
An On-the-Fly Reference-Counting Garbage Collector
for Java

YOSSI LEVANONI, Microsoft Corporation

and

EREZ PETRANK, Technion - Israel Institute of Technology

Reference-counting is traditionally considered unsuitable for multi-processor systems. According
to conventional wisdom, the update of reference slots and reference-counts requires atomic or
synchronized operations. In this work we demonstrate this is not the case by presenting a novel
reference-counting algorithm suitable for a multi-processor system that does not require any syn-
chronized operation in its write barrier (not even a compare-and-swap type of synchronization).
A second novelty of this algorithm is that it allows eliminating a large fraction of the reference-
count updates, thus, drastically reducing the reference-counting traditional overhead. This paper
includes a full proof of the algorithm showing that it is safe (does not reclaim live objects) and
live (eventually reclaims all unreachable objects).

We have implemented our algorithm on Sun Microsystems’ Java Virtual Machine 1.2.2 and ran
it on a 4-way IBM Netfinity 8500R server with 550MHz Intel Pentium III Xeon and 2GB of physical
memory. Our results show that the algorithm has an extremely low latency and throughput that
is comparable to the stop-the-world mark and sweep algorithm used in the original JVM.

Categories and Subject Descriptors: D.1.5 [Object-oriented Programming]: Memory Manage-
ment; D.3.3 [Language Constructs and Features]: Dynamic storage management; D.3.4 [Pro-
cessors]: Memory management (garbage collection); D.4.2 [Storage Management]: Garbage
Collection

General Terms: Languages, Algorithms.

Additional Key Words and Phrases: Programming languages, Memory management, Garbage
collection, Reference-counting

1. INTRODUCTION

Automatic memory management is an important tool aiding in the fast development
of large and reliable software systems. However, garbage collection does not come
without a price—it has significant impact on the overall runtime performance. The
amount of time it takes to handle allocation and reclamation of memory space may
reach a noticeable percentage of the overall execution time for realistic programs.
Thus, a clever design of efficient memory management and garbage collector is an
important goal in today’s technology.

Part of this work was presented at the ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’01), October, 2001 [Levanoni and Petrank 2001].
Yossi Levanoni, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA. Email:
ylevanon@microsoft.com.
Erez Petrank, Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000,
Israel. Email: erez@cs.technion.ac.il.
This research was supported by the Coleman Cohen Academic Lecturship Fund and by the Tech-
nion V.P.R. Fund - Steiner Research Fund.
Most of this work was done while Yossi Levanoni was at the Dept. of Computer Science, Technion
- Israel Institute of Technology, Haifa 32000, Israel.

2 · Levanoni and Petrank

1.1 Automatic memory management on a multiprocessor

In this work, we concentrate on garbage collection for multi-processor systems.
Multi-processor platforms have become quite standard for server machines and are
also beginning to gain popularity as high performance desktop machines. Many
well studied garbage collection algorithms are not suitable for a multiprocessor. In
particular, many collectors (among them the collector supplied with Javasoft’s Java
Virtual Machine) run on a single thread after all program threads (also known as
mutators) have been stopped (the so-called stop-the-world concept). This technique
is characterized by poor processor utilization, and hence hinders scalability.

In order to better utilize a multi-processor system, concurrent collectors have
been presented and studied (see for example, [Baker 1978; Steele 1975; Dijkstra
et al. 1978; Appel et al. 1988; DeTreville 1990; Boehm et al. 1991; Doligez and
Leroy 1993; O’Toole and Nettles 1994; Doligez and Gonthier 1994; Printezis and
Detlefs 2000]). A concurrent collector is a collector that does most of its collection
work concurrently with the program without stopping the mutators. Most of the
concurrent collectors need to stop all the mutators at some point during the col-
lection, in order to initiate and/or finish the collection, but the time the mutators
must be in a halt is short.

While representing a significant improvement over stop-the-world collectors, con-
current collectors also suffer from some shortcomings. Stopping all the mutators for
the collection is an expensive operation by itself. Usually, the mutators cannot be
stopped at any arbitrary point. Rather, they might be stopped only at safe points
at which the collector can safely determine the reachability graph and properly
reclaim unreachable objects. Thus, each mutator must wait until the last of all
mutators cooperates and comes to a halt. On some systems, only mutator threads
in an executing or runnable state must be stopped and therefore, the time to halt
depends only on the number of processors, or on the number of non-blocked muta-
tors, while on other systems all mutator threads must be handled until a full stop
is obtained. This may hinder the scalability of the system, as the more mutators
there are the more delay the system suffers. Furthermore, if the collector is not
running in parallel (which is usually the case), then during the time the mutators
are stopped, only one of the processors is utilized.

Therefore, it is advantageous to use on-the-fly collectors [Dijkstra et al. 1978;
Doligez and Leroy 1993; Doligez and Gonthier 1994]. On-the-fly collectors never
stop the mutators simultaneously. Instead, each mutator cooperates with the col-
lector at its own pace through a mechanism called (soft) handshakes.

Another alternative for an adequate garbage collection on a multiprocessor is
to perform the collection in parallel (see for example [Halstead 1985; Crammond
1988; Miller and Epstein 1990; Herlihy and Moss 1990; Endo et al. 1997; Flood
et al. 2001; Kolodner and Petrank 2004]). We do not explore this avenue further
in this work.

1.2 reference-counting on a multiprocessor

Reference-counting is a most intuitive method for automatic storage management.
As such, systems using reference-counting were implemented more than forty years
ago c.f. [Collins 1960]. The main idea is keeping for each object a count of the

An On-the-Fly Reference-Counting Garbage Collector for Java · 3

number of references that reference the object. When this number becomes zero
for an object o, it can be reclaimed. At that point, o may be added to the free
list and the counters of all its predecessors (i.e., the objects that are referenced by
the object o) are decremented, initiating perhaps more reclamations. It is possible
to add the note to the free list and do the recursive deletion in a lazy fashion as
illustrated in [Roth and Wise 1998]; this technique is likely to increase the locality
of reference of the mutators.

Reference-counting seems very promising to future garbage collected systems.
Especially with the spread of the 64-bit architectures and the increase in usage of
very large heaps. Tracing collectors must traverse all live objects, and thus, the
higher the utilization of the heap (i.e., the amount of live objects in the heap),
the more work the collector must perform1. Reference-counting is different. The
amount of work is proportional to the amount of work done by the mutaotrs between
collections plus the amount of space that is actually reclaimed. But it does not
depend on the space consumed by live objects in the heap.

The actual factors that determine which collector is better are complicated. They
include heap occupancy, allocation rate, mutation rate, etc. However, some im-
portant program behaviors seem to match the advantages of reference-counting.
Consider as an example a Web Server, servicing mostly static information out of
local file systems and/or databases to external consumers. For a given request
rate, it is beneficial for the server to have as much as possible of the requested
data cached in memory. With tracing, as the size of this cache increases, the price
paid for garbage collection increases, even though the load remains the same. With
reference-counting, the price paid for garbage collection depends solely on the load
and therefore allows utilizing more of the heap without incurring additional GC
overhead.

The study and use of reference-counting on a multiprocessor has not been as
extensive and thorough as the study of concurrent and parallel tracing collectors.
The reason is that reference-counting has a seemingly inherent problem with respect
to concurrency: the update of the reference-counts must be atomic since they are
being updated by concurrent mutators. Furthermore, when updating a reference, a
mutator must know the previous value of the reference slot being updated, i.e., the
value it has overwritten. This value is hard to obtain in the presence of concurrent
updates. If a mutator were to obtain an incorrect overwritten value, a mismatch is
introduced into the bookkeeping of the reference-counts. Thus, the naive solution
requires a lock on any update operation. More advanced solutions have recently
reduced this overhead to a compare-and-swap operation for each reference update,
which is still a time consuming overhead.

It is often claimed that even on a traditional uniprocessor client that runs single
threaded programs reference-counting is more costly than tracing algorithms. One
of the main reasons for that is the write-barrier overhead2, which is high comparing

1Other methods to ameliorate this problem, such as generational collectors were introduced. How-
ever, the full heap needs to be collected eventually. Subsequent work deals with generational
collectors. See, for example, [Azatchi and Petrank 2003; Blackburn and McKinley 2003].
2The write barrier is the piece of code executed whenever a reference slot is modified. This code
constitutes the overhead on each reference slot modification from a mutator.

4 · Levanoni and Petrank

to tracing algorithms that either require no write barrier or require a highly efficient
(card-marking) write barrier when generations or concurrency are introduced.

1.3 This work

In this work, we present a new on-the-fly reference-counting garbage collector that
ameliorates the two major problems of reference-counting mentioned above. First,
the overhead of reference slots updates is reduced by introducing two paths in
the write barrier: a fast path and a slow path. The slow path is as costly as
the traditional overhead for reference slot update. However, the fast path is as
fast as the write barrier used with concurrent tracing collectors. It turns out that
for standard benchmarks the fast path is taken by the vast majority of reference
slot updates, thus, reducing the cost of reference slot updates overhead to a level
comparable with tracing collectors.

Second, the new algorithm has extremely fine synchronization. In particular, it
avoids any synchronization in the write barrier. Thus, this algorithm is suitable
for multithreaded programs on a multi-processor system. In addition, the new
algorithm does not stop all mutators simultaneously. Instead, it suffices to stop one
mutator at a time for cooperation with the collector.

Using the above two advantages, we derive a reference-counting collector with
very short pauses, without paying a large cost in program throughput. We proceed
with an overview on the novel ideas enabling these advantages.

The new algorithm, following Deutsch and Bobrow’s Deferred Reference-Counting [Deutsch
and Bobrow 1976], does not keep account of changes to local references (in stack
and registers) since doing so is too expensive. Instead, it only tracks references
in the heap (denoted heap reference-count). When garbage collection is required,
the collector inspects all objects with heap reference-count zero. Those not ref-
erenced by the roots may be reclaimed. Our first observation is that in addition
to local reference transactions, which are optimized away by the Deutsch-Bobrow
technique, many more updates of the reference-counts are redundant and may be
avoided. Consider a reference slot p that, between two garbage collections is as-
signed the values o0, o1, o2, . . . , on for objects o0, . . . , on in the heap. All previous
reference-counting collectors perform 2n updates of reference-counts accounting
for these assignments: RC(o0)=RC(o0)-1, RC(o1)=RC(o1)+1, RC(o1)=RC(o1)-
1, RC(o2)=RC(o2)+1, . . . , RC(on)=RC(on)+1. However, only two are required:
RC(o0)=RC(o0)-1 and RC(on)=RC(on)+1. Building on this observation, it follows
that in order to update all reference-counts of all objects before a garbage collec-
tion, it is enough to know which reference slots have been modified between the
collections, and for each such slot, we must be able to determine its value in the
previous garbage collection, and its current value.

In the new algorithm, we keep a record of all reference slots that have been
modified. We also keep the “old” value that existed in the slot before it was first
modified. It may seem problematic to obtain this value in a concurrent setting,
and indeed, special care must be used to ensure that this value is properly regis-
tered. However, this is done without any synchronization operation. We denote
the algorithm resulting from the discussion so far as the snapshot algorithm. This
intermediate algorithm contains several of the novel ideas and is presented to dis-
till these ideas clearly in this paper. The details of the snapshot algorithm are

An On-the-Fly Reference-Counting Garbage Collector for Java · 5

presented in Section 4 below.
Next, we consider the collection itself. The naive implementation of the above

approach is to stop all the mutators and read the values currently kept in all mod-
ified slots. This translates to taking a snapshot of the heap (or only a snapshot of
the interesting slots in the heap). Such an approach does not allow full concurrency
of the collector (it is not on-the-fly), although it is sound. In order to make the col-
lector on-the-fly, we borrow ideas from the world of distributed computing. When
taking a snapshot in a distributed environment, one does not stop all the computers
over the distributed environment. Instead, one takes a snapshot of each computer
at a time, but as the snapshots are being recorded, special care is taken to avoid
confusion due to the non-instantaneous view. For example, all messages between
computers are recorded as well. In our case, we will use an analogous solution. The
analogy to a distributed system is that heap slots correspond to network nodes.
The medium for communication between these nodes is the local state of mutators.
Thus, as the algorithm obtains a non-instantaneous view of the heap slots (network
nodes) it will also account for any information flowing into the slots from mutators’
states (messages on-transit). We denote this non-instantaneous view of the heap
the sliding view. The sliding view algorithm is described in Section 5.

1.4 Cycle collection

A disadvantage of reference-counting is that it does not collect all cycles. We have
chosen to collect cycles with an on-the-fly mark-and-sweep collector. The Mark-
and-sweep algorithm is seldom run to collect cycles and restore stuck reference-
counts. (As in [Roth and Wise 1998; Wise 1993; Stoye et al. 1984; Chikayama and
Kimura 1987], we use only two bits for the reference-count and thus, stuck counters
are sometimes introduced. They are restored by the mark-and-sweep algorithm.)

We use a novel on-the-fly mark-and-sweep collector that we have designed es-
pecially for interoperation with the reference-counting algorithm. A description
of this collector appears in [Azatchi et al. 2003]. It is quite natural to base a
mark-and-sweep collector on a snapshot of the heap. The marking can be done on
the snapshot view of the heap, and since unreachable objects remain unreachable,
changes in the heap do not foil the collection of garbage. We adapt this basic idea
to the sliding view notion, thus obtaining a tracing collector perfectly fitting our
setting.

All measurements of throughput and latency in this paper are reported for the
reference-count collector run most of the times and the on-the-fly mark-and-sweep
run seldom. We describe our mark-and-sweep collector elsewhere [Azatchi et al.
2003].

1.5 Memory consistency

The algorithm presented in the paper requires a sequentially consistent memory.
However, a few simple modifications can make the algorithm suitable for platforms
that do not provide sequentially consistent memory. These modifications have
negligible affect on the overall execution time. The Intel platform that we have
used did not require these modifications. The modifications required and their cost
are discussed in Section 6 below.

6 · Levanoni and Petrank

1.6 Implementation

We have implemented the algorithm on Sun’s Reference Release 1.2.2 of the Java
Virtual Machine and have run it on a 4-way IBM Netfinity 8500R server with
a 550MHz Intel Pentium III Xeon processor and 2GB of physical memory. Two
standard Java multithreaded benchmarks were used: SPECjbb2000 and the mtrt
benchmark from SPECjvm98. These benchmarks are described in detail in SPEC’s
Web site [SPEC Benchmarks 2000]. As a sanity check, we have also run the collector
on the client applications in SPECjvm98 on a uniprocessor.

1.7 Results

Section 9 reports performance measurements. It turns out that the algorithm has an
extremely low latency, improving over the original JVM by two orders of magnitude.
The measure reported is the one used by SPECjbb00: the maximum time it takes
to complete a transaction. This is the same measure that was reported by Domani
et al. [Domani et al. 2000] and it serves as an upper bound on the largest pause in
execution time. The measured maximum transaction time was 16ms. The actual
pause must be below that measure.

As for efficiency, on-the-fly collectors normally suffer a decrease in performance
due to the added write barrier and synchronization [Printezis and Detlefs 2000;
Ossia et al. 2002; Bacon et al. 2001]. Our collector shows excellent performance
and does not fall much behind the compared stop-the-world tracing collector. In
fact, for some benchmarks, the JVM with our reference-counting collector bits
the original JVM by up to 10% improvement in the overall running times. This
happens with the multithreaded mtrt benchmark. As for SPECjbb, if we allow
a large maximum heap (which is the target of our collector), then our collector
slightly improves over the running time of the original JVM. With smaller heaps
the original JVM improves over ours by around 3% for SPECjbb.

1.8 Related work

The classic method of reference-counting, was first developed by Collins [Collins
1960]. It was later used in Small talk-80 [Goldberg and Robson 1983], the AWK [Aho
et al. 1988] and Perl [Wall and Schwartz 1991] programs. Improvements on the
original technique were suggested in several subsequent papers. Weizman [Weizen-
baum 1963] ameliorated the delay introduced by recursive deletion. Deutsch and
Bobrow [Deutsch and Bobrow 1976] eliminated the need for a write barrier on local
references (in stack and registers). This method was later adapted for Modula-
2+ [DeTreville 1990]. Further study on reducing work for local variables can be
found in [Baker 1994] and [Park and Goldberg 1995]. An avenue for reducing re-
dundant RC updates via static analysis is proposed in [Barth 1977]. Several works
[Roth and Wise 1998; Wise 1993; Stoye et al. 1984; Chikayama and Kimura 1987]
use a single bit for each reference-counter with a mechanism to handle overflows,
under the assumption that most objects to be recovered are only singly referenced
throughout their lives.

DeTreville [DeTreville 1990] describes a concurrent multiprocessor reference-
counting collector for Modula-2+. This algorithm adapts Deutsch’s and Bobrow’s
ideas of deferred reference-counting and transaction log for a multiprocessor system.
However, the update operation is done inside a critical section that uses a single

An On-the-Fly Reference-Counting Garbage Collector for Java · 7

central lock. So, no two updates can occur simultaneously in the system, placing a
hard bound on its scalability.

Plakal and Fischer in [Plakal and Fischer 2000] propose a collection method based
on reference counting for architectures that support explicit multithreading on the
processor level. Their method requires co-routine type of cooperation between the
mutator and a corresponding ”shadow” collector thread and therefore is probably
not suitable for stock SMPs, as SMP architectures do not support this kind of
interaction in a natural and efficient manner.

Algorithms that perform garbage collection using a snapshot of the heap appear
in [Furusou et al. 1991; Yuasa 1990]. In terms of synchronization requirements and
characteristics our work is similar to that of Doligez, Leroy, and Gonthier [Doligez
and Leroy 1993; Doligez and Gonthier 1994] in the sense that we use only fine
synchronization, we never require a full halt of the system (the mutators are required
to cooperate a few times per collection cycle). In our tracing algorithm we have
used an object sweeping method similar to that presented in [Doligez and Leroy
1993; Doligez and Gonthier 1994].

Our garbage collection algorithm builds on a pragmatic concept of an atomic
snapshot. The same concept is also a basic block in other garbage collectors,
as well as in replication and checkpoint/restart algorithms. The pragmatism of
this approach is dictated by the design of contemporary multiprocessor systems.
There exists wide and profound theoretic research dealing with concurrent wait-
free, shared memory algorithms that builds on the snapshot notion. The task in
both research fields is common: to obtain a consistent picture of a system taken
while it is conceptually frozen. Whereas much of the theoretical work assumes that
threads are inherently faulty (hence these algorithms strive to be wait-free), how-
ever, the practical approach assumes that threads are not only inherently reliable,
but also controllable by privileged roles (e.g., the operating system scheduler). An-
other difference is in the formulation of the problem–the theoretic community is
more interested in the strain of the problem in which there are n threads, each with
a single register to be shared among each other (a scatter-gather problem). The
practical research, on the other hand, is concentrated on retrieving the values of all
shared memory locations at a given instant, regardless of the number of running
threads. For more reading on related theoretic research, the reader is referred to
the work in [Riany et al. 1995] which provides an exciting attempt to bridge these
two worlds as well as a comprehensive survey of previous atomic snapshot research.

1.8.1 The work of Bacon et al.. Recent and novel work on reference-counting
collectors, presented independently by Bacon et al [Bacon et al. 2001; Bacon and
Rajan 2001], provides a solution to the entire garbage collection problem with a
pure reference-counting approach, showing that this is feasible. Their contributions
include a novel on-the-fly cycle collector, an improvement upon Deutsch and Bo-
brow’s Deferred Reference-Counting algorithm that does not require use of Zero
Count Tables, and an improvement over DeTreville’s algorithm for concurrent col-
lection by introducing epochs that eliminate the requirement for a single shared
buffer for inc/dec operations.

Comparing the reported results of this algorithm to ours is not easy since the al-
gorithms were implemented on different platforms. Three interesting points follow:

8 · Levanoni and Petrank

—Reducing synchronization. A naive approach to multiprocessor reference-
counting requires at least three compare-and-swaps in the write barrier. One for
the update of the reference slot and two for the updates of the two reference-
count. DeTreville [DeTreville 1990] has used a lock on each update to make sure
that no two reference slot updates are executed concurrently. Bacon et al. [Bacon
et al. 2001] made a significant step into exploiting multiprocessor concurrency by
reducing the number of synchronizing operations to a single compare-and-swap.
While significantly reducing the cost of synchronization, their write barrier still
contains a compare-and-swap for each reference slot update. In this work, using
the novel write barrier and sliding view ideas, we have managed to completely
eliminate synchronization with reference slot updates. This major improvement
is one of the more important contributions of this work.

—Throughput and latency: It is not possible to compare the throughput of
the two collectors since they have been run on different platforms and compared
against different base JVM’s. Both seem to be doing well with respect to gaining
short pauses without sacrificing the throughput too much. With respect to pause
times, the measured results provided by Bacon et al. are incomparable with ours.
Bacon et al. used the Jikes JVM to measure the exact pause times. Unfortu-
nately, we did not have the means to get such a measure, which is provided by
the Jikes JVM. Instead, as in [Domani et al. 2000], we use the report output by
the SPECjbb00 benchmark to indicate the maximum time it takes to complete a
transaction. Both results show excellent latency with respect to previous reports
of the same nature.

—Collecting cycles. Finally, the two papers take different avenues for collecting
cycles. Bacon and Rajan [Bacon and Rajan 2001] provide a novel approach
for on-the-fly cycle detection. In contrast to their approach, we have chosen
to develop an on-the-fly mark-and-sweep collector that exploits the sliding view
mechanism and uses the same data structure as the reference-counting algorithm.
This mark-and-sweep collector is run seldom in order to collect cycles and restore
stuck reference-counts (see below).

