
Efficient Memory Management for Lock-Free Data
Structures with Optimistic Access∗

Nachshon Cohen
Technion Institute of Technology, Israel

nachshonc@gmail.com

Erez Petrank
Technion Institute of Technology, Israel

erez@cs.technion.ac.il

ABSTRACT
Lock-free data structures achieve high responsiveness, aid scala-
bility, and avoid deadlocks and livelocks. But providing memory
management support for such data structures without foiling their
progress guarantees is difficult. Often, designers employ the hazard
pointers technique, which may impose a high performance over-
head.

In this work we propose a novel memory management scheme
for lock-free data structures called optimistic access. This scheme
provides efficient support for lock-free data structures that can be
presented in the normalized form of [24]. Our novel memory man-
ager breaks the traditional memory management invariant which
never lets a program touch reclaimed memory. In other words, it
allows the memory manager to reclaim objects that may still be ac-
cessed later by concurrently running threads. This broken invariant
provides an opportunity to obtain high parallelism with excellent
performance, but it also requires a careful design. The optimistic
access memory management scheme is easy to employ and we im-
plemented it for a linked list, a hash table, and a skip list. Mea-
surements show that it dramatically outperforms known memory
reclamation methods.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Allocation/deallocation strategies;
D.1.3 [Programming Technique]: Parallel Programming

General Terms
Algorithms, Design, Theory.

Keywords
Memory Management, Concurrent Data Structures, Non-blocking,
Lock-free, Hazard Pointers

1. INTRODUCTION
∗This work was supported by the Israeli Science Foundation grant
No. 274/14.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3588-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2755573.2755579..

The rapid deployment of highly parallel machines has resulted
in the acute need for parallel algorithms and their supporting paral-
lel data structures. Lock-free data structures (a.k.a. non-blocking)
[11, 13] are immune to deadlocks and livelocks, fast, scalable and
widely used in practice. However, when designing a dynamic non-
blocking data structure, one must also address the challenge of
memory reclamation. The problem arises when one thread attempts
to reclaim an object while another thread is still using it. Account-
ing for all accesses of all threads before reclaiming an object is
difficult and costly, especially when threads may be delayed for a
while while still holding pointers to nodes in the shared memory.

One easy approach to this problem is to not reclaim memory at
all during the execution. But this solution is only applicable to
short-running programs. Another approach to reclaiming memory
is to assume automatic garbage collection, which guarantees that
an object is never reclaimed while it is being used. However, this
only delegates the problem to the garbage collector. There has been
much work on garbage collectors that obtain some partial guarantee
for progress [14, 15, 20, 21, 2, 22], but current literature offers no
garbage collection that supports lock-free execution [19].

A different approach is to coordinate the accessing threads with
the threads that attempt reclamations. The programmer uses a mem-
ory management interface to allocate and reclaim objects and the
reclamation scheme coordinates the memory recycling of reclaimed
objects with the accessing threads. The most popular schemes of
this type are hazard pointers and pass the buck [17, 12]. These
(similar) methods require that each thread announces each and ev-
ery object it accesses. To properly announce the accessed objects,
a memory fence must be used for each shared memory read, which
is costly. Employing one of these schemes for a linked list may
slow its execution down by a factor of 5 [3]. To ameliorate this
high cost, a recent extension by Braginsky et al. [3] proposed the
anchors scheme, which is a more complex method that requires a
fence only once per several accesses. The anchors scheme reduces
the overhead substantially, but the cost still remains non negligi-
ble. Furthermore, the anchors scheme is difficult to design and it is
currently available for Harris-Maged linked list [16] data structure
only.

All known memory management techniques, including garbage
collection and the above ad-hoc reclamation methods, provide a
guarantee that a thread never accesses a reclaimed object. Loosely
speaking, supporting this guarantee causes a significant overhead,
because whenever a thread reads a pointer to an object, the other
threads must become aware of this read and not reclaim the object.
For an arbitrary program, this might mean a memory fence per each
read, which is very costly. For more specialized programs or for
specific lock-free data structures, better handling is possible, but a
substantial performance penalty seems to always exist.

In this paper we propose to deviate from traditional methods in
a novel manner by letting the program execute optimistically, al-
lowing the threads to sometimes access an object that has been
previously reclaimed. Various forms of optimistic execution have
become common in the computing world (both hardware and soft-
ware) as a mean to achieve higher performance. But optimistic ac-
cess has never been proposed in the memory management literature
due to the complications that arise in this setting. Optimistically
accessing memory that might have been reclaimed requires care-
ful checks that must be executed at adequate locations; and then,
proper measures must be taken when the accessing of a reclaimed
object has been detected. When a thread realizes that it has been
working with stale values, we let it drop the stale values and return
to a point where the execution is safe to restart.

Achieving such timely checks and a safe restart in this setting is
quite difficult for arbitrary lock-free programs. Therefore, we chose
to work only with lock-free data structures that can be presented in
a normalized form. We used the normalized form proposed in [24].
This normalized form is on the one hand very general: it covers
all concurrent data structure that we are aware of. On the other
hand, it is very structured and it allows handling the checks and
restarts in a prudent manner. As with other optimistic approaches,
we found that the design requires care, but when done correctly, it
lets the executing threads run fast with low overhead. We denote
the obtained memory reclamation scheme optimistic access.

