mechanism for determining the new locations of the
objects, typically, a forwarding pointer will do.

4.1 An Overview
We keep the same algorithm and structure as in Section 3, except
for the method that scans the stack frames (the ScanFrame()
method) and the method that uses the pointers that were discovered
on the stack frame (the ApplyRecord() method).

New problems arise due to the additional relocation of objects.
We start by avoiding problematic races using an important design
invariant: only the mutator modifies its stack. The collector may
read the stack frames and prepare stack frame records with direc-
tives to aid the mutator’s frame modification, but it cannot perform
pointer updates on the stack itself. To allow the frame record to
contain such directives, we extend the frame records to hold addi-
tional information (as explained below). The invariant that only the
mutator modifies its stack resolves many races, that we do not even
discuss, but creates a problem not encountered with non-moving
collectors. For non-moving collectors, the frame records were only
used by the collector for obtaining a list of the roots. The frame
records could be discarded after the collector finished. This is not
the case now. The frame records are also used by the mutator to up-
date pointers on the stack. Now, suppose the mutator does not use
an (old) stack frame, while several collections occur. During these
collections, the referent of a stack pointer may be relocated several
times, and it should be possible to locate the new copy based on
an (extremely) outdated pointer. We thus need to maintain some in-
formation throughout the collections to allow such pointer updates.
These challenges are handled in what follows.

4.2 The Algorithm
As before, the FrameRecord holds the next and Stack-
Pointer fields and a variable length linked list of pointer slots
information. For each slot, a triplet is now recorded. Each triplet
stores an old pointer value, a new pointer value and the location on
the stack (frame index) of this pointer. The recording of the triplets
is executed in the ScanFrame()method depicted in Algorithm 9.
If previous frames records have not yet been applied by the mutator
(as discussed above) then a new frame record is created from the
previous one, where the old pointers retain their values, but the new



locations get updated. Each frame record has also a pointer to an
older frame record, that is kept until the end of the current cycle.

After the FrameRecord is created (either by the collector or
by the mutator) and before the mutator accesses this stack frame, it
updates the addresses in this frame with the new to-space addresses
recorded in the corresponding FrameRecord, as described in
the ApplyRecord() method in Algorithm 9. Note that since
the mutator needs to update every stack frame, the optimization
of the mutator skipping a number of return barriers suggested in
section 3.5 for marking is not possible for moving collectors.

Algorithm 9 Moving Collector with Lazy updates
FrameRecord ScanFrame(int* addr)

FrameRecord prev = Summary-DS.getPrevCycleRecord(addr);
if prev.wasApplied() then

scan the stack, follow forwarding pointers if necessary,
and record addresses and their stack-location in curr;

else
scan the addresses in prev, follow forw. pointers if necessary,
and record addresses and their stack-location in curr;

ApplyRecord(FrameRecord record, bool isCollector)
if isCollector then

mark and trace addresses in the record;
else // Mutator execution

if !record.wasApplied() then
update the stack with addresses in the record;
record.setApplied();

The relevant pointers of the stack frame are deduced from the
FrameRecords of the previous cycle Summary-DS. The details
are depicted in the updated version of methods ScanFrame()
and ApplyRecord() in Algorithm 9. Both the collector and the
mutator use a previous cycle Summary-DS in conjunction with the
heap while scanning the stack as part of the current scanning cycle.
The action depends on whether the stack frame has already been
updated or not. Therefore, after the mutator updates every frame,
it marks the corresponding FrameRecord as applied. During the
scan, if the corresponding FrameRecord from the previous cycle
was already applied (the stack was updated), the addresses can be
deduced from the stack. Otherwise, they must be deduced from the
previous cycle FrameRecord. If pointer updates are required in
this cycle, the new to-space address is also deduced by following
the forwarding pointer.

4.3 Alternative Solutions
The latter complications due to a lazy stack updating could be
resolved differently, for example by making the mutator finish the
updates of the stack by the end of each collection as in [5]. This
would require a work-based collector scheduling, which may in
turn lead to low mutator utilization.