1.9 Organization

In Section 2 a glossary of memory management terminology used in this paper is
provided. In Section 3 definitions and terminology to be used in the rest of the
paper are presented. In Section 4 the Snapshot Algorithm is presented. The sliding
view algorithm is presented in Section 5. In Section 6 we discuss adaptation of
the algorithm to platforms that do not provide sequentially consistent memory. In
Section 7 implementation issues are discussed. In Section 8 we present the memory
manager we used. In Section 9 we present performance results. In Sections 10 and
11 proofs are provided to the correctness of the presented collector. We conclude
in Section 12.

2. A GLOSSARY

Here are some terms, common to the memory management literature and/or the
Java Virtual Machine. This section is based on a similar section in [Hudson and
Moss 2003] but is extended to match the terms appearing in this paper.

An On-the-Fly Reference-Counting Garbage Collector for Java · 9

Class instance. See Object.

Collector, collector thread. A thread that performs garbage collection work (as
opposed to executing application code).

Compare-and-swap (CAS). An atomic memory access operation, also known as
compare exchange. CAS(p, old, new) performs the following steps atomically. It
compares the contents of location p with the value old. If the values are equal, it
updates location p with the value new. The operation returns 1 if it installs the
new value and 0 if it does not.

Concurrent garbage collection. Garbage collection methods in which the collec-
tor usually works concurrently with the mutators, but still requires hard handshakes
(usually one or two per collection cycle—at the beginning and/or at the end of the
cycle).

CPU; central processing unit. The hardware entity that executes instructions
on behalf of threads. A computer system contains a fixed number of CPUs, all can
read and write into a shared memory.

Cycles. Cycles of objects, such as circular lists. Reference-counting algorithms
usually have difficulties reclaiming garbage objects which are linked in cycles.

Cycle collection. The ability (or lack thereof) to collect cycles of garbage.

Floating garbage. Garbage objects which are not being collected promptly after
turning garbage. This subjective term usually denotes garbage that is generated
during a collection cycle or garbage that a collection fails to reclaim even though
eligible for collection.

Garbage; garbage objects; dead objects. Objects that are not reachable.

Global references. See Roots.

Handshake. A handshake is a synchronization mechanism between the collector
and the mutators. In a handshake, the collector suspends the mutators and alters
their local data structures while they’re suspended. If all of the mutators are
required to be suspended simultaneously, then this is considered a Hard Handshake.
If only a single mutator is suspended at a time, the handshake is considered a Soft
Handshake. Unless specified otherwise, in this paper, when the term handshake is
used, it refer to a soft handshake. The collector may only suspend mutators when
they reach safe points.

Heap reference-counting. A method of reference-counting in which only refer-
ences from object slots to objects are counted. In this method, mutators’ states are
typically accounted for during collection cycles, and not during normal execution.

Latency. For a given benchmark, the average, median or maximal time it takes to
complete a basic operation. In non-IO-bound systems, latency is highly correlated
with pause times.

Limited field reference-counting. Reference-counting methods that allocate
potentially overflowing reference-count fields to objects, in order to save space.
Overflows are handled either by auxiliary lookup tables, which store the correct

10 · Levanoni and Petrank

count, or by fixing the count to a “stuck” value. Stuck counts may be restored by
a tracing collector.

Local reference. A reference to an object that is present in a mutator’s local
state.

Mark and sweep garbage collection. A garbage collection method that recur-
sively traces and marks objects starting from the roots, then frees all non-marked
objects.

Memory model. The set of guarantees that the hardware provides in terms of
possible outcomes for programs involving concurrently executing threads. Sequen-
tial consistency is an example of a memory model. Traditional hardware supported
sequential consistency while newer hardware designs reorder instructions (to in-
crease CPU utilization) which results in a “weaker” memory model (that allows
additional outcomes).

Memory synchronization operation. An operation that a CPU may issue in
order to force perceived order of instructions throughout the system. Specifically, if
a CPU issues instruction A, followed by perhaps additional instructions, followed by
a memory synchronizing instructions, followed by perhaps some more instructions,
followed by instruction B, then no CPU in the system will perceive instruction B
as being executed before instruction A.

Mutators, mutator threads. Threads that perform application work. A mutator
interacts with the collector when the mutator allocates objects and when it modifies
reference slots. A mutator is also suspended sometimes by the collector during
handshakes. As far as the algorithms in this paper are concerned, these are the
relevant operations that a mutator may execute.

—Allocate a new object of a specified class. The result is a reference to the object
placed in the mutator’s local state.

—Store a local reference into an object slot.
—Read an object slot into a local reference.

Mutator local state. A collection of object references and potentially other data
structures that are immediately available to a mutator and may be used in the
mutator operations outlined in the definition for Mutator, mutator thread. No other
entity has access to a mutator’s local state, except for the collector: the collector
may read and change the mutator’s state while the mutator is suspended.

Null reference. A distinguished reference value that refers to no object. In most
systems, the null reference value is represented by a numerical 0.

Object; Class instance. An object is a collection of slots with a prescribed layout
determined by the object’s class. Therefore it is also termed a class instance. In
our model, objects exist only inside the heap. Objects contain two types of slots:
scalars and reference. For the collector in this paper scalar slots are not relevant.

On-the-fly garbage collection. Garbage collection methods in which there is
never more than a single mutator stopped. i.e., only soft-handshakes are used.

An On-the-Fly Reference-Counting Garbage Collector for Java · 11

Additionally, it is usually required that this pause time be at most proportional to
the size of the mutator’s local state. (The sliding view algorithm, presented in this
paper, is such a garbage collection algorithm.)

Parallel garbage collection. A method of garbage collection in which there is
more than a single collector thread working on garbage collection. This is unrelated
to whether the method is stop-the-world, concurrent or on-the-fly.

Pause time, maximal. The maximal duration a mutator has ever been stopped
for by the collector. On-the-fly collectors display minimal pause times while stop-
the-world collectors usually have longer pause times.

Protected code. Sections of code which are precluded for cooperation with the
collector. i.e., sections of code that by definition do not contain safe points. The
algorithms presented in this paper demand that the write barrier and object allo-
cation procedures be protected.

Reachable. An object is reachable if a root refers to it, or another reachable object
has a slot referencing it.

Read barrier. Operations performed when a mutator loads an object slot into its
state, if such operations are required. The algorithms presented in this paper do
not require a read barrier.

Reference-count. The number of references associated with a particular object
by a particular reference-counting technique.

Reference-count field. A special system field associated with each object that
contains the computed reference-count of the object. Depending on the reference-
counting algorithm variant, the field may or may not contain the correct number of
references to the object at all times. In addition, the physical placement of the field
depends on both the reference-counting algorithm and the platform implementing
the algorithm. For example, some algorithms or platforms will choose to place the
field in-line with other instance fields of the objects while other algorithms and
platforms will choose to place the field in a bitmap outside of the object.

Reference-counting. Garbage collection methods that determine reachability by
counting the number of references to each object. The methods vary in whom
is doing the counting (mutators vs. collector etc.) and what is being counted
(references from heap slots solely or also references from mutators’ states).

Reference slot. A slot within an object that refers to another object or contains
the special value null.

Roots. A collection of variables that may contain references which are immediately
accessible to at least one mutator. Thus, local references are roots. In most systems,
there also exist static variables, intern tables, etc. which also provide immediate
access to objects to mutators. To simplify the presentation of the algorithms in
this paper, we assume that there exist a singleton object containing all such global
variables. We then assume that each mutator has a local reference to this object.
Thus, global references are modeled as object slots.3

3Our implementation, however, treats globals specially to reduce overhead.

12 · Levanoni and Petrank

Safe point. A point in the application code at which (a) accurate reference/non-
reference type information is available for the mutator state (this is implementation
dependent), and (b) no protected code is being executed. When a mutator is at a
safe point, its GC-related information is consistent.

Sequential consistency. A memory model in which one can take the program
traces of all threads and combine them into a sequential sequence in which (a)
the order of instructions for each individual thread is preserved and (b) every load
instruction returns the value stored into the location by the first store instruction
into the location preceding the load in the sequential sequence. In other words,
to all parties involved, the system appears to be working with a single CPU and
without re-ordering of instructions.

Sliding view. A non-atomic picture of the shared memory of an SMP system.
e.g., by copying each byte of the shared memory into disk over a period of time.
A sliding view does not represent a coherent picture of the shared memory at any
given moment. A sliding view provides a value for each location in the memory at
some moment.

SMP; symmetrical multi-processor. A computer system possessing multiple
CPUs and a shared memory. An SMP system is characterized by a memory model.
Snapshot. A copy of an SMP’s system shared memory made while all CPUs are
halted. i.e., a frozen and coherent picture of the shared memory.

Stop-the-world garbage collection. Garbage collection methods in which the
collector and mutators seldom operate concurrently. These methods are usually
characterized by long interruptions to user processing, yet are simple to implement
and often exert lower overheads for the collection.

Throughput. For a given benchmark, the number of operations completed per
time unit. One of two major measures of performance, together with latency.

Write barrier. Operations performed when a mutator stores an object reference
from its local state into an object slot, if such operations are required. The algo-
rithms presented in this paper require write barriers.

ZCT; zero count table. A set keeping track of objects whose heap reference-
count is (or previously was) zero. These are candidates for collection, provided
there is no local reference to them.

3. SYSTEM MODEL AND DEFINITIONS

For an introduction on garbage collection and memory management the reader is
referred to [Jones and Lins 1996]. Slots in objects (in the heap) that hold references
are denoted heap reference slots but most of the time they are just called slots. The
reference-counts kept for each objects are heap reference counts. Namely, to count
the number of references to an object, we sum over all slots that refer to this object
in the heap. Mutators’ local stacks and registers are not included in the count.
As appropriate for Java, but also for other languages, we assume that all slots are
initialized with a null reference when created. The reference-count associated with
an object o are denoted o.rc.

An On-the-Fly Reference-Counting Garbage Collector for Java · 13

Coordination between the collector and mutators. The algorithms presented
in this paper assume that there is a single collector thread in the system and
potentially multiple mutator threads.

It is assumed that the collector thread may suspend and subsequently resume
mutators. When a mutator is suspended, the collector may inspect and change its
local state with the effects taking place after the mutator is resumed. For example,
a mutator may be stopped, and then buffers that it has written may be read, and
new empty buffers may be placed instead of the filled buffers. The collector may
then use the read buffers after reading them. When the mutator resumes, it may
use the new empty buffers.

Garbage collectors in general, require that mutators are stopped for the collection
at safe-points at which the collector can safely determine the reachability graph
and properly reclaim unreachable objects. Classifying points in the JVM code into
safe and unsafe depends on the specifics of the JVM. Since we run an on-the-fly
collector, we do not need to stop all mutators together. However, when a mutator
is suspended to read its local state (e.g., mark its roots), then we require that
the mutator is at a safe point. In particular, we demand that it is not stopped
during the execution of a reference slot update (including the write barrier code
corresponding to the update) and it is not stopped during allocation of a new object
via the new instruction.

4. THE SNAPSHOT ALGORITHM

For clarity of presentation, we start with an intermediate algorithm called the snap-
shot algorithm. Most of our novel ideas appear in it. In particular, a large fraction
of the reference-counts updates (which are redundant) is saved and also a write
barrier that does not require atomic operations or synchronization operations is
introduced.

However, in this intermediate algorithm the mutators are stopped simultaneously
for part of the collection. Therefore the pause lengths with this algorithm are not
as good as with our final algorithm. The pauses imposed by this algorithm are not
too long (the bottleneck is clearing a bitmap with dirty flags for all objects in the
heap), but long enough to hinder scalability on a multiprocessor. In Section 5, this
intermediate algorithm is extended to be made on-the-fly with very short pause.

The idea, as presented in Section 1.3, is based on computing differences between
heap snapshots. The algorithm operates in cycles. A cycle begins with a collection
and ends with another. A garbage-collection cycle is indexed by k and its actions
are described next.

The first goal is to record all reference slots in the heap that have changed since
the previous garbage collection (indexed k−1), so that the corresponding reference-
counts may be updated. The mutators do the recording with a write-barrier. In
order to avoid recording slots again and again, a dirty flag is kept for each such
slot. When a mutator updates a reference slot, it checks the dirty bit. If it is clear,
the mutator records the slot’s information in a local buffer, then sets the dirty bit.
The recorded information is the address of the slot and its value before the current
modification. Recording is done in a local buffer with no synchronization. Figure 1
provides the code for this operation.

14 · Levanoni and Petrank

Procedure Update(s: Slot, new: Object)
begin
1. local old := read(s)

// was s written to since the last cycle ?
2. if ¬Dirty(s) then

// ... no; keep a record of the old value.
3. Bufferi[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write(s, new)
end

Fig. 1. Mutator Code—Update Operation

Procedure New(size: Integer) : Object
begin
1. Obtain an object o from the allocator,

according to the specified size.
// add o to the mutator local ZCT.

2. Newi := Newi ∪ {o}
3. return o
end

Fig. 2. Mutator Code: for Allocation

When a collection begins, the collector starts by stopping all mutators and mark-
ing as local all objects referenced directly by the mutators’ stack at the time of the
pause. Next, it reads all the mutators’ local buffers (in which modified slots are
recorded), it clears all the dirty bits and it lets the mutators resume. After the
mutators resume, the collector updates all the heap reference-counts to reflect their
values at the time of the pause. Recall that the heap reference-count is the number
of references to the object from other objects in the heap, but not from local vari-
ables on stack or registers. The algorithm for this update is presented and justified
in the remainder of this section. However, if the heap reference-counts are prop-
erly updated, the collector may reclaim any object whose reference-count dropped
to zero by this update as long as the object is not marked local. Such an object
is not referenced from the roots, neither is referenced from other objects in the
heap. As usual, the reference-counts of objects referenced by reclaimed objects are
decremented and the reclamation proceeds recursively. A standard zero-count table
(ZCT) [Deutsch and Bobrow 1976] keeps track of all objects whose reference-count
drops to zero at any time. These objects are candidates for reclamation. Whenever
an object is created (allocated) it has a zero heap reference count. Thus, all created
objects are put in (a local) ZCT upon creation. The code for the create routine ap-
pears in Figure 2. Newi stands for the ith mutator local ZCT—containing objects
that have been allocated by Ti during the current cycle.

It remains to discuss updating the reference-counts according to all modified
slots between collection k − 1 and k. As explained in Section 1.3, for each such
slot s, we need to know the object O1 that s referenced at the pause of collection

An On-the-Fly Reference-Counting Garbage Collector for Java · 15

k − 1 and the object O2 that s references at the pause of collection k. Once these
values are known, the collector decrements the reference-count of O1 and increments
the reference-count of O2. When this operation is done for all modified slots, the
reference-counts are updated and match the state of the heap at the kth collection
pause.4

How to obtain the addresses of objects O1 and O2 is described next. We start
with obtaining O1. If no race occurred when the slot s was first modified during this
cycle, then the write barrier properly recorded the address of O1 in the local buffer.
It is the value that s held before that (first) modification and thus it is possible
to obtain the address of O1 and decrement its reference-count. But suppose a
race did occur between two (or more) mutators trying to modify s concurrently.
If one of the updating mutators sets the dirty flag of s before any other mutator
reads the dirty flag, then only one mutator records this address and the recording
will properly reflect the value of s at the k − 1 pause. Otherwise, more than one
mutator finds the dirty bit clear. Looking at the write barrier code in Figure 1, each
mutator starts by recording the old value of the slot, and only then it checks the
dirty bit. On the other hand, the actual update of s occurs after the dirty bit is set.
Under sequential consistency all threads observe the operations of other threads in
program order. Thus, if a mutator detects a clear dirty bit it is guaranteed that
the value it records is the value of s before any of the mutators has modified it.
So while several mutators may record the slot s in their buffers, all of them must
record the same (correct) information. To summarize, in case a race occurs, it is
possible that several mutators record the slot s in their local buffers. However, all
of them record the same correct value of s at the k−1st pause. When collecting the
local buffers from all mutators multiple records of a slot are eliminated—they are
all duplicates. We conclude that the address of object O1 can be properly obtained
by following the procedure just outlined.

It remains to obtain the address of O2, the object that s references at the pause
of collection k. Note that at the time the collector tries to obtain this value the
mutators are already running after the kth pause. The collector starts by reading
the current value of s. It then reads s’s dirty flag. If the flag is clear then s has not
been modified since the pause of collection k and we are done. If the dirty bit of s
is set, then it has been modified. But if it has been modified, then the value of s at
pause k is currently recorded in one of the mutators’ local buffers. This value can
be obtained by searching the local buffers of all mutators. It is not required to stop
the mutators for peeking at their buffers. This slot must have a record somewhere
and it will not be changed until the next (k + 1) collection.

The collector operation is given in Figure 3. In Read-Current-State (Figure 4)
the collector stops the s, takes their buffers, mark objects directly referenced from
the roots as local, takes all local ZCT’s (which include records of newly created
objects), and clears all the dirty marks. The mutators are then resumed.

4It is normally a good practice to first do the increment and only then the decrement associated
with a reference assignment. Since, in this work, reference counters are associated with snapshots,
there is no danger in first decrementing due to the old value and only then incrementing due
to the new value. The counts will remain non-negative and zero counts are added to the ZCT.
Furthermore, decrementing first helps in avoiding stuck-counts when using small fields to represent

16 · Levanoni and Petrank

Procedure Collection-Cycle
begin
1. Read-Current-State
2. Update-Reference-Counters
3. Read-Buffers
4. Fix-Undetermined-Slots
5. Reclaim-Garbage
end

Fig. 3. Collector Code

Procedure Read-Current-State
begin
1. suspend all mutators
2. Histk := ®
3. Localsk := ®
4. for each mutator Ti do

// copy buffer (without duplicates.)
5. Histk := Histk ∪Bufferi[1 . . . CurrPosi − 1]
6. CurrPosi := 1

// “mark” local references.
7. Localsk := Localsk ∪ Statei

// copy and clear local ZCT.
8. ZCTk := ZCTk ∪Newi

9. Newi := ®
10. Clear all dirty marks
11. resume mutators
end

Fig. 4. Collector Code—Procedure Read-Current-State

Procedure Update-Reference-Counters
begin
1. Undeterminedk := ®
2. for each 〈s, v〉 pair in Histk do
3. curr := read(s)
4. if ¬Dirty(s) then
5. curr.rc := curr.rc +1
6. else
7. Undeterminedk := Undeterminedk ∪ {s}
8. v.rc := v.rc− 1
9. if v.rc = 0 ∧ v /∈ Localsk then
10. ZCTk := ZCTk ∪ {v}

Fig. 5. Collector Code—ProcedureUpdate-Reference-Counters

An On-the-Fly Reference-Counting Garbage Collector for Java · 17

Procedure Read-Buffers
begin
1. Peekk := ®
2. for each mutator Ti do
3. local ProbedPos := CurrPosi

// copy buffer (without duplicates.)
4. Peekk := Peekk∪

Bufferi[1 . . . P robedPos− 1]
end

Fig. 6. Collector Code—Procedure Read-Buffers

Procedure Fix-Undetermined-Slots
begin
1. for each pair 〈s, v〉 pair in Peekk

2. if s ∈ Undeterminedk do
3. v.rc := v.rc + 1
end

Fig. 7. Collector Code—Procedure Fix-Undetermined-Slots

The collector then proceeds to update the reference-counts (Figure 5). This
happens after the s have been already resumed. As explained above, for each slot
that is recorded in the mutators’ buffers (set Histk in the algorithm) its contents
are first read and then the dirty flag associated with it. If the dirty flag is off, then
by the properties of the update barrier, and assuming sequential consistency, the
read value for the slot is the prevailing one at the time the mutators were paused
during the current cycle. If there is a “miss” then it is known that some mutator
has modified s and has taken a record of its value in its current buffer. Such slots
are put into the Undeterminedk set.

The collector then executes procedure Read-Buffers (Figure 6) in which it obtains
the set of slots that have already been modified by the mutators since they have
been resumed, during the current cycle. Since the order of updating the local buffer
and the dirty flag is (a) first write an entry into the local buffer (b) then increment
the buffer pointer (denoted by CurrPosi) (c) then set the dirty bit, it is guaranteed
that for any slot in Undeterminedk, the collector is going to find a log entry in
some mutator’s buffer. This is true because the collector has already noticed the
raise of the dirty bit, hence it must also see the corresponding buffer entry and
buffer pointer update.

In Fix-Undetermined-Slots (Figure 7) the collector resolves each of the slots in
Undtereminedk by looking them up against the Peekk set obtained in the previous
step (procedure Read-Buffers). The corresponding reference-counters are incre-
mented.

To summarize, the value of the “new” object referred to by s, denoted by O2

is obtained in one of two ways. For most slots, the value of s is not modified by

reference-counts.

18 · Levanoni and Petrank

Procedure Reclaim-Garbage
begin
1. ZCTk+1 := ®
2. for each object o ∈ ZCTk do
3. if o.rc > 0 then
4. ZCTk := ZCTk − {o}
5. else if o.rc = 0 ∧ o ∈ Localsk then
6. ZCTk := ZCTk − {o}
7. ZCTk+1 := ZCTk+1 ∪ {o}
8. for each object o ∈ ZCTk do
9. Collect(o)
end

Fig. 8. Collector Code—Procedure Reclaim-Garbage

mutators during the short interval from the time the mutators resume and up until
the collector tries to retrieve the value in procedure Update-Reference-Counters.
All these slots may be read from the heap. Some slots however are fast-changing
and will change during this time span. The collector will retrieve their values by
peeking at the current mutators’ buffers. At any rate, the update barrier provides
a reliable mechanism for the collector to decide which route to take.

Finally, in procedure Reclaim-Garbage (Figure 8), the collector (recursively) re-
claims all objects with zero reference-count that are not marked local. Every object
with a zero reference-count but that is marked local is passed into the next cycle’s
ZCT. This is because it has a zero (heap) reference-count at the time that the
mutators resume. In particular, it may cease to be locally referenced and need to
be collected during the next cycle.

5. THE SLIDING VIEW ALGORITHM

The snapshot algorithm manages to execute a major part of the collection while
the mutators run concurrently with the collector. A disadvantage of this algorithm
is the halting of the mutators in the beginning of the collection. During this halt
all mutators are stopped while the collector clears the dirty flags and receives the
mutators’ buffers and local ZCTs. This halt hinders both efficiency since only
one processor executes the work and the rest are idle, and scalability since more
mutators will cause more delays. While efficiency can be enhanced by parallelizing
the flags’ clearing phase, scalability calls for eliminating complete halts from the
algorithm. This is indeed the case with our second algorithm, which avoids grinding
halts completely.

A handshake [Doligez and Leroy 1993; Doligez and Gonthier 1994] is a syn-
chronization mechanism in which each mutator stops at a time to perform some
transaction with the collector. Our algorithm uses four handshakes. Thus, muta-
tors are only suspended one at a time, and only for a short interval, its duration
depends on the time to scan the roots.

In the snapshot algorithm there was a fixed point in time, namely when all
mutators were stopped, for which the reference counts of all objects were computed.
Thus, it was easy to claim that if an object has a zero heap reference-count at that

An On-the-Fly Reference-Counting Garbage Collector for Java · 19

time, and it is not local at that time, then it can be reclaimed. By dispensing with
the complete halting of mutators we no longer have this fixed point of time. Rather,
there is a fuzzier picture of the system, formalized by the notion of a sliding view
which is essentially a non-atomic picture of the heap. We show how sliding views
can be used instead of atomic snapshots in order to devise a collection algorithm.
This approach is similar to the way snapshots are taken in a distributed setting.
Each mutator at a time will provide its view of the heap, and special care will
be taken by the collector to make sure that while the information is gathered,
modifications of the heap do not foil the collection.

5.1 Scans and sliding views

Pictorially, a scan σ and the corresponding sliding view Vσ can be thought of as
the process of traversing the heap along with the advance of time. Each reference
slot s in the heap is probed at time σ(s); Vσ(s) is set to the value of the probed
reference slot. The Asynchronous Reference-Count of o with respect to Vσ is defined
as follows.

Definition 5.1. For an object o and a sliding view Vσ we define the Asyn-
chronous Reference-Count of o with respect to Vσ to be the number of slots in Vσ

referring to o: ARC(Vσ; o) def= |{s : Vσ(s) = o}|.
Sliding views can be obtained incrementally with the benefit of not stopping all

mutators simultaneously to compute the view. But in order to use this information
safely we need to be careful. Trying to use the snapshot algorithm when we are only
guaranteed that logging reflects some sliding view is bound to fail. For example,
the only reference to object o may “move” from slot s1 to slot s2, but a sliding view
might miss the value of o in both s1 (reading it after modification) and s2 (reading
it before modification).

These problems are avoided via a snooping mechanism. While the view is being
read from the heap, the write-barrier marks any object that is assigned a new
reference in the heap. These objects are marked as local, thus, preventing them
from being collected in this collection cycle. (Recall that objects directly referenced
by the roots are marked local to prevent collecting them even when they have a
zero heap reference-count.) The snooped objects are left to be collected in the
next cycle. The snooping mechanism, like Dijkstra’s write-barrier [Dijkstra et al.
1978], marks only objects that are reachable after the modification. Thus, is it
less inclined to produce floating garbage than Yuasa’s write barrier [Yuasa 1990].
Assuming this snooping mechanism throughout the scan of the heap, we observe
the following.

Observation 5.1. If object o has ARC(Vσ; o) = 0, i.e., it is not referenced by
any reference slot in the heap as reflected by the sliding view, and if object o is not
referenced directly by the roots of the mutators after the scan was completed, and if
object o has not been marked local by the snooping mechanism while the heap (and
the roots) were being scanned, then at the time the heap scan is completed, object o
is unreachable and may be reclaimed.

Proof. If the object is referenced by a heap slot in the end of the scan, then
this slot has either been referencing this object when the scan of the heap read it,

20 · Levanoni and Petrank

or it has been written to that slot later. Both cases do not fall in the criteria of
unreachable objects in the observation. Finally, if no reference is written into the
heap while the roots are scanned, and there is no reference from the roots to this
object, then it is unreachable. Here we rely on the fact that a mutator is stopped
while reading its stack, so no reference may move while the mutator stack is being
read; and furthermore, in Java, a reference cannot be moved from the stack of one
mutator to another without being written to the heap.

Keeping this observation in mind, we are ready to present the sliding view algo-
rithm. The description is broken into two parts. We first describe (in Section 5.2
below) how a sliding view of the heap may be used to reclaim unreachable objects.
We call it a generic algorithm since it may use any mechanism for obtaining the
sliding view. This is an extension of the ideas in the snapshot algorithm, still pre-
serving the light write barrier. Then, in Section 5.3, a way to obtain a sliding view
is presented.

5.2 Using sliding views to reclaim objects

Based on the above observation we present a generic reference counting garbage
collection algorithm using sliding views.

Each mutator Ti has a flag, denoted Snoopi which signifies whether the collector
is in the midst of constructing a sliding view. The mutators execute a write barrier
when performing a heap slot update. After the store proper to the slot is performed,
i.e., the reference to o is written into slot s, the mutator probes its Snoopi flag and,
if the flag is set, the mutator marks o as local. This probing of the Snoopi flag and
the subsequent marking is denoted snooping.

A collection cycle contains the following stages:

(1) The collector raises the Snoopi flag of each mutator. This indicates to the
mutators that they should start snooping.

(2) The collector computes, using some mechanism, a scan σ and a correspond-
ing sliding view, Vσ, concurrently with mutators’ computations. (A possible
implementation of this step appears in in Section 5.3 below.)

(3) Each mutator is then suspended (one at a time), its Snoopi flag is turned off
and every object directly reachable from its roots is marked local. The mutator
is then resumed.

(4) Now, for each object o let o.rc := ARC(Vσ; o).
(5) Any object o that has o.rc = 0 and that was not marked local is reclaimed.

For each reclaimed object, the reference-counts of all its descendants are decre-
mented. If a descendant’s reference-count is decremented to zero and the de-
scendant is not marked local, then the descendant is reclaimed as well. This
operation continues recursively until there are no objects that may be reclaimed.

A full proof of the sliding views algorithm is enclosed in Section 11 below. How-
ever, it is useful to state a few propositions which may help develop an intuition to
why the above algorithm correctly reclaims unreachable objects.

Proposition 5.2. Let A be any allocated object and let T denote the time in-
terval during which the sliding view is taken. If no reference to A is written to

An On-the-Fly Reference-Counting Garbage Collector for Java · 21

the heap or erased from the heap during T , then ARC(Vσ; A) is exactly the heap
reference-count of A at the end point of time interval T .

Proof. If no reference to A changes during the interval T , during which the
sliding view is taken, then reading the references to A at the end point of T yields
the same information as reading these references any time during the time interval
T .

Proposition 5.3. Let A be any allocated object and let T denote the time in-
terval during which the sliding view is taken. If a reference to A is written to the
heap during T , then A is not reclaimed during the current collection.

Proof. If a reference to A is written to the heap during T , then the snooping
mechanism marks A local, and local objects are not collected.

Proposition 5.4. Let A be any allocated object and let T denote the time in-
terval during which the sliding view is taken. If no reference to A is written to the
heap during T , but some references to A are erased from the heap during T , then
ARC(Vσ; A) is greater or equal to the reference-count of A at the end point of the
time interval T .

Proof. Let S be the set of reference slots pointing to A in the end of T . Since
no reference to A is added, all slots in S refer to A at all points in the interval T ,
and so also when they are recorded by the sliding view. Thus, ARC(Vσ; A) ≥ |S|,
and |S| (the size of the set S) is exactly the reference-count of A at the end point
of time interval T .

Proposition 5.5. Let A be any allocated object and let T denote the time in-
terval during which the sliding view is taken. Any object that has ARC(Vσ; A) = 0
and which is not snooped has heap reference-count 0 at the end of T .

Proof. If a reference to A has been written to the heap during T then it is
snooped and we are done. If not, then either some heap references to A have been
eliminated during T and then we are done by Proposition 5.4, or no heap references
to A have been modified during T and then we are done by Proposition 5.2.

Corollary 5.6. Let A be any allocated object and let T denote the time interval
during which the sliding view is taken. If Object A is reclaimed during the current
collection cycle, then A is unreachable when it is reclaimed.

Sketch of proof. A is reclaimed if it has ARC(Vσ; A) = 0, it is not snooped,
and it is not directly referenced by the roots when they are examined after T . Since
ARC(Vσ; A) = 0 and A is not snooped, then by Proposition 5.5, A is not referenced
by any heap reference slot at the end point of time interval T . Thus, to show that
it is unreachable, it must be verified that A is not reachable directly from the roots.
Suppose any mutator T holds a root reference to A at that time. If T writes this
reference to the heap at any time until its local state is checked, then A will be
snooped and will not be reclaimed, contradicting the assumption in the corollary.
If T keeps the reference until its state is scanned, then A will be marked local and
will not be reclaimed, again, contradicting the assumption in the claim. Finally,
T may erase its local reference to A without writing it to the heap before its local

22 · Levanoni and Petrank

state is recorded. If that happens to all root slots that reference A then A is indeed
unreachable when it is reclaimed.

It remains to check that the recursive deletion preserves the above properties.
Indeed, all propositions above hold for the reduced heap obtained by removing any
unreachable object and all its reference slots. They hold when the ARC’s are decre-
mented for all descendants of the removed object. A full proof of this fact requires
an induction on the order of removed objects. The induction hypothesis is that
if a reference-count of the object A is decremented to zero during the reclamation
process, then only references to it from unreachable objects existed during the end
point of time interval T . 2

Proposition 5.7. Let A be any allocated object and let T denote the time inter-
val during which the sliding view is taken. If A is not reachable before the snooping
mechanism is started and if A is not part of a cyclic structure, then A is reclaimed
during the current collection.

Proof. Since A is unreachable, then during the time interval T there are no
modifications of reference slots referencing A or of reference slots referencing any of
the objects from which A is reachable. By Proposition 5.2, the whole structure from
which A is reachable will be assigned ARC that equals their heap reference-counts
in the end of T . If there is no cycles in this structure, then the whole structure will
be collected recursively by the reference-counting collector.

We have termed this algorithm “generic” since the mechanism for computing the
sliding view in step (2) is unspecified. As in the snapshot algorithm, we do not
intend to actually compute and record a full sliding view of the heap. Instead,
we present an algorithm for updating the reference-counts for an implicitly defined
sliding view of the heap. When the algorithm arrives at its collection phase, it
holds for each object that o.rc = ARC(V ; o), where V is the sliding view that was
constructed implicitly. Since we are not interested in the sliding view itself but
rather on its manifestation through the rc fields, this implicit computation suffices
for collection purposes.

5.3 Obtaining the sliding view

So far we have established the fact that garbage collection may take place even
given only a sliding view of the heap and not a real snapshot. It is now shown
how to obtain the sliding view. The algorithm of Section 5.2 above is used, but it
is extended so that step (2), i.e., updating the reference-counts according to some
sliding view, is done efficiently. The ideas originate from the snapshot algorithm
described above. In particular, one does not need to record a full snapshot or sliding
view of the heap. It is enough to record reference slot modifications and apply the
corresponding reference-counts modifications. As in the snapshot algorithm, it is
enough to know each slot’s value in the previous sliding view and in the current
one. The other reference slot modifications cancel out and are not recorded.

Four handshakes are used during the collection cycle to coordinate the collector
with the mutators. In each handshake, each mutator is stopped, some coordination
is run, and then the mutator resumes. The sliding view associated with a cycle spans
from the beginning of the first handshake up to the end of the third handshake. The

An On-the-Fly Reference-Counting Garbage Collector for Java · 23

“sampling” timing of each individual slot in the scan is determined by mutators’
logging regarding the slot. As dictated by the generic algorithm, the snooping flags
are raised prior to the first handshake and are turned off at the fourth handshake,
during which mutator local states are scanned.

Any reference slot which is modified between collection cycles is logged along with
its value in the most recent sliding view so that the reference-counts may be updated
to reflect the modifications of each modified slot. In contrast to the snapshot
algorithm in which all dirty bits are cleared atomically, here we let the collector
clear the dirty bits concurrently with the mutators. An important consequence of
this relaxation is that slots may be inconsistently logged. For example, suppose
the collector gets a mutator buffers in the first handshake and provides it with
fresh new ones. At this time, the mutator modifies a slot s and logs its value in
its new buffers. Next, the collector clears the dirty marks and just at that time
a second mutator modifies s again and logs it in its local buffer with a different
value. It turns out from our analysis that inconsistent logging of slots is only
possible between responding to the first and responding to the third handshakes of
a cycle. The important point here is that only one unique single value will be used
for the sliding view. This value should be used to update the reference-counts at
this collection (i.e., being the current value of s in the current sliding view) and
also the same value should be used during the next collection when s’s old value
is sought. Just after the fourth handshake, the collector employs a consolidation
mechanism to consolidate any inconsistently logged slot into one single value. No
mutator would log a conflicting value after responding to the fourth handshake,
hence no inconsistencies will be visible during the updates of the reference-counts
or in the history recorded for the next cycle.

We proceed with the details of the sliding views reference-counting algorithm. In
Section 5.4 the code executed by the mutator during reference slot modifications
(the write barrier) and during object creation is presented. In Section 5.5 the
collector algorithm is presented.

5.4 Mutator’s code

Mutators use the write barrier of the snapshot algorithm with the additional snoop-
ing and marking added after the store proper (see procedure Update in Figure 9).
Object creation is the same as in the snapshot algorithm (see Figure 2 above).

5.5 Collector’s code

In this section, the main steps of the collection cycle are presented. The operation
of each step is followed by the actual pseudo-code.
1. Signaling snooping. The collection starts with the collector raising the Snoopi

flag of each mutator Ti, signaling to the mutators that it is about to start computing
a sliding view.
2. Reading buffers (first handshake). Each mutator is stopped for a hand-
shake. During the handshake mutators’ buffers are retrieved and then are cleared.
(These are the same mutator buffers as in the snapshot algorithm.) The slots which
are listed in the buffers are exactly those slots that have been changed since the last
cycle. However, in the sliding view scenario this notion requires more care. The
meaning of “changing” in this asynchronous setting is defined as follows. A slot

24 · Levanoni and Petrank

Procedure Update(s: Slot, new: Object)
begin
1. Object old := read(s)
2. if ¬Dirty(s) then
3. Bufferi[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write(s, new)
7. if Snoopi then
8. Localsi := Localsi ∪ {new}
end

Fig. 9. Sliding View Algorithm: Update Operation

Procedure Initiate-Collection-Cycle
begin
1. for each mutator Ti do
2. Snoopi := true
3. for each mutator Ti do
4. suspend mutator Ti

// copy (without duplicates).
5. Histk := Histk∪

Bufferi[1 . . . CurrPosi − 1]
// clear buffer.

6. CurrPosi := 1
7. resume Ti

end

Fig. 10. Sliding View Algorithm: Procedure Initiate-Collection-Cycle

is changed during cycle k if some mutator changed it after responding to the first
handshake of cycle k and before responding to the first handshake of cycle k + 1.
These are exactly the modifications that are obtained from the buffers at this stage.
Steps (1) and (2) are carried out by procedure Initiate-Collection-Cycle (Figure
10).
3. Clearing. The dirty flags of the slots listed in the buffers are cleared. The slots
are cleared while the mutators are running. This step is carried out by procedure
Clear-Dirty-Marks (Figure 11). A critical difference between clearing the dirty
bits while the mutators are all suspended and clearing them concurrently with the
program, is that this step may clear dirty marks that have been concurrently set by
the running mutators that have already responded to the first handshake. Since we
want to keep these dirty bits set for the rest of this cycle, we will use the logging in
the buffers (which currently contain all objects that have been marked dirty since
the first handshake) to set these dirty bits on again in the next step.
4. Reinforcing dirty marks (second handshake). During the handshake the
collector reads the contents of the mutators’ buffers (which contain slots that were
logged since the first handshake). The collector then reinforces, i.e., sets, the flags
of the slots listed in the buffers.

An On-the-Fly Reference-Counting Garbage Collector for Java · 25

Procedure Clear-Dirty-Marks
begin
1. for each 〈s, o〉 ∈ Histk do
2. Dirty(s) := false
end

Fig. 11. Sliding View Algorithm: Procedure Clear-Dirty-Marks

Procedure Reinforce-Clearing-Conflict-Set
begin
1. ClearingConflictSetk := ®
2. for each mutator Ti do
3. suspend mutator Ti

4. ClearingConflictSetk :=
ClearingConflictSetk∪
Bufferi[1 . . . CurrPosi − 1]

5. resume mutator Ti

6. for each s ∈ ClearingConflictSetk do
7. Dirty(s) := true
8. for each mutator Ti do
9. suspend mutator Ti

10. nop
11. resume Ti

end

Fig. 12. Sliding View Algorithm: Procedure Reinforce-Clearing-Conflict-Set

5. Assuring reinforcement is visible to all mutators (third handshake).
The third handshake is carried out. Each mutator is suspended and resumed with
no further action. By the time all mutators resume, we know that they view
correctly all dirty bits. Namely, a slot is dirty iff it was modified by a mutator that
responded to the first handshake.

Steps (4) and (5) are executed by procedure Reinforce-Clearing-Conflict-Set
(Figure 12).
6. Get-Local-States (fourth handshake). During the fourth handshake mu-
tator local states are scanned and objects directly reachable from the roots are
marked local. The snoop flags of the mutators are cleared. Mutators’ buffers are
retrieved once more and are consolidated. The last operation requires more expla-
nation. As discussed in the beginning of Section 5.3 above, there may be some
conflicting entries to a slot s in the buffers. The consolidation process takes care of
leaving only one of these for future use of the collector.

Consolidating mutators’ buffers amounts to the following. For any slot that ap-
pears in the mutators’ buffers accumulated between the first and fourth handshakes,
pick any occurrence of the slot and copy it to a digested consistent history. All other
occurrences of the slot are discarded.

Intuitively, the sliding view value of any slot s that goes through the consolida-
tion process is exactly the consolidated value. The reference count of the object
referenced by this value will be incremented in this cycle. Thus, it is important

26 · Levanoni and Petrank

Procedure Get-Local-States
begin
1. local Temp := ®
2. ColLocalsk := ®
3. for each mutator Ti do
4. suspend mutator Ti

5. Snoopi := false
// copy and clear snooped objects set

6. ColLocalsk := ColLocalsk ∪ Localsi

7. Localsi := ®
// copy mutator local state and ZCT.

8. ColLocalsk := ColLocalsk ∪ Statei

9. ZCTk := ZCTk ∪Newi

10. Newi := ®
// copy local buffer for consolidation.

11. Temp := Temp∪
Bufferi[1 . . . CurrPosi − 1]

// clear local buffer.
12. CurrPosi := 1
13. resume mutator Ti

// consolidate Temp into Histk+1.
14. Histk+1 := ®
15. local Handled := ®
16. for each 〈s, v〉 ∈ Temp
17. if s /∈ Handled then
18. Handled := Handled ∪ {s}
19. Histk+1 := Histk+1 ∪ {〈s, v〉}
end

Fig. 13. Sliding View Algorithm: Procedure Get-Local-States

to make sure that its reference-count will be decremented in the next cycle, if s is
modified again. Therefore, the digested history output by the consolidation mech-
anism replaces the accumulated mutators’ buffers. Namely, the history for the next
cycle is comprised of the digested history of mutators’ logging between the first and
fourth handshakes of the current cycle, unified with mutators’ buffers representing
updates that will occur after the fourth handshake of the current cycle but before
the first handshake of the next cycle. The above operations are carried out by
procedure Get-Local-States of Figure 13.
7. Updating. The collector proceeds to adjust rc fields due to differences between
the sliding views of the previous and current cycle. This is done exactly as in the
snapshot algorithm (see Figure 5). The collector will fail to determine the “current”
value of all slots that were modified (i.e., are dirty). These slots will be treated
later and are now marked as undetermined.
8. Gathering information on undetermined slots. The collector asyn-
chronously reads mutators’ buffers (using the snapshot algorithm procedure Read-
Buffers of Figure 6). Then, in procedure Merge-Fix-Sets (Figure 14) it unifies
the set of read pairs with the digested history computed in the consolidation step.
The set of undetermined slots is a subset of the slots appearing in the unified set so

An On-the-Fly Reference-Counting Garbage Collector for Java · 27

Procedure Merge-Fix-Sets
begin
1. Peekk := Peekk ∪Histk+1

end

Fig. 14. Sliding View Algorithm: Procedure Merge-Fix-Sets

Procedure Collect(o: Object)
begin
1. local DeferCollection := false
2. foreach slot s in o do
3. if Dirty(s) then
4. DeferCollection := true
5. else
6. val := read(s)
7. val.rc := val.rc− 1
8. write(s, null)
9. if val.rc = 0 then
10. if val /∈ ColLocalsk then
11. Collect(val)
12. else
13. ZCTk+1 := ZCTk+1 ∪ {val}
14. if ¬DeferCollection then
15. return o to the general purpose allocator.
16. else
17. ZCTk+1 := ZCTk+1 ∪ {o}
end

Fig. 15. Sliding View Algorithm: Procedure Collect

the collector may now proceed to look up the values of these undetermined slots.
9. Incrementing rc fields of objects referenced by undetermined slots.
In procedure Fix-Undetermined-Slots (same one from the snapshot algorithm—
Figure 7) any undetermined slot is looked up in the unified set and the rc field of
the associated object is incremented.
10. Reclamation. Reclamation generally proceeds as in the previous algorithm,
i.e., recursively freeing any object with zero rc field which is not marked local.
However, we do not reclaim objects whose slots appear in the digested history.
These are objects which were modified since the cycle commenced but became
garbage before it ended. Since the buffers will be used in the next collection, the
reclamation of such objects is deferred to the next cycle. Reclamation is carried out
using the procedures Reclaim-Garbage (same one as in the snapshot algorithm—
Figure 8 and Collect (Figure 15).