Another possible solution is for the collector to help the mu-
tator fix the frames. However, such a solution would potentially
create numerous races and require a more complicated and costly
synchronization and versioning schemes (possibly similar to the
solution proposed in [22] for heap).

4.4 Supporting C# for Moving Collectors
Further complications arise when dealing with moving collectors
in the presence of C#-style intra-stack references. We propose a
solution for this case that works only with collectors that follow an
eager-update policy. Such collectors update each stale pointer they
encounter before writing it to the stack. Thus, it is guaranteed that
all stack pointers are updated. This allows such systems to use stack
pointers without any read or write barriers.

Like in Section 3.6, we will need to employ a special memory
barrier on all indirect stack-accesses. When an intra-stack pointer
is used to indirectly reference a heap object, we will check the
referenced object for a possible forwarding pointer and if it exists,
we will follow it.4 We will specify what the mutator does when it
updates a frame via the return barrier, and we will then argue that
the simple intra-stack read-barrier described above suffices.

When the mutator updates a frame (using a previously-prepared
frame record), it may encounter an intra-stack reference. For each
such encountered intra-stack pointer, the mutator also updates the
stack frame of the target address. Namely, when an intra-stack
pointer references a stack address that belongs to an older frame
F , the mutator applies the currently available frame record for F
(in addition to updating the current stack frame). Normally, the cur-
rently available frame record for F is an updated one, and the re-
sulting frame F is properly updated and can be used (even with-
out the forwarding pointer barrier proposed above) for intra-stack
access. However, when the update of the older stack is executed
during the stack scan, there is a chance that the mutator will use a
frame record that was prepared during the previous collection cy-
cle. This can happen if the current stack frame is being applied, but
the older stack frame F has not yet been scanned by the collector
and its new frame record has not yet been prepared. To deal with
this case, we must employ the forwarding read barrier on indirect
intra-stack accesses. Furthermore, we add an additional task for the
mutator. After the collector finishes the stack scan of the entire mu-
tator stack, it make the mutator re-apply the frame records. This
is done by restarting the return barrier execution, placing it at the
most recent frame. At this point, all frame records exist, and so the
mutator will never have to prepare one. But it will have to apply
all frames according to their updated version on the corresponding
frames. The implication is that, the mutator will have to repeat its
work for some of the frames. At worst case, the mutator will apply
the records to all frames twice, but the gain is that at the point of
time in which it starts the second pass, we know that it will never
access a stale pointer on the stack. This means that at that point we
can start reclaiming objects.

We now argue that using forwarding for indirect heap access
via intra-stack pointers is possible and correct during the stack scan
until the point in which the collector finishes the scan and directs
the mutator to re-apply the frame records. During this time, the
mutator may use a stale pointer in an older frame and will need to
use forwarding. Such forwarding requires that the old version of
the object has not been reclaimed (or reallocated). Otherwise, the
forwarding pointer in that object cannot be used reliably to reach
the new location of the same object. Note first, that the outdated
pointer is not too old. It was computed from a frame record of the
previous collection. This means that it references the location of
the object that was correct at the end of the previous collection and
at the start of the current one. Nevertheless, the referent may have
moved in the current collection cycle. To ensure that a reference to
an object from the previous cycle can be still used for forwarding
during the stack scan, we require that no object is reclaimed (and
re-allocated) while the stack scan is in progress. Once the collector
finishes the scan and sets the return barrier for the mutator again,
we can be sure that further use of the stack by the mutator only
accesses updated pointers and at that point old copies of the objects
can be reclaimed.

In this conference version of the paper we do not discuss spe-
cific BARTOK additional complications. Particularly, some more

4 Typically, collectors maintain a self pointer at the forwarding pointer
location when forwarding is not required. This allows following the pointer
without checking whether a forwarding pointer is relevant. This kind of
barrier is called a Brooks barrier.



work is required to find the frame corresponding to a given ad-
dress and to find a frame record of a given frame. To solve these
problems in the BARTOK setting, we make more use of the ”double
pass” solution above to prepare information at the initial collector
pass and use it at the second mutator pass. Details are omitted. An
additional issue might arise in languages that allow pointers to the
middle of heap objects (like C#). For real-time moving collectors,
for which the scan time must be bounded, an additional small table
may be added to guarantee that objects holding these pointers can
be identified in a bounded time.