5.6 Some words on correctness

A full proof of the collector appears in Sections 10-11 below. However, some pre-
liminary discussion may help understand the algorithm and its properties. This
algorithm is an extension of the generic algorithm presented in Section 5.2. It is

28 · Levanoni and Petrank

shown there that it is possible to collect garbage safely using a sliding view. It
remains to show that the full algorithm indeed collects according to some sliding
view of the heap. As in the snapshot algorithm, the sliding view is not explicitly
written or recorded. Instead, only modifications in the view are recorded and they
are enough to compute the updated asynchronous reference-counts of all objects.
The first step is to define the sliding view that is implicitly used by the algorithm.
Then, it is claimed that the algorithm indeed computes the asynchronous counts
appropriately according to this sliding view.

5.6.1 The sliding view associated with a cycle. To define a sliding view, one
must define a time in which each slot is probed. Recall (as in Section 5.1 above)
that σ(s) is the time at which the slot s is scanned, and Vσ(s) is the value probed
during the scan. Consider any memory word s. We define the scan time of s as
follows.

—Case 1: If s does not appear in the buffers that are read during the first hand-
shake of collection k, then s does not cause any reference-count updates during
the current collection. We choose to fix its scan time to the beginning of the first
handshake.

—Case 2: If s does appear in Histk, we split the discussion into two cases.
—Case 2a: The slot s is logged by some mutator Ti after Ti responds to the

first handshake and before it responds to the third handshake. In this case,
the value of s for Histk+1 is later set by the consolidation mechanism in pro-
cedure Get-Local-States. In this case, the scan time is defined according
to the consolidated value for s. Specifically, there is a value that survives the
consolidation process for this slot, and there is a mutator that reads this value
and stores it into its buffer. The scan time is fixed to be the time this mutator
read the said value.

—Case 2b: Otherwise, s is not logged by any mutator between the first and
third handshakes and then we choose the scan time to be the end of the second
handshake.

Intuitively, Case (1) is simpler since the collector does not clear the dirty bits of
slots that are not in Histk. In this case, the write barrier works similarly to the
snapshot algorithm. More care will be needed when s ∈ Histk and the dirty bit
is cleared during the run. In Case (2) we distinguish between slots that may have
been logged with two different values because of the dirty bit clearance and slots
that must have been logged with a unique value. The following simple assertions
about the sliding view are presented without proof.

Proposition 5.8. The scan of the sliding view of cycle k start at or after the
beginning of the first handshake and it ends at or before the end of the third hand-
shake.

Corollary 5.9. The snooping mechanism is active throughout the scan of the
sliding view.

5.6.2 The collector uses the sliding view. The per-cycle sliding view is com-
puted implicitly by the collector and mutators (bearing similarity to the conceptual
snapshot taken at collection k by the snapshot algorithm which is never explicitly

An On-the-Fly Reference-Counting Garbage Collector for Java · 29

computed.) We say that a slot is modified if it is modified by some mutator after
responding to the first handshake of the previous cycle (cycle k − 1) and before
responding to the first handshake of the current cycle (cycle k). If a slot is not
modified, then it does not cause any reference-count modification to its referent.
We first claim that this is correct. In other words, the value of such a slot at the
current sliding view is equal to its value in the previous sliding view.

Proposition 5.10. If s 6∈ Histk then s is not modified between the time s is
scanned for the sliding view of collection k − 1 and the time s is scanned for the
sliding view of collection k.

Proof. We know that slot s is not modified by any mutator after responding
to the first handshake of the previous cycle and before responding to the first
handshake of the current cycle. We show that the value of s at the beginning of
the first handshake of cycle k is the value of s in both sliding views. Starting with
the cycle k, the assertion holds by definition since the scan of s is defined to be in
the beginning of the first handshake. To see that the same value is also read by the
scan of cycle k − 1, we divide the analysis into two cases. If s has been modified
in the cycle before, i.e., s ∈ Histk−1, then the scan of s in cycle k1 happens after
the first handshake of that cycle ends. This is true both in case (2a) and case (2b).
Now, using the fact that s is known not to change after the first handshake of cycle
k1, we are done. The remaining case is when s is also not in Histk−1. But then it
has not been modified for two consecutive cycles and scanning it in the beginning
of the first handshake of cycle k − 1 (as dictated by Case 1) yields the same value
as in any other point in time while it remains unchanged.

We conclude that if s is not in Histk then no updates are necessary according
to s on the asynchronous reference-counts. This is very much like the computation
of the reference-counting of the snapshot algorithm. We now turn to slots that are
modified.

Proposition 5.11. If s ∈ Histk, then the collector properly updates the reference-
counting changes caused by modifying s between the sliding view of the previous cycle
to the sliding view of the current cycle.

Sketch of proof. The collector reads the value of s in the previous cycle from
the buffers, i.e., through Histk. We need to show that this recorded value equals
the value of s in the sliding view of cycle k−1 as defined above. Then, the collector
obtains the current value from the heap or from the new buffers. We need to show
that the value obtained matches the value of the sliding view of cycle k. We start
with the latter.

If the collector reads s in Procedure Update-Reference-Counts and finds it
not dirty, then s has not been modified by any mutator after responding to the
first handshake. This is true because all dirty bits are reinforced before the third
handshake and the collector reads these values after the fourth handshake. Thus,
in this case, the same value is fixed throughout the scan time and in particular its
value matches the one defined according to Case (2b).

If the collector finds s dirty, then one possibility is that it falls into Case (2a),
i.e., it has been modified by a mutator between responding to the first and the third
handshake. In this case, the consolidation mechanism fixes the value of this slot.

30 · Levanoni and Petrank

The consolidated value is the one read by the collector, and it is by definition the
value of the sliding view. So this case is fine. Otherwise, the value of s has been
modified by a mutator after responding to the third handshake. In this case, the
value of s is not changed between the end of the first handshake and the beginning
of the third handshake. In addition, the write barrier is guaranteed to record a
unique value to the buffers, which, similarly to the proof of the snapshot algorithm,
is the value existing in this slot before the third handshake begun. Indeed, the
definition of the scan for s in this case, determines the end of the second handshake
to be the scan time, thus fixing the value of slot s in the current sliding view to
exactly the value obtained from the buffers in Procedure Read-Buffers.

It remains to check that the value of s found in Histk matches the value of s
in the scan of the cycle k − 1. Here, again, we need to partition the analysis into
two cases according to whether s ∈ Histk−1, i.e., whether it was modified between
cycles k − 2 and k − 1.

Suppose s ∈ Histk−1. If it was modified between the first and third handshakes of
the cycle k−1, then its scan value is determined according to the consolidated value
of cycle k − 1. The same value exactly is inserted into Histk by the consolidation
mechanism and we are done. If s was not modified during the first and third
handshake of cycle k − 1 (yet, s has been logged into Histk later), then the write
barrier properties allow only one value to appear in the buffers. This value is the
value that s held between the end of the first handshake in cycle k − 1 and the
beginning of the third handshake in that cycle. By case (2b) this value is scanned
for the sliding view of cycle k − 1 during this interval (by the end of the second
handshake). Thus, the sliding view value is determined to be exactly the value that
appears with s in Histk and we are done.

If s 6∈ Histk−1 then the dirty bit is not cleared during collection k − 1. In this
case, the write barrier behaves exactly as in the snapshot algorithm and we are
guaranteed to see in Histk the value of the slot s as it was between cycles k − 2
and k − 1, thus, also in the beginning of the first handshake in cycle k − 1 when it
is scanned for the sliding view of cycle k − 1 and we are done. 2

The propositions above show that the collector is properly updating the asyn-
chronous reference-counts according to the sliding views defined. By the properties
of the generic algorithm described in Section 5.2, we get that the collector safely
collects garbage.

6. MEMORY COHERENCE

As mentioned in the introduction, a few modifications can make the algorithm
suitable for platforms that do not guarantee sequential memory consistency. We
list these modifications here and discuss their cost. Note that the collector is single
threaded. Therefore, the concern is about undesriable interaction between two
concurrent mutator threads and between the collector thread and a mutator thread.

The algorithm relies on the following order of instructions in the write barrier,
in the (more interesting) case in which the dirty flag is found off and the snoop flag
is found on:

(1) Read the value v of slot s

(2) Read the value of the dirty flag (returns: clean)

An On-the-Fly Reference-Counting Garbage Collector for Java · 31

(3) Write a record 〈s, v〉 to the local buffer (may require multiple memory accesses)
(4) Update the buffer pointer
(5) Dirty the flag
(6) Write newv into s

(7) Read snoop flag (returns: on)
(8) Snoop newv

This order of instructions has the following significance in the algorithm:
Dependency 1: Had any of the instructions (1), (2), (5) or (6) been reordered,
the value associated with s in the buffer might have been incorrect. In addition,
this might have foiled the collector’s effort to determine the slot’s value. The
interdependent pieces of code for this instructions order are (a) this code itself (i.e.,
mutators racing to update a slot) (b) in the collector, trying to determine a slot.
The collector actually executes a prefix of the above code (instructions (1), (2)
and (3)) in procedure Update-Reference-Counters (see Figure 5) and has the same
ordering requirements.
Dependency 2: Writing into the log (in instructions (3) and (4)) should occur
strictly before dirtying the flag in (5) or else the collector may not be able to
retrieve the values of undetermined slots in procedure Read-Buffers (Figure 6).
Instructions (3) and (4) themselves may not be reordered because otherwise the
collector may read half-updated log entries.
Dependency 3: Reading of the snoop flag in (7) must occur after the store proper
in (6) or else some slots may be updated after the collector has started a collection
cycle, without being snooped. This breaks the safety of the algorithm.

Solving dependencies (2) and (3) can be done using two lightweight handshakes.
One letting the mutators acknowledge they have sensed the raising of the snoop
flag before the collector starts the first handshake (for dependency 3), and the
other occurring during (or prior to) the procedure Read-Buffers to make sure that
the mutators have checkpointed the value of the buffer pointer (for dependency
2). In this lightweight handshake the collector updates a “stage” flag and the
mutators follow suite on their earliest convenience, after having issued a memory
synchronizing instruction. From the collector side, after a mutator signals it has
cooperated, it is guaranteed that it has picked up the value of the snoop flag or that
it has made available its most recent log buffer updates to the collector. Adding
two lightweight handshakes to a collection cycle causes a negligible cost to the
throughput.

To solve dependency (1), we use a mixture of techniques. First we handle the
mutator side of this dependency. In our implementation, the write barrier begins
with an optimistic test of the dirty bit. Only if the dirty bit if off, does the mutator
proceed to execute the full write barrier as described in the sliding view algorithm.
If the dirty bit is set, then the mutator may proceed immediately to the actual
reference slot update and to the snooping check. It turns out from our measure-
ments that for typical benchmarks most reference slot updates are executed on
newly created objects. In our implementation, objects are marked dirty, and are
logged, as soon as they are created, with a special compressed record denoting that
they point to no object. Thus, the “heavy” write barrier path is not executed
when an object is initialized (soon after it is created.) Since most objects are short

32 · Levanoni and Petrank

Procedure Optimistic-Update(s: Slot, new: Object)
begin
1. if ¬Dirty(s) then
2. Object old := read(s)
3. Synchronization barrier
4. if ¬Dirty(s) then
5. Bufferi[CurrPosi] := 〈s, old〉
6. CurrPosi := CurrPosi + 1
7. Dirty(s) := true
8. Synchronization barrier
9. write(s, new)
10. if Snoopi then
11. Localsi := Localsi ∪ {new}
12. end

Fig. 16. Sliding View Algorithm: Optimistic Update Operation

lived, this eliminates the need to call the heavy path of the write barrier on the
striking majority of cases. Our measurements show that for the javac benchmark
this happens less than once in a hundred, and for the SPECjbb benchmark and all
the other SPECjvm98 benchmarks this happens less than once in a thousand. We
will incorporate synchronization only in the heavy path of the write barrier, i.e.,
when the object is found not dirty. thus, the vast majority of the reference slot
updates require no cost for handling memory coherence. In order to enforces the
required instructions order, memory synchronizing instructions are placed between
instructions (2) and (4) and between instructions (7) and (9) of the update barrier.
See Figure 16 for the revised code. This indeed renders it heavyweight but as said,
this code is seldom executed.

On the collector side, when trying to determine a slot, the same technique can-
not be used efficiently. This is because mutators usually update new objects (for
initialization), which are initially dirty, whereas the collector tries to determine the
values of slots of old objects, that have survived at least one collection cycle and
whose dirty bit has therefore been reset at the initial stages of the current cycle.
Hence most of the dirty bits the collector probes are set to false.

Rather, a batching technique should be used: instead of trying to determined
the value of a single slot at a time, the collector tries to determine the values of a
batch of N slots at a time. These are the steps the collector follows:

(1) Read N slots from the history buffer for the cycle.
(2) Read the values of the slots, storing them in a local array.
(3) Place a memory synchronizing instruction.
(4) For each slot, read the value of the corresponding dirty flag and act appropri-

ately, using the recorded value for the slot in the local array.

By choosing N to be large enough, the price of memory synchronization can be
reduced to a very low level. Batching may or may not reduce data locality. In fact,
it may even help increase locality as similar types of access are grouped together
(slot retrieval vs. reference-count updates).

An On-the-Fly Reference-Counting Garbage Collector for Java · 33

We have not implemented these modifications (except for measuring the fre-
quency of entering the “heavyweight” section of the update barrier), since they
were not required by the Intel platform we had used for testing.

7. IMPLEMENTATION ISSUES

In this section we shift from the abstract treatment of the dirty flags and the log
buffers and suggest concrete implementations for these data structures.

7.1 Global roots

For convenience, we assume in the exposition of the algorithms and their proofs
that there are no global roots. Instead, we model global roots as members of a
distinguished heap object which is reachable from the local state of every mutator.
This is enough to make the algorithm correct.

In practice, we give a special treatment to global roots by using a designated
write barrier with them. Global roots are not assigned a dirty bit because they
are scanned on each cycle regardless of whether they have been modified or not.
Therefore the designated write barrier does not mark slots dirty when they change.
However, it does invoke the snooping mechanism. Thus, each new reference written
to a global root while the snoop flag is set, makes the referent snooped. Such an
object cannot be collected during the current cycle. Finally, when local states are
checked during the fourth handshake, objects reachable from global roots are also
marked local.

7.2 Dirty Flags

This section explains how one dirty bit can protect several heap slots, and why that
bit became an instance variable for each object.

We start with explaining how a flag can serve an indicator to a change in any of
the slots within a fixed chunk of memory. The ideas are similar to those that arise
in the context of tracking inter-generational references in a generational collector
that uses card marking [Sobalvarro 1988].

In order to let a single flag signify a change in a chunk of memory we let the
write barrier take the following form. When the value v is stored into the slot s,
the flag for the chunk of memory containing s is probed. If the flag is set then
the mutator may proceed directly to the store operation. Otherwise, the following
cautious action is taken.

—A replica of the slots that reside inside the chunk is created and stored locally.
—the flag for the chunk is then probed again. If it is now turned on, we proceed

to the store operation, without using the local replica.
—otherwise, i.e., the dirty flag is still clear, we copy the replica just prepared to

the log buffer, raise the flag and only then execute the store.

The collector code for determining a slot is changed accordingly. The collector tries
to determine the value of an entire chunk instead of a single slot. Using one dirty bit
for a chunk of memory is characterized by a decreased memory consumption (less
dirty bits) yet by spurious work imposed on the mutator and collector that have
to process slots which haven’t really changed. It turns out from our measurements
that the flag is seldom found clear, and thus the cost is low.

34 · Levanoni and Petrank

Space and time may be conserved by not logging the identity of individual slots
within a chunk. It suffices simply to log which non-null references the chunk con-
tains. This technique ameliorates the cost of spurious logging. Working on an
object basis lets the mutator efficiently record precisely object slots: given a base
pointer to the objecy we can produce a per-type slot-storing code that stores any
heap slots contained in the object into the history buffer of the mutator, or pro-
duce a per-type vector of slots’ indices and an efficient routine that logs the slots
specified by the vector.

Allocating the dirty flag with an object is a natural choice in terms of locality,
i.e., we might expect that when a slot of an object is changed, then its sibling slots
are likely to change as well, so the amount of unneeded information recorded is
minimized. The disadvantage of working with a flag-per-object scheme is dealing
with objects that are too big. Applying the scheme for them will result in a wasteful
replication of probably unchanged data. This can be avoided by treating big objects
differently. Special care need be taken that the methods for small and big objects
coexist.

7.2.1 An optimization. Initializing updates comprise the majority of updates in
functional languages and garbage collected object oriented languages [Zorn 1990;
Hosking et al. 1992]. Namely, most writes to a typical object happen just after its
creation. If this is the case, we can save a substantial amount of our algorithms’
overhead: when the object is created, it is logged in the mutator buffer with no
contained references, and it is marked dirty. All further updates to this object up
until the next collection find the dirty bit set and keep the average write barrier at
low cost.

7.3 Log buffers

The primary design factor in the implementation of the log buffers is how to write
into them as fast as possible for a mutator. A secondary consideration is how to
allow the collector to read those records that have been fully logged (i.e., both slot
and value members of a logged pair) without interrupting the mutator.

In order to satisfy the primary goal we suggest the following design, which is
similar to the one described in [DeTreville 1990]: a buffer will be implemented as a
linked list of buffer-chunks. Each chunk is of size 2k, aligned on a 2k boundary (k
is a parameter.)

Implementing the second requirement, i.e., that the collector can read asyn-
chronously the set of completely logged pairs can be achieved efficiently in the
following manner.

—before the mutator starts using a buffer-chunk it zeroes it out.
—in order to store a record in the buffer a mutator first writes the value read, then

it writes the slot address.
—the collector reads the records in the mutator’s buffer sequentially. It knows that

it has read a record which has not been completely logged when it sees a slot
with the value of null (The mutator never logs a slot whose address is null.)

Thus, the mutator can manipulate the buffer using only a single register that
points to the next address to be written.

An On-the-Fly Reference-Counting Garbage Collector for Java · 35

7.4 Cooperation model - the handshakes

In order to implement handshakes, the approach in which mutators are suspended
one at a time for a handshake was adopted. While a mutator is suspended, the
collector takes some action on its behalf and then the mutator is resumed. We use
a per-mutator flag called cantCooperate which is turned on in sections of code
during which the mutator can not cooperate (i.e., during the write barrier and the
logging of newly created objects).

In order to carry out a handshake the collector suspends the mutators one at a
time. If a mutator is caught in non-cooperative code then the collector resumes
it immediately and proceeds to handle other mutators. The collector repeats this
process until all mutators have cooperated.

It is important to limit the size of the non-cooperative code sections to a fixed
and small number of instructions. This entailed reserving space in advance, in the
snoop, create and update buffers prior to entering a non-cooperative section.

8. THE MEMORY MANAGER

In the design of the memory manager we tried to satisfy these requirements:

(1) allocation should be as fast as possible and should avoid synchronization bot-
tlenecks. i.e., the allocator should be scalable.

(2) both the tracing and reference-counting asynchronous algorithms do not ac-
commodate the relocation of objects in memory. The allocator should not
suffer from fragmentation (except maybe for some pathological cases) due to
this property.

(3) in the asynchronous reference-counting algorithm, reclamation of objects occurs
sporadically rather than linearly as in the sweep phase of the tracing algorithm.
The memory manager should handle efficiently this sporadic reclamation of
objects. Even though objects will not be freed linearly it should still try to
minimize fragmentation and increase the locality of allocation requests. i.e., it
is preferable that two objects which are created in a row will be located closely
in memory rather than chosen randomly from the entire heap space.

(4) the vast majority of objects which are created are smaller than 60 bytes. The
memory manager should take advantage of this fact by optimizing the allocation
of small object. Allocation of medium sized and large objects may be less
efficient than that of their smaller counterparts.

An allocator similar to Boehm’s was chosen [Boehm et al. 1991]. The allocator is
divided into two levels of management: the chunk manager and the block manager.
We now outline the roles of these managers.

The block manager manages big, equally sized, blocks of memory. The block size
is tunable at compile time and in the measurements was tuned to the hardware
page size, which is 4KB. It supports the following operations:

—allocate a range of blocks.

—free a range of blocks given the start address of the range.

—free a collection of ranges of blocks.

36 · Levanoni and Petrank

The block manager is serial (No concurrency is supported) and it is implemented
using linked lists of equally sized regions of blocks. The block manager is utilized
either directly, by the allocation code, or indirectly using the chunk manager. When
a user requests an allocation bigger than half a size of a block then the number of
necessary blocks is allocated directly from the block manager. Smaller allocations
are satisfied by the chunk manager which chunks single blocks into equally sized
chunks that are consumed by the user.

The chunk manager is highly concurrent and efficient since it uses very fine
locking, mutator local allocation and it does not support coalescing or splitting:
once a block is chunked into a specific size, all allocations from within it will use
the same chunk size until (and if) the block is completely freed, in which case it will
be returned to the block manager. Hence, allocation code need not perform costly
checks due to variable sized chunks located on the same block. There is a fixed
number of allocation sizes (approximately 20). The allocation sizes are chosen to
balance between internal fragmentation (which calls for many different allocation
sizes) and external fragmentation (which calls for a small number of allocation
sizes so that blocks of one size can be used by objects of differing sizes instead of
allocating separate pages for each object size).

A typical object oriented application will issue many allocation calls that will be
implemented solely by the chunk manager and only relatively few calls will require
allocating entire blocks from the block manager.

9. PERFORMANCE RESULTS

In this section we report measurements we ran with our algorithm. We used two
standard testing suites: SPECjbb2000 and JPECjvm98. These benchmarks are
described in detail in SPEC’s Web site [SPEC Benchmarks 2000].

Our primary instrumentation goal was to study the memory consumption behav-
ior of these benchmarks. To that end, we have compiled the JVM with the GC and
allocator modules in instrumented mode and the rest of the JVM in production
mode. That way, the runs were realistic ones, with the amount of objects allocated
and running times not significantly different from an all-production JVM yet still
we gained the GC instrumentation information.

In order to appreciate the “sensitivity” of each benchmark to reference-counting,
i.e., the amount of garbage cycles and stuck reference-counters that the benchmark
produces, we ran each benchmark only with the tracing collector and also only with
the reference-counting collector, without the use of the auxiliary tracing collector.
Table I shows the number of objects allocated, average object size and the average
number of references in an object. Overall, the number of allocated objects when
using the reference-counting collector is comparable to the number of allocated
objects using the tracing collector, though almost always smaller by a maximal
factor of 5%. This is consistent with the performance figures we present later.

All tests were conducted with an equal setting for the two collectors. Our main
benchmark is the standard server multithreaded application: the SPECjbb2000.
This benchmark was run on a four way Pentium III at 550Mhz with 2GB of physical
memory and a 600MB java heap. As a sanity check, we also ran a comparison on
client applications represented by the SPECjvm98 benchmark suite. These tests
were run on a single Pentium III at 500Mhz with 256MB of physical memory and

An On-the-Fly Reference-Counting Garbage Collector for Java · 37

Benchmark Tracing RC
No. allocated Object No. No. allocated Object No.

objects size References objects size References

jbb 26,753,615 49.9 1.6 25,113,179 52.4 1.7

compress 55,126 2,041.1 0.8 58,061 1,940.4 0.9

db 3,261,467 34.0 2.6 3,263,358 34.0 2.6

jack 6,919,637 40.3 1.7 6,917,102 40.3 1.6

javac 6,403,821 42.9 1.9 6,405,478 43.0 1.9

jess 7,994,215 46.4 3.6 7,993,946 46.4 3.6

mpegaudio 65,539 31.6 1.1 58,329 29.5 0.9

Table I. Number of allocated objects, average object size and the average number of references in
an object.

Benchmark Stuck Relative
objects percentage

jbb 141,141 0.6%

compress 2,727 4.7%

db 30,637 0.9%

jack 51,607 0.7%

javac 235,605 3.7%

jess 12,566 0.2%

mpegaudio 2,728 4.7%

Table II. Number of objects that have reached a stuck count (i.e., 3) and their percentage in the
reference-counted runs.

64MB for the jvm98 client benchmarks. The reference-counted runs of the compress
and javac benchmarks were not able to complete with 64MB heap without resorting
to the tracing collector to reclaim cyclic structures. Therefore, the instrumentation
results presented here refer to runs of these two benchmarks with a java heap of
200MB. The efficiency measurements were run without this space overhead.

As Table I shows, the small number of references per object (e.g., a reference
or two in a typical object) supports our premises that the number of references in
most objects is relatively small hence the use of a flag per object instead of a flag
per slot does not involve a significant amount of extra logging.

Table II shows the number of objects that have reached a stuck count (i.e.,
o.RC = 3) in the reference-counted runs and the relative percentage of these objects
in the entire object population. These numbers support our assumption that a two-
bit reference-count is enough for the striking majority of objects.

In an attempt to measure the sensitivity of each benchmark to reference-counting
we compared the ratio of collected to allocated objects between the tracing and
reference-counting collectors. The results are summarized is Table III. Except for
javac, which uses many cyclic structures, and to a lesser degree the db benchmark,
the benchmarks have demonstrated a low degree of sensitivity to reference-counting.
This finding supports the premise that we may use reference-counting for most
garbage collection cycles and only occasionally resort to tracing.

We now turn our attention to the use of the write barrier. Table IV shows
the number of reference stores that have been applied to “new” vs. “old” objects
(i.e., objects that still haven’t undergone a collection cycle versus those which have

38 · Levanoni and Petrank

Benchmark % Reclaimed % Reclaimed % Not Reclaimed
by tracing by RC by RC

jbb 97.5% 96.5% 1.0%

compress 73.5% 72.1% 1.9%

db 99.6% 90.5% 9.1%

jack 99.6% 96.8% 2.8%

javac 99.6% 66.1% 33.6%

jess 99.8% 99.5% 0.3%

mpegaudio 74.2% 69.6% 6.2%

Table III. Percentage of objects reclaimed by (1) the original collector and (2) the reference-
counting collector when used without the backing mark-and-sweep collector. Ratio of percentage
of objects not collected by the reference-counting collector compared with the percentage of objects
collected by the tracing collector.

Benchmark No. stores No. stores No. object No. Create
to new to old log references vs. log
objects objects actions logged ratio

jbb 61,070,693 9,940,664 52,410 264,115 0.00209

compress 63,892 1,013 13 51 0.00022

db 31,297,167 1,827,613 36 30,696 0.00001

jack 135,013,882 160,893 824 1,546 0.00012

javac 21,774,697 267,331 189,395 535,296 0.02946

jess 26,206,218 51,889 544 27,333 0.00007

mpegaudio 5,517,487 308 12 51 0.00021

Table IV. Demographics of the write barrier: number of reference stores applied to new and old
objects; number of object logging actions; total number of references that were logged and the
ratio of the number of object logging actions to the number of allocations. This ratio is an upper
bound to the percentage of objects which ever get logged in the write barrier.

survived at least one collection cycle), the number of object logging actions, and
the ratio of logging actions to object creation actions (this is an upper bound for
the percentage of objects which ever get logged). We learn from these results the
following:

—Most reference stores are applied to new objects, probably because there are more
of them compared to old objects and because new objects have to be initialized.

—From the reference stores which are applied to old objects only a fraction leads
to logging. This means that the same old objects are accessed repeatedly. Yet
we have to log the object only the first time it is accessed in a cycle.

To conclude, due to this essentially generational behavior it is indeed beneficial to
mark new objects as dirty. Also, the price paid for the write barrier almost always
equals the price of a memory load and register test. Due to the large amount of
new objects versus old, logged, objects, the complexity of a reference counted cycle
is in reality proportional to the number of objects that were allocated during the
cycle. It does appear, though, that those old objects which are repeatedly changed
contain much more references compared to the average. See for example the ratio
between the number of logged references to the number of logged objects in the
jbb, db and jess benchmarks which far exceeds the average number of references

An On-the-Fly Reference-Counting Garbage Collector for Java · 39

jbb compress db jack javac jess mpegaudio

No. cycles 7 2 4 9 6 10 2

GC time 46.1 0.1 5.7 10.3 9.0 17.0 0.1

Clear 12% 7% 7% 10% 11% 7% 0%

Update 36% 19% 37% 31% 43% 37% 19%

Create buff 8% 7% 13% 13% 11% 8% 7%

Reclaim 42% 21% 41% 41% 33% 43% 21%

Table V. GC time for the reference-counting collector, in seconds. “Clear” refers to procedure
Clear Dirty Marks; “Update” refers to Update Reference Counters; “Create buff” refers
to the pass over the create buffers, checking whether an object is garbage and adding it to the
ZCT; “Reclaim” is the final pass over the ZCT, when objects are deleted recursively.

Heap Size (MB)
600 1200

score in JBB’s Original 1,131.3 1,101.0
throughput units RC 1,101.7 1,108.3

Change in JBB score -2.6% 0.7%

Maximal response Original 7763 16,100
time (milliseconds) RC 115 110

Times RC is more responsive ×67.5 ×146.4

Table VI. Throughput and latency of the reference-counting collector and the original collector in
standard SPECjbb runs, with 600 MB and 1200 MB heaps.

per objects in these benchmarks. This suggests that we might need to explore ways
to log large objects “by pieces” and not in their entirety, as is currently done.

Finally, let us look at the execution times of each of the collectors. Table V shows
the number of collection cycles, total elapsed time of the collection cycles and how
this time distributes between the major stages of the reference counting collector.

For benchmarks that deal with smaller amounts of larger objects, such as com-
press, we see that most GC time is spent in garbage collection overheads (hand-
shakes, etc.)

We now turn to investigate the collectors’ performance results compared to the
original JVM. We start with server performance and then continue with client
performance.

9.1 Server performance

A standard execution of SPECjbb requires a multi-phased run with increasing num-
ber of mutators. Each phase lasts for two minutes with a ramp-up period of half
a minute before each phase. Prior to the beginning of each phase a synchronous
GC cycle may or may not occur, at the discretion of the tester. We decided not to
perform the discretionary initial synchronous garbage collection cycle as we believe
it does not posses the characteristics of real world scenarios in which the server is
not given a chance for this “offline” behavior so often. The results presented here
are averaged over three standard runs.

Table VI shows the two most important performance meters for the reference-
counting collector compared to the original JVM: while we do pay a small price of
up to 2.6% decreased throughput, we improve the maximal response time by two
orders of magnitude. To illustrate, the original JVM may pause for as long as 16

40 · Levanoni and Petrank

Heap Elapsed % increase. No. No. No.
size GC in GC sync RC tracing

(MB) time time cycles cycles cycles

600 147 227% 2 11.7 1.0

900 144 269% 2 6.3 0.0

1200 143 225% 2 5.0 0.0

Table VII. Elapsed time of garbage collection in a standard SPECjbb run with the reference-
counting collector; the percentage of increase in elapsed time over the original garbage collector
and the types of garbage collection cycles that were performed. “sync” is a synchronous GC cycle
requested explicitly by the benchmark.

Mutators 1 2 4 6 8 10 15 20

Original 637 1125 1728 963 928 903 887 847

RC 0.4% 4.0% -5.4% -2.0% -1.0% -2.2% -0.3% 2.4%

Table VIII. Scores of the original JVM on a series of fixed number of mutators runs with 600MB
heap; increase/decrease in score for the reference-counting collectors.

Mutators 1 2 4 6 8 10 15 20

Original 645 1137 1742 978 947 918 858 893

RC -1.3% 3.2% -3.8% -3.3% -3.3% -3.3% 3.2% -4.0%

Table IX. Scores of the original JVM on a series of fixed number of mutators runs with 900MB
heap; increase/decrease in score for the reference-counting collector.

seconds while we never cause a mutator to pause for more than 130 milliseconds.
This problem of the original JVM becomes aggravated as the heap grows in size.
As can be seen from Table VII, the reason for the performance penalty is the
prolonged elapsed time of garbage collection, compared to the original JVM. This
implies that by further optimizing the collector code we may obtain better scores
than the original JVM while maintaining the very short response time.

Next we seek to check how our collector performs relative to the original collector
as a function of the number of mutator mutators and heap size. We have performed
a series of stand-alone SPECjbb runs with 1, 2, 4, 6, 10, 15 and 20 mutators;
600MB, 900MB and 1200MB heaps; the original and reference-counting collector.
The results are summarized in Tables VIII through XIII, and depicted in Figure
17. From throughput perspective, our collector has compatible performance with
that of the original collector. We do see a slip in performance in the range of 4 to
10 mutators and this effect worsens as the heap grows. This is probably related to
two factors: inefficient reclamation, which worsens as the heap grows, and tuning
of spin locks for these numbers of mutators. Examining the maximal response time
we again see a remarkable behavior of our collectors where the original collector
consumes longer and longer pause times as the heap grows. Table XIII might seem
an exception to this rule at first glance but actually what happens is that since
garbage collections with such a large heap are scarce (one or two in a run) they
actually might occur when the benchmark is not measuring response time hence
the original JVM manages “to get away” with its long pause times unnoticed on
most cases. However, examining the pause time for 4 and 20 mutators we see that
these pauses nonetheless occur.

An On-the-Fly Reference-Counting Garbage Collector for Java · 41

Mutators 1 2 4 6 8 10 15 20

Original 629 1155 1683 935 908 884 882 870

RC -2.5% 1.7% -7.1% -8.0% -7.8% -6.8% 0.2% -0.8%

Table X. Scores of the original JVM on a series of fixed number of mutators runs with 1200MB
heap; increase/decrease in score for the reference-counting and tracing collectors.

0 2 4 6 8 10 12 14 16 18 20
−10

−8

−6

−4

−2

0

2

4

6

%
 im

pr
ov

em
en

t R
C

ov
er

 O
rig

in
al

Number of Warehouses (threads)

SPECjbb2000 on a multiprocessor

600 MB
900 MB
1200 MB

Fig. 17. Improvement in scores over the original JVM on a series of fixed number of mutators runs
with 600MB, 900MB, and 1200MB heaps; increase/decrease in score for the reference-counting
and tracing collectors.

Mutators 1 2 4 6 8 10 15 20

Original 7.43 8.04 8.47 6.92 7.86 7.54 6.59 6.00

RC 0.02 0.02 0.05 0.08 0.11 0.15 0.25 0.33

Table XI. Maximal response time, in seconds, of the original JVM and the reference counting
collector in a series of fixed number of mutators runs with 600MB heap.

Mutators 1 2 4 6 8 10 15 20

Original 0.02 11.17 12.07 10.70 10.53 10.30 9.82 9.23

RC 0.02 0.02 0.05 0.08 0.11 0.14 0.23 0.34

Table XII. Maximal response time, in seconds, of the original JVM and the reference counting
collector in a series of fixed number of mutators runs with 900MB heap.

Mutators 1 2 4 6 8 10 15 20

Original 0.02 0.02 14.67 0.05 0.08 0.01 0.18 13.03

RC 0.02 0.02 0.05 0.07 0.11 0.15 0.22 0.32

Table XIII. Maximal response time, in seconds, of the original JVM and the reference counting
collector in a series of fixed number of mutators runs with 1200MB heap.

42 · Levanoni and Petrank

Mutators 1 2 4 6 8 10 15 20

Original 24 39 70 100 139 160 236 312

RC 27 44 77 108 170 171 251 329

Table XIV. MB allocated for heap objects and their headers (does not include space allocated for
auxiliary data structures) at the end of a SPECjbb run with a fixed number of mutators and a
heap of 600 MB.

Mutators Time to completion % Improvement
(seconds)

Original RC

1 93 88.6 4.9%

2 71.9 68.5 5.0%

3 56.3 52.5 7.2%

4 57.2 54.2 5.6%

8 58.2 52.3 11.4%

12 58 57.9 0.2%

16 59 59.1 -0.1%

Table XV. Time to completion, in seconds, of the MTRT benchmark, with varying number of
mutators.

We now examine our memory consumption behavior. Given that we have added
an extra pointer to each object (the log pointer) we would expect to see some
increase in the memory consumption, relative to the average object size in each
benchmark. Furthermore, since we do not compact the heap we are more vulnera-
ble to internal fragmentation compared to the original JVM. When our collector is
asked to report the amount of free memory it sums up (non-atomically) the amount
of storage available in the block manager and in partial blocks. It ignores owned
blocks so actually the amount of free memory is larger than reported. Given this
metric, the results of used memory as reported by SPECjbb (for the 600MB test
series) are summarized in Table XIV. Except for an unexplained (yet reproducible)
bump in the memory consumption for 8 mutators with the reference-counting col-
lector5 we consume no more than 8% more memory compared to the original JVM.
This can be further improved once we eliminate completely the handle-to-object
pointer in each object, which is not required by our collectors.

The second benchmark that we have used is MTRT (multi-threaded ray tracer),
a member of SPECjvm98 which can be used with a varying number of mutators.
We have ran this benchmark with the default heap size—64MB. This benchmark
does not measure response time, only elapsed running time, which corresponds to
the JVM’s throughput. As can be seen from Table XV the on-the-fly collectors
has outperformed the original JVM with an improvement of up to 12.6% in the
total running time. The improvement is depicted in Figure 18. The reason to the
decrease in improvement with a large number of mutators is that the collector is
not able to finish the collection before the mutators get stuck waiting for allocation.
Therefore, it becomes a stop-the-world collector. An interesting avenue for future

5This bump cannot be explained by reference-counting issues since the amount of consumed
memory is calculated only after the benchmark requests a synchronous garbage collection cycle,
which is always implemented by our collectors using a tracing cycle.

An On-the-Fly Reference-Counting Garbage Collector for Java · 43

0 2 4 6 8 10 12 14 16
−2

0

2

4

6

8

10

12

14
%

Imp
rov

em
ent

 RC
 ov

er
Ori

gin
al

Number of Threads

mtrt on a multiprocessor

Fig. 18. Percent decrease in time to completion, of the MTRT benchmark, with varying number
of mutators. Improvement in scores over the original JVM on a series of fixed number of muta-
tors runs with 600MB, 900MB, and 1200MB heaps; increase/decrease in score for the reference-
counting and tracing collectors.

Heap Time
(MB) (sec)

Original 25 120

RC 20 85

Table XVI. Minimal heap size required to complete successfully a four thread mtrt run and the
time to completion with that heap size.

research is to design a collector that is both parallel and incremental as has been
done in [Ossia et al. 2002] for a tracing collector.

The ordinary measure of heap consumption—probing the free space left at the
run does not capture transient effects and the ability to handle stressful situations.
Table XVI shows the minimal heap size (in 1MB granularity) required to complete
the mtrt benchmark successfully and the corresponding time to completion. The
concurrent collectors require about 20% less the memory to complete successfully
and arrive at completion at about 70% the time. This is probably a defect of the
original JVM as it should actually require no more memory than our collectors and
since in this stressful situation we resort to synchronous GC there should be no
gain from concurrent collection as well.

9.2 Client performance

While we have targeted our collectors for multi-processor environments we still
wanted to verify that they are competent in a single-processor setting. To that end
we have used the SPECjvm98 benchmark suite. We used the suite using the test
harness, performing standard6 automated runs of all the benchmarks in the suite.
In a standard automated run, each benchmark is ran twice and all benchmarks are
ran on the same JVM one after the other. Table XVII shows the elapsed time of the
entire automated run and the time for each double run of each benchmark. We see

6The standard run requires running the harness through a Web server while we performed the
tests directly off the disk. Aside from that, the executions were standard.

44 · Levanoni and Petrank

Benchmark Original RC

Total 2582.2 2676.0

compress 720.8 723.3

db 374.0 383.7

jack 264.6 299.7

javac 225.0 235.2

jess 181.7 209.7

mpegaudio 607.1 610.6

Table XVII. Elapsed time for the execution of the entire SPECjvm98 suite and intermediate
execution time of a double-run for each of the suite’s members.

that the reference-counting collector was only 3.6% slower than the original JVM.
Given that we pay the overheads of concurrent run while we’re not benefiting from
the availability of multiple processors these are remarkably good results.

10. SNAPSHOT ALGORITHM CORRECTNESS PROOFS

This appendix contains safety and progress proofs for the snapshot algorithm. We
start with a few necessary definitions and assumptions.

10.1 Definitions and assumptions

Global roots. For convenience, we assume in the exposition of the algorithms
and their proofs that there are no global roots. Instead, we model global roots as
members of a distinguished heap object which is reachable from the local state of
every mutator.

Global state and time. We assume sequential consistency. thus, all shared-
memory operations requested by all threads (i.e., both mutators and the collector)
during a run are interleaved into a single linear order by the shared-memory system.
In Section 6 we show how to adapt the algorithms to systems with weaker memory
models. Assuming sequential consistency allows us to conveniently define global
state and time as follows:

Definition of Time. For a given execution, we say that a shared-memory op-
eration occurs at time t if it is operation number t in the linear sequence of shared
memory operations corresponding to the execution.

Definition of State. For any expression E which depends only on the values
of shared-memory locations and for any time point t in the execution, we denote by
E@t the value of entity E at time t. i.e., E@t is the value of E just prior to the
execution of instruction number t.

Reachability. A mutator can access an object only if it has a local reference to
it. A mutator can obtain a reference to an object only by one of two methods:
(1) by reading the contents of a slot of an object to which it already has a local
reference. (2) by allocating a new object. This pattern of access calls for the
following standard definition of reachability:

Definition of Reachability. We say that an object o is

—directly reachable from mutator Ti at time t if Ti has a local-reference to
o at t.