5. Implementation and Measurements
The incremental stack scanning mechanism has been implemented
in BARTOK runtime.

Below we report on our experiments performed using a con-
figuration where the scan increments are single stack frames, and
where each FrameRecord data structure is dynamically allocated
from the heap. The use of the smallest possible scan increments will
demonstrate that extremely short pause times can be achieved. The
use of dynamic allocation of the FrameRecord data structures is
a weakness of our current implementation and will result in pause
times that are significantly larger than necessary.

The stack scanning mechanism has been used with a non-
copying concurrent mark-sweep collector in the style of the DLG
collector [15, 14].

All experiments have been performed on a Dell Precision 490
workstation with two Intel Core 2 Duo 5150 processors (for a
total of 4 cores) @ 2.66GHz and 4GB of memory running a 64-
bit version of Windows Vista Enterprise. The programs are run at
normal priority. The machine was run in a normal environment,
including being attached to a network, running anti-virus software,
etc. All applications were compiled to x86 machine code.

We report on the behavior of the stack scanning mechanism for
two large programs and a small artificial test program. The first
large program is the BARTOK compiler compiling itself. Due to
substantial inlining of methods, the stack frames are very large.
The stack depth is typically 10-30 frames, but will at times reach
into the hundreds. The second large program is a variant of JBB
ported to C#. The small artificial program consists of a deeply
recursive function that triggers a garbage collection in the leaf
call. The program exhibits very small stack frames, but will put
substantial pressure on the incremental stack scanning mechanism
by unwinding the entire call stack immediately after triggering the
garbage collection.

For the small artificial program, the pause times experienced by
the mutator thread are shown in the first two columns of Table 1.
The majority of the pause are on the order of 1 microsecond in
duration. The results show that extremely short pause times are
indeed possible.

We measured pause times for the JBB program in a configura-
tion where it used 3 warehouses. When simulating 3 warehouses,
there are 3 very active threads in the application. On a 4 core ma-
chine, this leaves one processor available to do other work, which
in this case amounts to performing garbage collection, including
the stack scanning. The results are shown in the last column of Ta-
ble 1. The results indicate that even for realistic programs, the pause
times are very short.

Table 2 shows for each thread the number of collections, the
number of stack frames scanned by the mutator itself, and the
number of stack frames scanning by the garbage collector.

Prior to using the incremental stack scanning implementation,
we would once in a while observe mutator pause times in the order
of 10 milliseconds. We have not seen such big pause times for
mutators when using the incremental stack scanning mechanism.

Duration Incremental Atomic
small JBB BARTOK small JBB BARTOK

1µs 6909 3037 259 0 0 0
2µs 75 1596 138 0 0 0
3µs 3 424 60 0 0 0
4µs 0 571 40 0 0 0
5µs 0 283 6 0 0 0
6µs 0 137 11 0 0 0
7µs 0 66 12 0 0 0
8µs 2 130 27 0 0 0
9µs 0 218 31 0 1 0

10µs 0 176 50 0 16 0
11µs 0 55 21 0 35 0
12µs 0 27 18 0 45 0
13µs 0 23 7 0 25 0
14µs 0 4 2 0 24 0
15µs 0 2 5 0 15 0
16µs 0 2 0 0 14 0
17µs 0 1 1 0 12 0
18µs 0 1 1 0 23 0
19µs 0 1 2 0 46 0

20–29µs 2 2 6 0 201 1
30–39µs 1 3 7 0 5 17
40–49µs 0 1 13 0 0 14
50–59µs 0 0 14 0 0 3
60–69µs 0 1 5 0 2 16
70–79µs 0 0 3 0 0 15
80–89µs 0 0 1 0 1 4
90–99µs 0 0 2 0 0 1

100–200µs 0 0 0 0 2 5
200–300µs 0 0 0 0 1 0
300–999µs 0 0 0 1 4 0

Table 1. Pause times for the small artificial program, for JBB
with 3 warehouses, and for the BARTOK compiler. Number of
occurrences for each pause time.