An On-the-Fly Reference-Counting Garbage Collector for Java · 45

—reachable from mutator Ti at time t if it is directly reachable from mutator
Ti at t or there exists a reference to o in object y at time t and y is reachable
from mutator Ti at time t.

—reachable at time t if there exists a mutator Ti such that o is reachable from
Ti at time t.

—unreachable, or garbage, at time t if it is not reachable at time t.

Reference-counters. Garbage collection by reference-counting is based upon
counting the number of references referring to each object at a given time. We
formally define the reference-count of an object as follows:

Definition of Heap Reference-Count. The Heap Reference-Count of an ob-
ject o at time t, denoted by RC(o)@t, is the number of heap slots referring to o at
time t.

We usually abbreviate and refer to an object Heap Reference-Count as its Reference-
Count7. In any reference-counting system there is a field associated with each ob-
ject that is used to record the number of references to the object. For an object o
this field is denoted by o.rc. The field is invisible to the user program; it is only
accessible to the memory management subsystem.

10.2 Safety

In this section, we will prove that the algorithm recycles an object only if it is
garbage at the time it is recycled. Actually, an object is recycled only if it garbage
at the time the conceptual snapshot is taken. Let us first define precisely this
moment at which the conceptual snapshot Rk is taken:

Definition 10.5. Let HSk be the earliest time at which all dirty marks have
been cleared during the execution of procedure Read-Current-State in collection
cycle number k. Let Rk denote the state of the heap at that moment.

We assume that at system initialization, before any mutator has taken any step,
there occur two initial garbage collection cycles. As can easily be seen, these cycles
leave all data structures that are carried across cycles (e.g., reference-counters,
ZCT) untouched. Since for the basis of induction proofs we use the first “real”
cycle there is no loss of generality in our assumption. So, HS−1 and HS0 happen at
system initialization. HS1 is the halt time corresponding to the first true collection
cycle.

Ultimately, in terms of safety, we would like to prove the following:

Theorem Safety. An object is recycled during cycle k only if it is unreachable
at HSk.

10.2.1 Road map for the proof. Here is a short and informal description of the
assertions in the proof:

—SafetyTheoremk: An object is collected during cycle k only if it is garbage at
HSk.

7An object Reference-Count is sometimes defined as the number of references (including local
references) to an object. We do not include local roots in the count. This definition is the same
as presented in the context of Deferred Reference-Counting, see [Deutsch and Bobrow 1976].

46 · Levanoni and Petrank

—L10.1k: Write barrier accurately records information.
—L10.2k: If a slot is modified between HSk−1 and HSk then only and exactly

the value it assumed at HSk−1 is recorded. No information is recorded for slots
which are not modified.

—L10.3k: The collector can distinguish, during cycle k, whether it is reading a
slot’s value which was current at HSk, or, that the slot has been overwritten
since.

—L10.4k: The collector finds out, eventually, in procedure Fix-Undetermined-
Slots, what the values of undetermined slots are.

—L10.5k: Just before the invocation of Reclaim-Garbage during cycle k, the rc
field of each object equals the heap reference-count of the object at HSk.

Most lemmas are interdependent meaning, for example, that we prove lemma X
correct at cycle k provided lemma Y is correct at cycle k − 1. In order to make
clear the relation between the claims and to demonstrate that there is no circular
logic in the proof we provide herein a complete description of the interdependencies
among the claims. We denote by Lik the assertion of lemma i for cycle k.

These are the dependencies between the claims:

—the basis for each claim, i.e. its correctness for cycle one is proven independently
for each claim.

—L10.2k ⇐=
∧

j<k SafetyTheoremj

—L10.5k ⇐=
∧

j<k(L10.5j ∧ SafetyTheoremj) ∧ L10.2k ∧ L10.4k

—SafetyTheoremk ⇐= L10.5k

10.2.2 Update protocol properties. Consider any slot s which is modified between
HSk−1 and HSk. The snapshot algorithm requires us to adjust rc fields due to s by
decrementing the rc field of s@HSk−1 and incrementing the rc field of s@HSk. The
first part of the requirement, decrementing s@HSk−1, is implemented by letting the
mutators record the identity of s@HSk−1 into their buffers. Thus, we would like
to prove for any such modified slot s that only and exactly s@HSk−1 is associated
with s by the mutators.

If s is not modified between the current and previous cycles, then we want to
show that no record of s is kept.

The lemmas in this section prove that the algorithm possesses these properties.

Lemma 10.1. Let s be a slot and let t be a time point satisfying

(1) HSk−1 ≤ t < HSk, and
(2) Dirty(s)@t =false, and
(3) No update of s is occurring at t.

Let UPD(s) be the set of all update operations applied to s which are scheduled
between t and HSk. Let ASSOC(s) be the set of values written to the buffers for s
by the operations in UPD(s).

It holds that:

(1) UPD(s) = ® =⇒ ASSOC(s) = ®
(2) UPS(s) 6= ® =⇒ ASSOC(s) = {s@t}

An On-the-Fly Reference-Counting Garbage Collector for Java · 47

Proof. The first claim is quite trivial since a value is associated with s only as
part of an update. Since no update is scheduled, no value is associated.

Suppose that s is indeed modified between t and HSk. Consider the set of
mutators, denoted P , that apply the subset of operations of UPD(s) which read
the value of Dirty(s) as false in line (2) of procedure Update, while updating
s. P is not empty since some mutator modifies s (UPD(s) is non-empty) and the
dirty flag is off at t.

Consider a mutator Ti ∈ P . We want to show that when Ti executed line (1)
of procedure Update it read the value of s at t. Suppose that it did not. Let τ
be the time at which mutator Ti executed line (1). Then some mutator Tj must
have executed a store to s after, or at, t and before τ . Since there were no updates
occurring at t and since the store is the last instruction of an update operation we
conclude that the entire update operation by Tj has started after, or at, t and ended
before τ . Just before Tj executed the store in line (6) the value of Dirty(s) must
have been true either by line (5) or by virtue of another mutator (the collector
resets the flag only during the next cycle) so Ti should have read a value of true
from Dirty(s), in line (2), which was not the case. A contradiction. We conclude
that Ti must have associated s@t with s. So we have

{s@t} ⊆ ASSOC(s)

According to the code, any mutator Ti /∈ P would not associate any value with s
thus

ASSOC(s) = {s@t}
. Additionally, values are copied from the buffers without duplications. Thus, the
same value may not appear twice.

For a given history buffer H (be it collector or mutator maintained set) and a
slot s we define the set of values that H associates with s, denoted by V AL(H; s),
as:

V AL(H; s) def= {v|〈s, v〉 ∈ H}
For brevity we write s ∈ H meaning ∃v : 〈s, v〉 ∈ H. The next lemma summarizes

and proves the desired properties of the write-barrier employed by the algorithm.
We need some definitions first:

—We say that an object o is allocated for cycle k. If some mutator has allocated
o between HSm and HSm+1, where m < k. And there has not been a cycle l,
where m ≤ l < k during which o was reclaimed.8

—o is allocated new for cycle k if m = k − 1 in the above definition.
—If m < k − 1, we say that o is allocated old for cycle k.
—We say that a slot is allocated (new/old) for cycle k if its containing object is

allocated (new/old) for cycle k.
—We abbreviate and say that a slot or an object are new (old) to a cycle meaning

that the slot or the object are allocated new (old) for that particular cycle.

8Even though l never equals m in the algorithm, we don’t want to assume that a priori.

48 · Levanoni and Petrank

Lemma 10.2. Let s be an allocated slot for cycle k. Then:

(1) if s is new to cycle k and is modified between HSk−1 and HSk then

V AL(Histk; s) = {null}
(2) if s is old to cycle k and is modified between HSk−1 and HSk then

V AL(Histk; s) = {s@HSk−1}
(3) otherwise (s is not modified between HSk−1 and HSk),

V AL(Histk; s) = ®
Proof. The lemma vacuously holds for k = 1 since there are no slots which are

modified during the interval HS0 to HS1.
We now show that the lemma holds for cycle k > 1 provided that the safety

theorem hold for previous cycles.
Suppose s is new to cycle k. Let τ be the time at which the object o containing s

was allocated. Let j < k be the cycle during which the object x that most recently
contained s was reclaimed, or 0 if no such cycle exists. Applying the safety theorem
to cycle j we know x was unreachable at HSj . Thus, no mutator could have accessed
s from HSj until τ . If j > 0 then when x was recycled a null value was assigned
to s, in line (4) of procedure Collect; otherwise, s contained null since system
startup. So at any rate s assumed the value of null at HSj . Also, as all dirty
flags are cleared while the mutators are halted, we have Dirty(s)@HSj = false.
Since the values of s and Dirty(s) must remain constant until time τ and since no
mutator is updating s at time τ (all due to the safety theorem applied to cycle j)
we can apply Lemma 10.1 to s and τ yielding that either claim (1) or (3) holds,
depending on whether s has been modified between τ and HSk.

If, on the other hand, s is old to cycle k then we have Dirty(s)@HSk−1 = false
and no update of s is occurring at HSk−1. Thus, we can apply Lemma 10.1 to s
and time HSk−1 yielding that either claim (2) or (3) hold, depending on whether
s has been modified prior to HSk.

10.2.3 Determined vs. undetermined slots. We say that the collector determines
the value of a slot s if during the Update-Reference-Counters procedure it reads
the value v from s (in line (3)) and then sees Dirty(s) =false (in line (4)). Such
a slot is determined, as opposed to undetermined slots which are taken care of by
the collector in procedures Read-Buffers and Fix-Undetermined-Slots. The
following lemma tells us that if the collector determines the contents of a slot then it
has indeed read its contents as they were at the time the recent conceptual snapshot
was taken.

Lemma Determined Slots. If the collector determines s to contain v during
cycle k then v = s@HSk.

The proof is similar to that of Lemmas 10.1 and 10.2.
What happens when the collector does not succeed determining a slot? A slot

is undetermined if the collector senses that its flag is raised during Update-
Reference-Counters. The only reason for the flag to be raised is that some
mutator, say Ti, has applied line (5) of procedure Update to the flag (i.e., raised

An On-the-Fly Reference-Counting Garbage Collector for Java · 49

it.) In this case, Ti has executed the preceding lines of (3) and (4) of the same
invocation after HSk. i.e., Ti has stored the pair 〈s, s@HSk〉 into its buffer and
incremented CurrPosi prior to raising the flag. Thus, when the collector would
process Bufferi during Read-Buffers it will see the logged pair 〈s, s@HSk〉 in
Ti’s buffer (s@HSk is associated with s according to Lemma 10.2.) and thus the
pair will be added to the set Peekk.

We conclude the following:

Lemma Undetermined Slots. If the collector does not determine a slot s in
cycle k then

V AL(Peekk; s) = s@HSk

10.2.4 Linking rc field with reference-count. In this section we show that the rc
fields that the algorithm computes equal, eventually, the heap reference-counts at
the time the conceptual snapshot is taken. We need some definitions first.

Definition 10.6. Let ENDk denote the time at which cycle k has ended. That
is, ENDk is the earliest time at which all instructions of cycle k have already been
scheduled.

Definition 10.7. Let COLLECTk be the time at which the invocation of Fix-
Undetermined-Slots, during cycle k, is complete. The collector starts executing
Reclaim-Garbage after, or at, COLLECTk.

The following lemma asserts that the value of the rc field of each object, after
the collector has finished adjusting rc fields due to all logged modifications, i.e.,
when procedure Reclaim-Garbage starts its operation, equals the object’s heap
reference-count at time HSk.

Lemma Meaning of The rc Field. o.rc@COLLECTk = RC(o)@HSk for any
object o which is allocated at HSk.

Proof. The claim holds for k = 0 since there are no objects which are allocated
at HS0. For k > 0, we prove that the lemma holds for cycle k provided this lemma
and the safety theorem both hold for previous cycles.

It is enough to show that the algorithm adjusts rc fields due to each slot s
correctly. If s does not change after HSk−1 and before HSk then, by Lemma 10.2,
s will not be logged and there will be no modifications to any rc fields due to s.

Let’s consider the cases in which s does change. We have to show that the rc field
of the object that s was referring to at HSk−1 is decremented. Likewise, we have to
show that the value of the object that s was referring to at HSk is incremented. s is
in exactly one of these states at HSk: allocated old, allocated new, non-allocated.

Decrementing old slots: If s is old for cycle k then s is changed by mutators,
and not by the collector (by deleting it.) Due to Lemma 10.2 Histk will contain
the pair 〈s, s@HSk−1〉. Histk will not contain elements associating s with a value
other than s@HSk−1. During the operation of Update-Reference-Counters,
when the pair 〈s, s@HSk−1〉 is considered, the rc field of s@HSk−1 is decremented,
as desired.

Decrementing new slots: Let s be a new slot for cycle k. According to
Lemma 10.2 either null, or no value at all, are associated with s. Thus, there are

50 · Levanoni and Petrank

no decrements that occur due to s during cycle k. Let us explain why this is the
desired behavior.

If s is new for cycle k then either s becomes allocated for the first time, or it was
part of an object o which was recycled during cycle j, where j < k.

In the former case, we know that s was initialized to null and its dirty flag
was off at system startup. Also, no mutator could have accessed s at HSk−1,
since it was not a part of a reachable object (or any object) at that time. Thus,
s@HSk−1 = null and therefore no rc field should be decremented due to s during
cycle k.

In the latter case, according to the safety theorem applied to cycle j, o is not
reachable at HSj . Thus, the collector has exclusive access to s, during cycle j. It
follows that the collector may decrement the rc field of the object referenced by s
and clear s without being interfered by mutators’ actions, all part of the operation
of Collect during cycle j. If j < k−1 then s@HSk−1 =null, thus there is no “old”
value to decrement.

Otherwise, j = k − 1. In this case, the collector decrements the rc field of
s@HSk−1 during cycle k − 1, when it reclaims o. An object is reclaimed only if
its rc field drops to zero. Reclaim-Garbage and Collect can only reduce the
value of an rc field. Thus, there is a single point during the operation of Reclaim-
Garbage at which o.rc = 0. Therefore o is reclaimed exactly once and likewise the
rc field of s@HSk−1 is decremented exactly once.

Decrementing and incrementing non-allocated slots: If s is not allocated
at HSk then the same argument that was applied to new slots is used to show that
the value of s@HSk−1 is taken care of. Again, due to the safety theorem applied to
the cycle at which the object containing s was recycled we have s@HSk =null so
there is no need to increment any rc field due to s. Indeed, since s is not allocated
at HSk and it is unreachable at HSk−1 no record of it would appear in Histk and
no rc field will be manipulated due to it in cycle k.

Incrementing old and new slots: it remains to show that the rc field of
s@HSk is incremented exactly once due to s, when s is allocated at HSk. We
have two cases: either s is determined, or it is undetermined. If s is determined,
then due to Lemma 10.3 we have that the collector increments the rc value of
s@HSk. Otherwise, by Lemma 10.4, V AL(Peekk; s) = {s@HSk}. Thus, during
the Fix-Undetermined-Slots procedure the collector will find the value of s@HSk

associated with s. It will increment the rc field of that object exactly once, by the
code.

All rc adjustments are finished by the time Fix-Undetermined-Slots termi-
nates, so the claim holds at COLLECTk.

10.2.5 Conclusion of safety proof. We are now ready to prove the safety theorem
which claims that an object is collected at cycle k only if it is unreachable at time
HSk.

Proof. (of safety theorem.) The claim trivially holds for cycle zero since
ZCT0 is an empty set and thus no object is recycled during the initial cycle.

Consider cycle k > 0. We prove that the theorem holds for cycle k if Lemma 10.5
holds for cycle k.

An On-the-Fly Reference-Counting Garbage Collector for Java · 51

Let {o1, . . . , on} be the sequence of objects for which Collect is invoked, where
the sequence is chronologically ordered. We show by induction on i, that oi is
unreachable at HSk. For the basis, consider o1. As it is the first object to be
collected, there is no clearing of slots (carried out in line (4) of procedure Collect)
taking place prior to its reclamation, thus o1.rc@COLLECTk = 0. This implies,
according to Lemma 10.5 applied to cycle k, that RC(o)@HSk = 0. Additionally,
by the code, o1 is collected only if o1.rc = 0 ∧ o1 /∈ Localsk so we conclude that in
addition of not being referenced by any heap slot at HSk, o1 is also not referenced
by any local reference at that particular moment, or it would have been marked
local. Thus, o1 is unreachable at HSk.

For the inductive step, consider oi which has c
def= oi.rc@COLLECTk = RC(o)@HSk

(the last equality is again by Lemma 10.5). If c = 0 then the same arguments that
were employed for o1 are repeated in order to demonstrate that oi is garbage at
HSk.

Otherwise, we have c > 0. Since oi is recycled, it must satisfy at some point
during Reclaim-Garbage or Collect oi.rc = 0 ∧ oi /∈ Localsk. Thus, the value
of oi.rc is decremented c times during the operation of Reclaim-Garbage. Since
decrements are only applied to objects which are referenced by objects that are
collected and since those objects are collected prior to oi we have by the inductive
hypothesis that all c references to oi were from objects that were unreachable at
HSk. Thus, at HSk, oi is referenced only by unreachable objects, and it is not
referred to by any local mutator state or global reference. We conclude that oi is
unreachable at HSk.

10.3 Progress

In this section we show the capabilities of the algorithm in collecting garbage ob-
jects. The algorithm, in that respect, has the same limitations as the traditional
single-threaded reference-counting algorithms [McBeth 1963].

The best that we can hope to achieve with reference-counting, without employing
special techniques for detecting cycles of garbage, such as those surveyed in [Lins
and Vasques 1991], is to detect any object that its reference-count drops to zero,
in order that it would be considered for reclamation based on the existence of local
references to it. The following lemma tells us that this feature is achieved by the
ZCT data-structure.

Lemma ZCT Property. If o is allocated at HSk and RC(o)@HSk = 0 then
o ∈ ZCTk.

Proof. The proof is by induction on k. There are three cases to consider:

(1) o is new to cycle k. In this case, a mutator created o between HSk−1 and HSk.
When it created o it added it to its New set, which becomes part of ZCTk.

(2) o is old to cycle k and it had a positive rc field at ENDk−1. Since we have
0 = RC(o)@HSk = o.rc@COLLECTk (by Lemma 10.5), the value of o.rc
must have reached zero due to the decrements applied by procedure Update-
Reference-Counters of cycle k. At that point o was added to ZCTk (see
lines (8-10) of that procedure.)

52 · Levanoni and Petrank

(3) o is old at HSk−1 and it had zero rc field at ENDk−1. This case splits into
two sub-cases:
(a) if o.rc@COLLECTk−1 = 0 then RC(o)@HSk−1 = 0 by Lemma 10.5. Us-

ing the inductive assumption we know that o ∈ ZCTk−1. Since o was not
recycled we must have o ∈ Localsk−1. By the code, when o is considered
during Reclaim-Garbage it satisfies

o.rc = 0 ∧ o ∈ Localsk−1

by the code (lines (5-7)), o is added to ZCTk in this case.
(b) Otherwise, o.rc@COLLECTk−1 > 0 ∧ o.rc@ENDk−1 = 0. This implies

that o.rc had reached zero by the decrements applied by one of the invo-
cations of procedure Collect. By the code (lines (5-9)), when an object
reference-count reaches zero but it is not reclaimed, it is moved to the ZCT
of the next cycle.

Ideally, we would like the algorithm to collect at cycle k any object which is
garbage at HSk. However, this algorithm has the standard weakness of reference-
counting, with respect to cyclic structures, and thus only the following progress
theorem can be guaranteed:

Theorem Progress. If at HSk object o is unreachable and additionally o is
not reachable from any cycle of objects, then o is collected in cycle k.

The theorem follows from Lemma 10.6 and the fact that we use standard recursive-
freeing.

11. SLIDING VIEW ALGORITHM SAFETY PROOF

In this appendix we prove that the sliding view algorithm is safe.

11.1 Definitions

First we need to extend the definitions a bit in order to accommodate the looser
timing of the sliding views algorithm.

Let us define the time instances at which a mutator Ti is suspended during the
four handshakes of each cycle: HS1k(i), HS2k(i), HS3k(i) and HS4k(i) denote
the time instances at which mutator Ti is suspended during the first, second, third
and fourth handshakes of cycle k, respectively. Next, we define the “global” time
markers at which each handshake starts (by stopping the first mutator) and ends
(by resuming the last stopped mutator):

HS1k
def= minTi HS1k(i)

HS1ENDk
def= maxTi HS1k(i)

HS2k
def= minTi HS2k(i)

HS2ENDk
def= maxTi HS2k(i)

HS3k
def= minTi HS3k(i)

HS3ENDk
def= maxTi HS3k(i)

An On-the-Fly Reference-Counting Garbage Collector for Java · 53

HS4k
def= minTi

HS4k(i)
HS4ENDk

def= maxTi
HS4k(i)

Additionally we define COLLECTk to be the time at which procedure Reclaim-
Garbage starts its operation. The notions of “being allocated” of the snapshot
algorithm’s proof must also be modified due to the lack of the hard handshake.
This is done in the following definitions:

—We say that an object o is allocated for cycle k if some mutator Ti allocated o
after HS1m(i) but before HS1m+1(i), where m < k, and there had not been a
cycle l, where m ≤ l < k, such that o was reclaimed on cycle l.

—o is allocated new for cycle k if m = k − 1 in the above definition.
—If m < k − 1, o is allocated old for cycle k.
—We abbreviate and say that o is new (old) to cycle k if it is allocated new (old)

for cycle k.
—Any of the above definitions applies to slots by letting the definition hold for the

object containing the slot.

11.2 The sliding view associated with a cycle

In this section we define a per-cycle sliding view . Please refer to Section 5.1 for
the definition of scans and views. In short, σ(s) is the time at which the slot s is
scanned, and Vσ(s) is the value probed during the scan. The per-cycle sliding view
is later shown to be computed implicitly by the collector and mutators (bearing
similarity to the conceptual snapshot taken at HSk by the snapshot algorithm
which is never explicitly computed.)

Let us define the scan σk that we associate with cycle k. We abbreviate Vσk
to

Vk. Consider any memory word s. If s does not appear in the buffers that are read
during the first handshake of collection k, then s does not cause any RC updates,
and we may choose to think of it as being read by the sliding view scan at HS1k.
If s does appear in Histk, we split the discussion into two cases. If s is logged by
some mutator i between HS1(i) and HS3(i) by some mutator Ti, then its value
for Histk+1 will be set by the procedure Get-Local-States. In this case, the scan
time is defined according to the consolidated value for s. Otherwise, s is not logged
by any mutator between the first and third handshakes and then we choose the
scan time to be HS2ENDk. Formally, the scan is determined by the following set
of rules.

—Rule 1: if s /∈ Histk then we set σk(s) = HS1k.
—if s ∈ Histk then:

—Rule 2: if s is logged by some Ti between HS1k(i) and HS3k(i) then let v be
the consolidated value chosen for s. Let τ be the time a particular mutator Tj

loaded v before logging the pair 〈s, v〉. Set σk(s) def= τ .
—Rule 3: otherwise, no mutator Ti logs s between HS1k(i) and HS3k(i), but

s is logged by some mutator Tj prior to HS1k(j). On such an event set

σk(s) def= HS2ENDk.

54 · Levanoni and Petrank

We denote by R1k the set of all slots whose definition of σk is derived by rule
(1). Similarly we define the sets R2k and R3k.

The next lemma characterizes the span of σk.

Lemma 11.1. Start(σk) ≥ HS1k ∧ End(σk) ≤ HS3ENDk

Proof. Let s be a memory word. Certainly if s ∈ R1k ∪ R3k then σk(s) lies
within the specified time limits. Otherwise, s is defined according to rule (2). Since
s ∈ Histk it may be read and logged again only after its dirty bit is cleared, i.e.,
after HS1. Thus, its value is read and logged by the mutator Tj of Rule 2 after
the first handshake ends. By definition of Rule 2, s has been logged prior to the
third handshake. Although the consolidation process occur only after the fourth
handshake, we claim that τ must be earlier than HS3ENDk. By the definition of
Rule 2, some mutator must log s prior to responding to the third handshake. If
this logging is done during clearing (i.e., between the first and second handshake)
then the flag will be reinforced before the third handshake. Otherwise, the flag
must remain on until the clearing of the next cycle. So at any rate, the flag is on
at HS3ENDk. Thus no mutator could load a value from s after HS3ENDk and
then log it since it is bound to sense that the dirty flag of s is on.

The following lemma links the asynchronous reference-count associated with the
cycle’s scan with the instantaneous reference-count at HS1k.

Lemma 11.2. Let Vσ be a sliding view and let o be an object. If for any slot
s, no reference to o is stored into s at, or after, σ(s) and before End(σ) then
RC(o)@End(σ) ≤ ARC(Vσ; o). Furthermore, the set of slots that refer to o at
End(σ) is a subset of those that refer to it in Vσ

The proof is a simple extension of the proof of Proposition 5.4 and is omitted.

Lemma 11.3. Any object o which is not marked local (i.e., o /∈ Localsk) at
COLLECTk satisfies

RC(o)@HS4k ≤ ARC(Vσk
; o)

Moreover, the set of references that refer to o at HS4k is a subset of those that
refer to it in Vσk

.

Proof. According to Lemma 11.2 it suffices to show that if a reference to o is
stored to a slot s at, or after σk(s) and before End(σk), then o is marked local. By
Lemma 11.1 we know that End(σk) < HS3ENDk < HS4k, hence it is enough to
require that if a reference to o is stored to a slot s during the interval [σk(s),HS4k)
then o is marked local.

Since the Snoopi flag is reset only after HS4k(i), it suffices to show that the test
of Snoopi in the Update procedure returns true in the case that the store proper
into s is executed after σk(s) and before HS4k(i). Consider a store of o into s which
is scheduled at, or after σk(s) and before HS4k(i). Due to Lemma 11.1, the store
is scheduled at or after HS1k. At that time, for any mutator Ti, the Snoopi flag
is set. Since the test of Snoopi, in line (7) of procedure Update, is executed after
the store proper, of line (6), it would return true and the object will be marked
accordingly local. The fact that handshakes do not stop mutators in the middle
of the write-barrier, guarantees that any store that starts before HS4k will finish

An On-the-Fly Reference-Counting Garbage Collector for Java · 55

the write-barrier including proper snooping, before clearing the snoop flag during
handshake 4.

We now turn into validating the dirty bit behavior.

Lemma 11.4. For any mutator Ti and any collection k the following holds.

(1) if mutator Ti logs s between responding to the first and third handshakes then
Dirty(s)@HS3k(i) =true.

(2) if mutator Ti logs s between responding to the first and fourth handshakes then
Dirty(s)@HS4k(i) =true.

Proof. Part (1): A dirty flag may be cleared after Ti has raised it only if the
collector has reset the dirty flag in procedure Clear-Dirty-Marks. If that is
the case, then the collector has reset the flag after the mutator Ti has completed
logging the slot. Hence, in procedure Reinforce-Dirty-Mark, the collector will
see the slot in Ti’s buffer and would reinforce it. This happens before HS2k. Part
(2) follows in the same manner noting that the dirty flag is only cleared between
handshakes 1 and 2.

11.3 Inductive safety arguments

Now that a sliding view with each cycle has been defined and some properties about
it have been proven, we turn to proving the safety theorem. The proof of the safety
theorem is by induction on the collection cycle number.

Compensating for the lack of the hard handshake of the snapshot algorithm,
during which all dirty marks were turned off we have procedure Clear-Dirty-
Marks in the sliding view algorithm. The following lemma asserts that indeed
each slot experiences a point in time, after the start of a cycle, at which the dirty
flag is off. This is essential for the logging mechanism to operate correctly since
it instructs mutators to start logging modifications from fresh, relating to the new
cycle.

Lemma 11.5. Let s be a heap slot. There exists a time point, denoted tk(s) at
which the dirty flag for s is off. Specifically:

—if s ∈ R1k than tk(s) def= σk(s) def= HS1k.
—if s ∈ R2k then tk(s) exists and it satisfies HS1ENDk < tk(s) < HS2k.

—if s ∈ R3k then tk(s) def= HS2ENDk. There are no ongoing updates of s at tk(s).

Proof. The proof is by induction on the cycle number, k. For k = 0 the claim
holds since all slots are cleared at HS10 and all slots are members of R10. For k > 0
we prove the claim correct provided it holds for the previous cycle and Theorem 11.1
holds for all previous cycles. We divide to cases:

—if s ∈ R1k then either s ∈ R1k−1 or s ∈ R3k−1. s ∈ R2k−1 is impossible because
it implies that s ∈ Histk.
If s ∈ R1k−1 then by the inductive hypothesis Dirty(s)@HS1k−1 = false. Had
some mutator Ti turned on the flag on after HS1k−1 and before HS1k(i) then
s would have been recorded in either Histk−1 or Histk, neither of which is the
case, so the dirty flag must be continuously off from HS1k−1 to HS1k.

56 · Levanoni and Petrank

Otherwise, s ∈ R3k−1. Thus, according to the inductive hypothesis Dirty(s) is
turned off at HS2END. By definition of R3k−1, no mutator logged s before
responding to the third handshake of cycle k − 1. Thus no mutator had turned
the flag on prior to responding to that handshake. Had some mutator logged
s after the third handshake of cycle k − 1 but before the first handshake of
cycle k then we would have s ∈ Histk, which is not the case. Again we have
Dirty(s)@HS1k = false.

—if s ∈ R2k then the collector has turned off Dirty(s) during the clearing stage.
We define tk(s) to be the time instance just after the clearing of Dirty(s) was
scheduled.

—if s ∈ R3k then the collector has turned off Dirty(s) during the clearing stage
and no mutator has turned it on prior to responding to the third handshake.
We conclude that the flag must have been off at the time the second handshake
ended. At HS2ENDk only updates of mutators that have already responded to
the second handshake may be ongoing. But had such an update occurred, it must
have sensed that the flag is off and it would consequently log s, contradicting the
definition of R3k. We conclude that there are no ongoing updates at HS2ENDk.

The properties of the write-barrier are now considered. The next lemma, which
is the equivalent of Lemma 10.2 of the snapshot algorithm, states that any slot
which is modified between scans is recorded along with its value in the previous
sliding view and that no other value is associated with the slot.

Lemma 11.6. Let s be a slot. The following claims hold:

(1) if s is old for cycle k and modified during cycle k − 1 then V AL(Histk; s) =
{Vk−1(s)}.

(2) if s is new for cycle k and modified during cycle k − 1 then V AL(Histk; s) =
{null}.

(3) if s is old for cycle k and is not modified during cycle k−1 then V AL(Histk; s) ⊆
{Vk−1(s)}.

(4) if s is new for cycle k and is not modified during cycle k−1 then V AL(Histk; s) ⊆
{null}.

Proof. For garbage collection number zero the claims trivially hold since Hist0 =
® and indeed no slot is modified prior to the cycle. We prove that the claim holds
for cycle k > 0 provided it itself hold for cycle k − 1 and that Theorem 11.1 and
Lemma 11.5 hold for earlier cycles.

The following cases are possible according to the state of s. Old s’s may be in
R1k1 , in R2k1 , or in R3k−1 and are treated accordingly. New slots s are partitioned
according to whether they have been allocated before or this is their first allocation.
We start with old s’s.
Case 1: s is old for cycle k and s ∈ R1k−1. Case 1 is further divided. Suppose
that s /∈ Histk. In that case we have σk(s) def= HS1k and we have to show that s is
not changed between HS1k−1 and HS1k. i.e., we have to show that claim (3) is not
violated in this case, because all other claims do not apply. Since s /∈ Histk−1 we

An On-the-Fly Reference-Counting Garbage Collector for Java · 57

conclude, by the inductive hypothesis, that no mutator modified s between σk−2(s)
and HS1k−1. Additionally we know that at HS1k−1 the dirty mark of s is off. The
dirty mark must be off at HS4ENDk−2 as well and no update is ongoing at the
moment as that update would have rendered s part of Histk−1. Using the same
arguments of Lemma 10.1 applied for s and HS4ENDk−2 and since s is not cleared
before HS1ENDk any update whose store proper operation is scheduled between
HS4ENDk−2 and HS1k would result in the association of s@HS4ENDk−2 with
s in either Histk−1, or Histk, neither of which is the case. We conclude that s is
indeed not modified during cycle k − 1.

Now suppose s ∈ Histk. In that case we want to show that V AL(Histk; s) =
s@HS1k−1. Again, we’ve concluded that any mutator Ti that would log s prior
to HS1k(i) would associate it with s@HS4ENDk−2. Since a store to s could not
have been scheduled between s@HS4ENDk−2 and HS1k−1 without logging the
slot we conclude that s@HS1k−1 = s@HS4ENDk−2, which is the desired result.
Case 2: s is old for cycle k and s ∈ R2k−1. Since some mutator modified and
logged s between the first and third handshakes of cycle k − 1 We have to show
that claim (1) holds for s. Due to the reinforcement step, the dirty flag of s must
be on at HS4k−1, thus, there is no possibility that a mutator would log s after
responding to the fourth handshake. As for the records kept regarding s between
the first and fourth handshakes, the collector chooses a single pair, say 〈s, v〉 and
moves it to Histk. By definition of σk we have Vk−1(s) = v.
Case 3: s is old for cycle s and s ∈ R3k−1. We have noted in Lemma 11.5 that
tk−1(s) = σk−1(s) = HS2ENDk−1 and no update is occurring at that moment.
Suppose s /∈ Histk. In that case σk(s) = HS1k and we have to show that no store
is scheduled between HS2ENDk−1 and HS1k. But this is trivial since the probing
of the dirty mark associated with such a store must start after HS2ENDk−1, as
no updates occur at that moment. Thus, had such an update been scheduled, it
must have sensed that the flag is off and s would have become a member of Histk
a contradiction.

Suppose now that s ∈ Histk. We have to show that V AL(Histk; s) equals
s@HS2ENDk−1. Again, since at HS2ENDk−1 the dirty bit is off and no update
of it is occurring. And since the dirty mark is reset only after all mutators have
responded to the first handshake of cycle k, by Lemma 10.1 they are bound to
associate s@HS2ENDk−1 with s.
Case 4: new slots allocated for the first time. If s is allocated for the first
time, then σk−1

def= HS1k−1 and at that time s contained null and its dirty flag was
initialized to false. These values remain in effect until s is allocated. Additionally,
no update of s occurs at the moment it is allocated. Again, the claim follows using
the arguments of the previous cases.
Case 5: new slots which are reallocated. We first show that Histk cannot
contain “leftovers”: i.e., logging that refer to the “previous life” of s, before it
was reallocated. Suppose that s was last reclaimed during cycle m, m < k. If
m < k − 1, then there will be no record of the “previous life” of s in Histk due to
the safety theorem applied to cycle m that assures us that s was unreachable from
its reclamation point up to the time it was re-allocated, during cycle k − 1. If, on
the other hand, s was reclaimed during cycle k−1, then as the safety theorem tells
us, no mutator Ti had access to s after HS4k−1(i). s could have not occurred in the

58 · Levanoni and Petrank

digested part of Histk as that would have caused the deferral of the reclamation of
its containing object to cycle k. So there are no leftovers in this case as well.

Applying the safety theorem to cycle m, we know that the object that contained
s was garbage when it was reclaimed. Its dirty marks, the one of s included, were
off. When the collector freed the object it stored null into s. Since the object
was unreachable, s remained inaccessible up to the time it was re-allocated. Just
when s was re-allocated, there was no update of it ongoing, it contained null, and
the dirty flag for it was false. We conclude that the lemma holds due to the same
arguments employed for the previous cases.

We have considered all possible cases for old and new allocated slots and have
shown that they always satisfy the claims.

It has just been demonstrated that the collector has full knowledge on which slots
have changed since the most recent scan and what were their contents. We now
show that the collector can find out what these slots values are in a current cycle
as well. These two abilities combined amount to the collector’s ability to calculate
the asynchronous reference-count of each object, relative to the sliding view of the
current cycle.

Lemma 11.7. For any object o which is allocated at time COLLECTk it holds
that o.rc@COLLECTk = ARC(Vk, o).

Proof. The claim trivially holds for collection cycle zero, since there are no
allocated objects at COLLECT0. To prove that the claim holds for cycle k > 0
we assume that it holds for cycle k − 1 and that Lemmas 11.8 hold for cycle k − 1
and 11.6 hold for cycle k.

It suffices to show that:

(1) for any slot s due to which rc fields are adjusted by the algorithm the rc field of
Vk−1(s) is decremented exactly once, during the interval [COLLECTk−1, COLLECTk),
while the rc field of Vk(s) is incremented exactly once during the same interval.

(2) if Vk−1(s) 6= Vk(s) then the algorithm adjusts rc fields due to s.

Consider a memory word s, it is in exactly one of three states, with respect to cycle
k: allocated new, allocated, not allocated.
Adjusting rc fields due to allocated new slots. If s has been collected during
cycle k− 1 then according to Lemma 11.8, the collector decremented the rc field of
Vk−1(s) when the object containing s was reclaimed. At that point, s assumed the
value of null, which remained in effect at least until s was reallocated, assuming
that Theorem 11.1 holds for cycle k − 1.

Another possibility is that the object containing s was reclaimed during cycle m,
where m < k − 1. Since s is new to cycle k, it was not allocated for cycle k − 1
and we have σk−1(s)

def= HS1k−1 and by the definition of sliding views we have
Vk−1(s) =null. Thus, we would expect that no rc field will be decremented due to
s. Indeed, since the object containing s was not reclaimed during cycle k − 1, no
decrement was applied due to s as the result of recursive deletion of cycle k − 1.
Again, due to Theorem 11.1, we know that when s was reallocated it assumed the
value of null.

An On-the-Fly Reference-Counting Garbage Collector for Java · 59

Finally, if s has not been ever allocated before then surely it was not subject
to recursive deletion during cycle k − 1 and it contained null at the time it was
allocated.

We conclude that at any rate, by the time s is allocated, it contains null and all
necessary adjustments have been made to the rc field of Vk−1(s) in order to reflect
that.

Now we have to show that if Vk(s) 6=null then the rc field of Vk(s) is incremented
and otherwise no rc field is incremented, and, that no rc field is decremented due
to s in updating of cycle k.

If no mutator modifies s between its allocation point and before HS1k(i), then,
according to Lemma 11.6, s /∈ Histk and σk(s) def= HS1k. At σk(s) s still assumes
the value of null and thus Vk(s) =null. Therefore, we would expect that no rc field
will be incremented due to s in cycle k. Since Histk does not contain any reference
of s, this is actually the case. For the same reason no rc field will be decremented
as well.

If, on the other hand, some mutator Ti modifies s between its allocation point and
before HS1k(i) then according to Lemma 11.6, applied for cycle k, V AL(Histk; o) =
{null}. Thus, the collector would adjust rc field due to s during the execution of
Update-Reference-Counters. No rc field will be decremented due to s as null
is associated with the slot in Histk. The collector will then either determine s, or
declare it undetermined. If s is determined, it will increment the rc value of the
determined value, which we have shown to be equal to V(s). Otherwise, when s is
undetermined, the collector adds it to the set Undeterminedk. It will subsequently
consolidate s during the operation of Fix-Undetermined-Slots. The rc field of
the resolved value, which also equals V (s), will be incremented exactly once, due
to the Handled set. No matter whether s is determined or not, we’ve shown that
the rc field of Vk(s) is incremented exactly once.
Adjusting rc fields due to allocated old slots. Since s is not reclaimed during
cycle k−1 there is no rc adjustments due to it during the recursive deletion of cycle
k − 1. It is left to consider the effects due to s in the course of updating during
cycle k.

If s is an allocated old slot for cycle k then it may be either modified or non-
modified during cycle k.

If s is modified, then (due to Lemma 11.6) V AL(Histk; s) = {Vk−1(s)}. Con-
sequently, Vk−1(s).rc will be decremented during Update-Reference-Counters.
Then, s will be either determined or consolidated and the rc value of Vk(s) will be
incremented accordingly as shown in the previous paragraphs for new slots.

Otherwise, s is not modified. Then we have V AL(Histk; s) = ® and no rc
updating due to it occur during cycle k, which is the desired result since Vk−1(s) =
Vk(s).
Adjusting rc fields due to non-allocated slots. If s has not ever been allocated
then the claim trivially holds.

If s has been reclaimed during cycle k−1 then we have shown, while dealing with
new slots, that at the time s is reclaimed null is assigned to it and the respective
rc value of Vk−1(s) is decremented accordingly.

Consider a slot s which is not allocated for cycle k that has been most recently

60 · Levanoni and Petrank

been reclaimed during cycle m < k − 1. According to the safety theorem, applied
for cycle m, no mutator Ti had access to s after HS4ENDm. Thus, at HS1k−1

no mutator had access to s which leads to s /∈ Histk. Additionally, s could not be
the subject of recursive deletion during cycle k−1, because that would have meant
that the object containing s was deleted twice in a row, which is contradictory to
the safety theorem. We conclude that s is neither the subject of recursive deletion
during cycle k − 1, nor of rc field updating during cycle k, as desired.

Since we have covered all possible options for the state of s, the claim holds.

Building on the foundations provided by the link between the conceptual asyn-
chronous reference-count and the concrete rc field and by the correct implemen-
tation of the snooping requirement, proved by Lemma 11.3, we are now ready to
prove our main claim.

Theorem 11.1. An object o is garbage when it is reclaimed. More specifically,
o is not reachable from any mutator Ti after HS4k(i) and hence o is garbage at
HS4ENDk.

Proof. We prove the claim by induction on the cycle number, k. For k = 0
we have an empty ZCT0 therefore no object is reclaimed during this cycle and
the claim vacuously holds. For k > 0 We prove that the claim is correct provided
Lemma 11.7 holds for cycle k.

Let {T1, T2, . . . Tn} be the set of all mutators, ordered by the time they re-
spond to the fourth handshake. i.e., HS4k(1) < HS4k(2) < . . . < HS4k(n).
Let {o1, . . . , om} be the set of objects which Collect is invoked for during cycle k,
ordered chronologically by the time of the invocation (i.e., o1 was processed first
and om—last.)

Consider any object oj that was processed by Collect. We prove that the fol-
lowing invariant holds for oj :

Invariant I1. For each mutator Ti, oj was continuously unreachable from Ti in
the time interval [HS4k(i),HS4k(n)]. i.e., was not reachable through any of Ti’s
local references and through any global root at any time point in the interval.

The proof is by double induction: the outer induction variable is j, subscripting
the objects that were processed. The inner induction variable is i, denoting the
index of mutators in the order they responded to the fourth handshake.