Thread Collections collector mutator
frames frames

BARTOK 85 1475 180
JBB 1 415 3275 103
JBB 2 414 3359 34
JBB 3 414 3330 177

Table 2. Distribution of work for the BARTOK compiler and for
the three JBB threads.

6. Related Work
Many on-the-fly collectors are described in the literature [26, 27,
12, 15, 14, 16, 17, 20, 3]. All of them stop one thread at a time
to scan its stack. Each stack scan must be atomic to guarantee
correctness of the collection. On the fly moving collectors such as
[19, 22, 21] require that the pointers in the thread stack are updated
atomically to reflect the move of objects from their old location to
the new one. Our stack scanning algorithm can be used with any of
these algorithms to incrementally scan the stack, while appearing
to the garbage collector as an authentic atomic snapshot.

Incremental stack scanning for copying collectors was first men-
tioned in [5]. It uses read barrier on stack accesses to guarantee that
the latest copy of an object is accessed. To guarantee that stack trac-
ing will be finished before the next spaces flip, a predefined num-
ber of locations, based on statistics gathered from previous flip, is



traced and forwarded during each allocation. However, the stack
is not scanned concurrently by the mutator and the collector, lock-
freedom is not discussed, and no support is provided for modern
stacks with unmanaged code.

The reason that the stack must be scanned atomically for mark-
sweep collectors whereas the heap can be scanned incrementally, is
that practical collectors do not use memory barriers for stack modi-
fications. Stack modifications are frequent and memory barriers are
considered highly costly for them. Nevertheless, one can eliminate
the requirement for atomic stack scanning, by simulating the stack
in the heap. This solution is exercised in the Jamaica VM [25, 24].
There, at most one Java thread is executing at any time while all
other Java threads are stopped at synchronization points. The Ja-
maica VM does not support lock-freedom due to the usage of syn-
chronization points and its design does not support scalability on
multiprocessors. A similar approach is exercised by Appel et al. [1]
who copy the stack to the heap before the collection start and then
use normal barriers on it.

The usage of stacklets is proposed in [9]. The stack is divided
into fixed size stacklets (being one or more stack frames), allowing
the collector to scan and replicate all but the currently used stack-
let. The cooperation between mutators and the collector thread is
not lock-free. The mutator is blocked until the collector finishes
copying the latest stacklet.

The return barrier mechanism was first used in [18] in the con-
text of debugging optimized code, to allow lazy dynamic deopti-
mization of the stack. Cheng et al. [10] used some version of a
return barrier in order to maintain a watermark on the stack usage.
Functional languages use deep call stacks, that tend not to be ac-
cessed between different collection cycles. Thus, the parts of the
stack that did not change from the previous stack scan do not need
to be rescanned. A return barrier is used to maintain the lowest
frame that was modified.

The return barrier mechanism was also previously used for the
LISP collector in [28]. In this work the stack is scanned incremen-
tally, but not concurrently (i.e., by the mutator thread only). The
mutator scans a frame once in a while and the collector must wait
until it finishes. The return barrier is used as a precautionary mea-
sure – when the mutator reaches some stack region that was not pre-
viously scanned, the execution is trapped and the frame is scanned.
This work does not support concurrent scan (and thus does not need
to deal with synchronization), and in particular, it cannot collect the
heap if one of the mutator threads blocks on a system call.

7. Conclusion
We have introduced a stack scanning mechanism that is concurrent,
incremental, and lock-free. Our mechanism can deal with modern
multithreaded programs that perform system calls to unmanaged
code, and with C#’s stack intra-pointers. This algorithm is targeted
at runtimes that support highly responsive application. We have
implemented this algorithm in the BARTOK runtime and compiler
for C#, and the results show that the pause times of on-the-fly
collectors for standard benchmarks can decrease substantially.
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