For the basis, we consider o1. In order to prove that I1 holds for o1 we prove
that an additional assertion holds:

Invariant I2. RC(o1) = 0 continuously in the time interval [HS4k(1),HS4k(n)].

Define I3 as the logical conjunction of I1 and I2. First we show that I3 holds for
o1 in the (single-pointed) interval [HS4k(1),HS4k(1)]. Then we show that given
that I3 holds in the interval [HS4k(1),HS4k(i − 1)], then it holds in the interval
[HS4k(i−1),HS4k(i)] as well and hence in the entire interval [HS4k(1),HS4k(i)].

Invariant I3, restricted to the interval [HS4k(1),HS4k(1)] simply asserts that
o1 was not directly reachable from any of T1’s local references and from any global
root at HS4k(1) and that RC(o1)@HS4k(1) = 0. We prove that this is indeed the
case.

An On-the-Fly Reference-Counting Garbage Collector for Java · 61

Since o1 was processed the first, Collect must have been invoked directly from
Reclaim-Garbage for it. Thus, 0 = o1.rc@COLLECTk. This implies

0 = ARC(Vk, o) ≥ RC(o)@HS4k =⇒ RC(o)@HS4k = 0

by Lemmas 11.7 and 11.3 and the fact that a reference-count is non-negative. Ad-
ditionally, o1 was not directly reachable from T1 at HS4k(1), or it would have been
marked local when T1’s state was scanned when it responded to the fourth hand-
shake. Finally, o1 was not directly reachable from any global root at HS4k(1). To
see that this is indeed the case consider any global root r. The collector read r prior
to starting the fourth handshake and marked the referenced object local. Since the
time the collector read r and up to HS4k(1) all mutators would have marked an
object local had they stored a reference to the object into r. Thus, at any rate, the
object which is referenced by r at HS1k is marked and thus it cannot be o1.

If n = 1 then we are done. Otherwise, we prove that I3 holds for the interval
[HS4k(i − 1), HS4k(i)], where 1 < i ≤ n, provided it holds during the interval
[HS4k(1),HS4k(i− 1)]. I3, restricted to the interval in question, requires that:

(1) RC(o1) = 0 continuously during the interval, and

(2) o1 was not directly reachable from any of the mutators in the set P
def= {T1, . . . , Ti−1}

continuously during the interval, and
(3) o1 was not directly reachable from any global root continuously during the

interval,and
(4) o1 was inaccessible from Ti at HS4k(i).

The inductive hypothesis (on i) assures us that o1 was not directly reachable
from all the mutators in P and from any global root at HS4k(i − 1) and that
RC(o1)@HS4k(i − 1) = 0. Examining any possible operation which is scheduled
during the interval [HS4k(i− 1),HS4k(i)] we learn that I3 remained continuously
in effect. We show that any instruction of time t ∈ [HS4k(i− 1),HS4k(i)] cannot
violate (1),(2) or (3) provided (1),(2) and (3) hold up to time t − 1 then we show
that (4) holds.

—a load cannot violate requirements (1) or (3) simply because it is a load, and
not a store. It cannot violate requirement (2) since no object or global root is
referring to o1, due to the validity of (1) and (3) in previous steps.

—a store operation cannot violate (2) since only a load can.
—a store by a mutator Tl ∈ P cannot violate (1) or (3) since the operand of the

store cannot be o1, due to the validity of (2) in previous steps.
—a store by a mutator Tl /∈ P cannot violate (1) or (3) because the operand of the

store cannot be o1 since the Snoopl flag is set during the interval and such a step
would have marked o1 local.

—to prove that (4) is satisfied: at time HS4k(i) o1 is not indirectly reachable,
from any mutator or global root, since (1) holds at HS4k(i). It is not directly
reachable from Ti, because that would have caused it being marked local. It is not
directly reachable from a global root at HS4k(i) since (3) holds at that moment.

That completes the proof that I3, and therefore I1 in particular, hold for o1.

62 · Levanoni and Petrank

Consider now the object oj , 1 < j ≤ m. If oj .rc@COLLECTk = 0 then the
same arguments that were employed for o1 are repeated. Otherwise, we have

c
def= oj .rc@COLLECTk > 0

Since oj is eventually processed by Collect there must have been c slots ref-
erencing oj that were cleared and oj .rc decremented accordingly, in lines (7-8) of
Collect. The collector has tested the dirty flags of these slots and found that they
were off prior to their processing. Since the dirty flag is off for these slots after
HS4ENDk, no mutator could have changed them after, or at HS1k and before
responding to the fourth handshake (due to Lemma 11.4).

Moreover, since these c slots were contained in objects that were processed prior
to oj the inductive lemma (on objects) apply and we know that no mutator had
access to any of the c slots after responding to the fourth handshake. We con-
clude that these c slots have not been changed after HS4k and before the collector
processed them.

In order to prove I1 we prove an additional invariant:

Invariant I4. No reference to oj has been stored during the interval [HS4k(1),HS4k(n)]
to either a heap slot or a global reference.

Define I5 as the logical conjunction of I1 and I4. We prove that I5 holds for oj .
We have already said that at HS4k(1) there existed exactly c references to oj .

All these references were contained in objects that, according to the inductive hy-
pothesis on objects, were unreachable from T1 at HS4k(1). Additionally, oj was
not directly reachable from T1 at HS4k(1), or it would have been marked local.
oj has not been directly reachable from a global reference at HS4k(1) since that
would have caused it being marked local, for the same arguments that were ap-
plied for o1. Finally, had oj been indirectly reachable from a global reference r at
HS4k(1) then the chain of references must have passed through some of the c slots
which are contained in objects which are assumed to be inaccessible from T1 at
HS4k(1), contradicting the inductive hypothesis on objects. Thus, I1, restricted
to the interval [HS4k(1),HS4k(1)] holds for oj .

I4, restricted to the interval [HS4k(1),HS4k(1)], holds as well since HS4k(1) is
the time at which T1 responded to the handshake and naturally it did not execute
a store at the same time.

We now show by similar arguments to those applied for o1 that I5 restricted
to the interval [HS4k(i − 1),HS4k(i)], where 1 < i ≤ n, holds provided it holds
during the interval [HS4k(1),HS4k(i − 1)]. We also use the inductive hypothesis
on j that asserts that for any object oa, a < j, I1 holds for the entire interval
[HS4k(1),HS4k(n)].

Invariant I5 applied to oj and restricted to the interval [HS4k(i − 1),HS4k(i)]
requires that:

(1) oj is not reachable continuously during the interval from any local reference of
a mutator in P .

(2) a reference to oj is not stored during the interval.
(3) oj is not reachable continuously during the interval from any global reference.
(4) oj is not reachable from Ti at HS4k(i).

An On-the-Fly Reference-Counting Garbage Collector for Java · 63

We show that any instruction of time t ∈ [HS4k(i− 1),HS4k(i)] cannot violate
(1), (2) or (3) provided (1), (2) and (3) hold up to time t − 1 then we show that
(4) holds.

—a load by a mutator Tl could not have maid oj reachable from Tl unless it was
reachable from it prior to the load. It also has no effect on the reachability of
oj from other mutators. Therefore such an action cannot violate neither (1) nor
(3), assuming (1) and (3) hold for previous steps. Naturally it cannot violate (2).

—a store by a mutator Tl ∈ P cannot make oj reachable for any mutator in P
unless oj has been already reachable from Tl just before the action took place,
which is not the case. So a store by Tl preserves (1), (2) and (3) provided (1)
and (3) hold for previous steps.

—a store by a mutator Tl /∈ P cannot make oj reachable from any mutator in P
for the following reasons:
—Tl could not have stored a reference to oj itself since the Snoopl flag is set

during the interval and such a step would have marked oj local, preventing its
processing by Collect.

—Tl could not have stored a reference to x from which oj is reachable since all
references to oj at the time of the store, by the validity of (2) for previous
steps, are a subset of the the set of c references that referred to oj at HS4k.
Thus, the chain of references from x to oj must pass through an object oa,
with a < j. The store would have rendered oa reachable from some mutator
in P , which is contradictory to the inductive assumption on oa.

So (1), (2) and (3) are not violated by a store by Tl /∈ P .
—it remains to show that (4) is not violated. Suppose that at HS4k(i) oj is

reachable from Ti. oj could not have been directly reachable at the time, or it
would have been marked local. By the validity of (2) for HS4k(i) we know that
if oj is reachable from Ti then it is reachable through some object oa, with a < j.
This implies that oa is reachable from Ti at HS4k(i). Again, a contradiction to
the inductive assumption on oa.

That completes the proof that I5 and therefore I1 hold for oj .
Applying I1 for any object which is processed we learn that any such object is

garbage at HS4ENDk (which equals, by definition, HS4k(n).) Since the objects
which are eventually reclaimed are a subset of those processed (the rest have their
reclamation deferred to the next cycle) the algorithm is indeed safe.

Last but not least we have to prove Lemma 11.8, whose correctness was assumed
by Lemma 11.7. The lemma asserts that the collector sensibly de-allocates objects.
That is, that it decrements the rc field of slots in a manner which is not discordant
with their linkage to the sliding view.

Lemma 11.8. Let o be an object which is reclaimed during cycle k and let s be a
slot of the object. Then the collector decrements Vk(s) exactly once due to recursive
deletion in cycle k.

Proof. The claim vacuously holds for cycle k = 0. We prove that it holds for
cycle k > 0 provided Theorem 11.1 and Lemma 11.6 hold for cycle k.

64 · Levanoni and Petrank

As the reference-count of an object is monotonically non-increasing due to re-
cursive deletion and since an object is processed by Collect only when its rc field
reaches zero, o is processed exactly once before being reclaimed.

Since o is reclaimed, the collector resets all its slots, including s. When the
collector considers s it probes the value of Dirty(s) and finds it off. As noted in
Lemma 11.6, s could not have been modified by any mutator between responding
to the first handshake and fourth handshake. So s is not in the digested history for
the next cycle.

If s /∈ Histk then σk(s) = HS1k. By Lemma 11.5 Dirty(s)@σk(s) = false thus
no mutator Ti could have changed s between σk(s) and HS1k(i). If s ∈ Histk then
it must be that s ∈ R3k. So in that case σk(s) = HS2ENDk. At any rate, no
mutator Ti changed s between σk(s) and HS4k(i).

Theorem 11.1 asserts that s was inaccessible for any mutator after responding to
the fourth handshake.

Assembling these facts we get that any rate s was not modified between σk(s)
and the time the collector read its value, prior to resetting it in procedure Collect.
So the collector indeed decremented the rc value of Vk(s).

This completes the safety proof of the algorithm.

12. CONCLUSIONS

We have presented a novel on-the-fly reference-counting garbage collector. The new
collector is adequate for run on a multiprocessor, in contrast to prior belief that
reference-count updates require a large synchronization overhead. The first novelty
is in the elimination of a large fraction of the reference-count updates. This elim-
ination results in a drastic reduction in the overhead on reference-count updates,
improving the overall throughput of the reference-counting garbage collection. The
second novelty is a carefully designed write-barrier that allows concurrent run of
the collector with several mutators without requiring synchronized operations in
the write barrier. Finally, the proposed collector is on-the-fly, i.e., there is no par-
ticular point in which all mutators must be suspended simultaneously. Instead,
each mutator cooperates with the collector by being shortly suspended four times
during each collection cycle.

We provided a full proof of the collector showing that it is live (eventually re-
claims all unreachable objects) and safe (does not reclaim live objects). We have
also implemented our collector on Sun’s Reference Release 1.2.2 of the Java Virtual
Machine and presented measurements demonstrating excellent latency and execu-
tion times that are comparable to the original mark-sweep-compact collector. While
the pauses were drastically reduced (by two orders of magnitude) the throughput
was reduced by at most 8% compared thr original collector.

13. ACKNOWLEDGMENT

We thank Hillel Kolodner for helpful discussions. We thank the anonymous referees
and David Wise for their thorough inspection of this paper and for their helpful
comments.

An On-the-Fly Reference-Counting Garbage Collector for Java · 65

REFERENCES

Aho, A. V., Kernighan, B. W., and Weinberger, P. J. 1988. The AWK Programming Lan-
guage. Addison-Wesley, Reading, MA.

Appel, A. W., Ellis, J. R., and Li, K. 1988. Real-time concurrent collection on stock multipro-
cessors. ACM SIGPLAN Not. 23, 7, 11–20.

Azatchi, H., Levanoni, Y., Paz, H., and Petrank, E. 2003. An on-the-fly mark and sweep
garbage collector based on sliding views. See OOPSLA [2003], 269–281.

Azatchi, H. and Petrank, E. 2003. Integrating generations with advanced reference counting
garbage collectors. In International Conference on Compiler Construction (CC’2003). Lecture
Notes in Computer Science, vol. 2622. Springer, Berlin, 185–199.

Bacon, D., Attanasio, D., Lee, H., and Smith, S. 2001. Java without the coffee breaks: A
nonintrusive multiprocessor garbage collector. In Proceedings of SIGPLAN 2001 Conference
on Programming Languages Design and Implementation. ACM SIGPLAN Not. ACM Press,
New York, 92–103.

Bacon, D. and Rajan, V. 2001. Concurrent cycle collection in reference counted systems. In
Proceedings of 15th European Conference on Object-Oriented Programming, ECOOP 2001.
Budapest.

Baker, H. G. 1978. List processing in real-time on a serial computer. Commun. ACM 21, 4,
280–94.

Baker, H. G. 1994. Minimising reference count updating with deferred and anchored pointers
for functional data structures. ACM SIGPLAN Not. 29, 9.

Barth, J. M. 1977. Shifting garbage collection overhead to compile time. Commun. ACM 20, 7
(July), 513–518.

Blackburn, S. and McKinley, K. 2003. Ulterior reference counting: Fast garbage collection
without a long wait. See OOPSLA [2003], 344–358.

Boehm, H.-J., Demers, A. J., and Shenker, S. 1991. Mostly parallel garbage collection. ACM
SIGPLAN Not. 26, 6, 157–164.

Chikayama, T. and Kimura, Y. 1987. Multiple reference management in Flat GHC. In 4th
International Conference on Logic Programming. MIT Press, 276–293.

Collins, G. E. 1960. A method for overlapping and erasure of lists. Commun. ACM 3, 12 (Dec.),
655–657.

Crammond, J. 1988. A garbage collection algorithm for shared memory parallel processors.
International Journal Of Parallel Programming 17, 6, 497–522.

DeTreville, J. 1990. Experience with concurrent garbage collectors for Modula-2+. Tech.
Rep. 64, DEC Systems Research Center, Palo Alto, CA. Aug.

Deutsch, L. P. and Bobrow, D. G. 1976. An efficient incremental automatic garbage collector.
Commun. ACM 19, 9 (Sept.), 522–526.

Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., and Steffens, E. F. M.
1978. On-the-fly garbage collection: An exercise in cooperation. Commun. ACM 21, 11 (Nov.),
965–975.

Doligez, D. and Gonthier, G. 1994. Portable, unobtrusive garbage collection for multiprocessor
systems. In Conference Record of the Twenty-first Annual ACM Symposium on Principles of
Programming Languages. ACM SIGPLAN Not. ACM Press, New York, 70–83.

Doligez, D. and Leroy, X. 1993. A concurrent generational garbage collector for a multi-threaded
implementation of ML. In Conference Record of the Twentieth Annual ACM Symposium on
Principles of Programming Languages. ACM SIGPLAN Not. ACM Press, New York, 113–123.

Domani, T., Kolodner, E. K., Lewis, E., Salant, E. E., Barabash, K., Lahan, I., Petrank,
E., Yanover, I., and Levanoni, Y. 2000. Implementing an on-the-fly garbage collector for
Java. See Hosking [2000], 155 – 166.

Endo, T., Taura, K., and Yonezawa, A. 1997. A scalable mark-sweep garbage collector on
large-scale shared-memory machines. In Proceedings of the Conference on High Performance
Networking and Computing (SC’97). ACM Press, New York, 1 – 14.

66 · Levanoni and Petrank

Flood, C., Detlefs, D., Shavit, N., and Zhang, C. 2001. Parallel garbage collection for shared
memory multiprocessors. In Usenix Java Virtual Machine Research and Technology Symposium
(JVM ’01). Monterey, CA.

Furusou, S., Matsuoka, S., and Yonezawa, A. 1991. Parallel conservative garbage collection
with fast allocation. In OOPSLA/ECOOP ’91 Workshop on Garbage Collection in Object-
Oriented Systems, Addendum to OOPSLA’91 Proceedings, P. R. Wilson and B. Hayes, Eds.

Goldberg, A. and Robson, D. 1983. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, MA.

Halstead, R. H. 1985. Multilisp: A language for concurrent symbolic computation. ACM Trans.
Program. Lang. Syst. 7, 4 (Oct.), 501–538.

Herlihy, M. and Moss, J. E. B. 1990. Non-blocking garbage collection for multiprocessors. Tech.
Rep. CRL 90/9, DEC Cambridge Research Laboratory, Cambridge, MA.

Hosking, A. L., Moss, J. E. B., and Stefanović, D. 1992. A comparative performance evalu-
ation of write barrier implementations. In OOPSLA’92 ACM Conference on Object-Oriented
Systems, Languages and Applications, A. Paepcke, Ed. ACM SIGPLAN Not., vol. 27(10). ACM
Press, New York, 92–109.

Hosking, T., Ed. 2000. ISMM 2000 Proceedings of the Second International Symposium on
Memory Management. ACM SIGPLAN Not., vol. 36(1). ACM Press, New York.

Hudson, R. L. and Moss, J. E. B. 2003. Copying garbage collection without stopping the world.
Concurrency and Computation: Practice and Experience 15, 3-5, 223–261.

Jones, R. E. and Lins, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley.

Kolodner, E. K. and Petrank, E. 2004. Parallel copying garbage collection using delayed
allocation. Parallel Processing Letters 14, 2. To appear.

Levanoni, Y. and Petrank, E. 2001. n on-the-fly reference counting garbage collector for Java.
In OOPSLA’01 ACM Conference on Object-Oriented Systems, Languages and Applications.
ACM SIGPLAN Not., vol. 36(10). ACM Press, New York.

Lins, R. D. and Vasques, M. A. 1991. A comparative study of algorithms for cyclic reference
counting. Tech. Rep. 92, Computing Laboratory, The University of Kent at Canterbury. Aug.

McBeth, J. H. 1963. On the reference counter method. Commun. ACM 6, 9, 575.

Miller, J. S. and Epstein, B. 1990. Garbage collection in MultiScheme. In US/Japan Workshop
on Parallel Lisp, LNCS 441. Springer, Berlin, 138–160.

OOPSLA 2003. OOPSLA’03 ACM Conference on Object-Oriented Systems, Languages and Ap-
plications. ACM Press, New York.

Ossia, Y., Ben-Yitzhak, O., Goft, I., Kolodner, E. K., Leikehman, V., and Owshanko, A.
2002. A parallel, incremental and concurrent GC for servers. In Proceedings of SIGPLAN 2002
Conference on Programming Languages Design and Implementation. ACM Press, New York,
129–140.

O’Toole, J. W. and Nettles, S. M. 1994. Concurrent replicating garbage collection. In Pro-
ceedings of the 1994 ACM conference on LISP and functional programming. ACM Press, New
York, 34 – 42.

Park, Y. G. and Goldberg, B. 1995. Static analysis for optimising reference counting. Inf.
Process. Lett. 55, 4 (Aug.), 229–234.

Plakal, M. and Fischer, C. N. 2000. Concurrent garbage collection using program slices on
multithreaded processors. See Hosking [2000].

Printezis, T. and Detlefs, D. 2000. A generational mostly-concurrent garbage collector. See
Hosking [2000], 143 – 154.

Riany, Y., Shavit, N., and Touitou, D. 1995. Towards a practical snapshot algorithm. In
Proceedings of the 3rd Israeli Symposium on the Theory of Computing and Systems. IEEE
Press, 58–173.

Roth, D. J. and Wise, D. S. 1998. One-bit counts between unique and sticky. In ISMM’98
Proceedings of the First International Symposium on Memory Management, R. Jones, Ed.
ACM SIGPLAN Not., vol. 34(3). ACM Press, New York, 49–56.

An On-the-Fly Reference-Counting Garbage Collector for Java · 67

Sobalvarro, P. 1988. A lifetime-based garbage collector for Lisp systems on general-purpose
computers. Tech. Rep. AITR-1417, MIT AI Lab, Cambridge, MA. Feb. Bachelor of Science
thesis.

SPEC Benchmarks. 1998,2000. Standard Performance Evaluation Corporation.
http://www.spec.org/.

Steele, G. L. 1975. Multiprocessing compactifying garbage collection. Commun. ACM 18, 9
(Sept.), 495–508.

Stoye, W. R., Clarke, T. J. W., and Norman, A. C. 1984. Some practical methods for
rapid combinator reduction. In Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, G. L. Steele, Ed. ACM Press, New York, 159–166.

Wall, L. and Schwartz, R. L. 1991. Programming Perl. O’Reilly and Associates, Inc.

Weizenbaum, J. 1963. Symmetric list processor. Commun. ACM 6, 9 (Sept.), 524–544.

Wise, D. S. 1993. Stop and one-bit reference counting. Inf. Process. Lett. 46, 5 (July), 243–249.

Yuasa, T. 1990. Real-time garbage collection on general-purpose machines. Journal of Software
and Systems 11, 3, 181–198.

Zorn, B. 1990. Barrier methods for garbage collection. Tech. Rep. CU-CS-494-90, University of
Colorado, Boulder. Nov.