Measurements show that the overhead of applying the optimistic
access scheme is never more than 19% compared to no reclama-
tion, and it consistently outperform the hazard pointers and an-
chors schemes. Moreover, the application of the optimistic access
method to a normalized lock-free data structure is almost automatic
and can easily be applied to a given data structure. The optimistic
access mechanism is lock-free and it may reclaim nodes even in
the presence of stuck threads that do not cooperate with the mem-
ory reclamation process.

In order for the optimistic access to be possible at all, the under-
lying operating system and runtime are required to behave “reason-
ably”. The specific required assumptions are detailed in Section
3. Loosely speaking, the assumption is that reading or writing a
field in a previously allocated object does not trigger a trap, even if
the object has been reclaimed. For example, a system in which a
reclaimed object is returned to the operating system and the operat-
ing system unmaps its memory thereafter, is not good for us since
reading a field of that object would create a segmentation fault and
an application crash.1 It is easy to satisfy an adequate assumption
by using a user-level allocator. This may be a good idea in general,
because a user-level allocator can be constructed to provide a better
progress guarantee. For example, using an object pooling mecha-
nism for the nodes of the data structure would be appropriate.

The main contribution of this paper is an efficient memory recla-
mation scheme that supports lock-freedom for normalized lock-free
data structures. The proposed scheme is much faster than existing
schemes and is easy to employ. We exemplify the use of the opti-
mistic access scheme on a linked list, a hash table, and a skip list.
The obtained memory recycling scheme for the skip list incurred an
overhead below 12%, whereas the overhead of the hazard pointers
scheme always exceeded a factor of 2. For the hash table, the opti-
mistic access scheme incurred an overhead below 12%, whereas the
overhead of the hazard pointers method was 16%−40% for 1−32

1As an aside, we note that the implementation of unmap is typically
not lock-free and it is not to be used with lock-free data structures.
For example, in the Linux operating system, an unmap instruction
both acquires a lock and communicates with other processes via an
interprocess interrupt.

threads (and negligible for 64 threads). For linked list, the opti-
mistic access method always outperforms the hazard pointers and
the anchors mechanisms. The optimistic access method typically
incurs an overhead of a few percents and at a worst setting it in-
curs an overhead of 19%. The hazard pointers mechanism typically
incurs a large overhead of up to 5x. The anchors mechanism im-
proves performance significantly over the hazard pointers but with
short lists and high contention it incurs a significant overhead as
well.

This paper is organized as follows. In Section 2 we present an
overview of the optimistic access mechanism. In Section 3 we
specify the assumption we make of the underlying system. Sec-
tion 4 presents the optimistic access mechanism. In Section 5 we
present the implementation and an evaluation. We discuss related
work in Section 6 and conclude in Section 7.

2. OVERVIEW
Let us start with an intuitive overview of the optimistic access

scheme. The main target of this scheme is to provide fast reads,
as reads are most common. In particular, we would like to execute
reads without writing to the shared memory. On the other hand,
a lock-free memory reclamation scheme must be able to reclaim
memory, even if some thread is stuck just before a read of an object
that is about to be reclaimed. Thus, we achieve fast reads by allow-
ing a thread to sometimes read an object after it was reclaim (and
allocated to other uses).

The optimistic access scheme maintains correctness in spite of
reading reclaimed objects using three key properties. First, a read
must not fault, even when accessing a reclaimed memory. Second,
the scheme identifies a read that accesses a reclaimed object im-
mediately after the read. Third, when a read of such stale value is
detected, the scheme allows a rollback of the optimistic read. We
follow by describing how these three properties can be satisfied.

The first requirement is obtained by the underlying memory man-
agement system. We will require that accessing previously allo-
cated memory will never cause a fault. This can be supported by
using user-level allocators that allocate and de-allocate without re-
turning pages to the system. Such allocators can be designed to sup-
port lock-free algorithms. (Typically, returning pages to the system
foils lock freedom.)

Jumping to the third property, i.e., the roll back, we first note that
the ability to roll back is (informally) made possible in most lock-
free data structures. Such data structures handle races by simply
restarting the operation from scratch. The same restarting mecha-
nism can be used to handle races between data-structure operations
and memory reclamation; indeed, such a roll-back mechanism is
assumed and used in previous work (e.g., [17]). However, to for-
mally define a roll-back (or restart) mechanism, we simply adopt
the normalized form for lock-free data structures [24]. This normal-
ized form is on one hand very general - it covers all data structure
we are aware of. On the other hand, its strict structure provides a
well-defined restart mechanism, which can be used for rolling back
the execution when a stale value has been read.

Next we discuss how to satisfy the second property, i.e., not-
ing that a stale read has occurred due to a race between the read
and memory reclamation. The optimistic access scheme divides
the memory reclamation into phases, which may be thought of as
epochs, and poses the following restrictions. First, an object is
never reclaimed at the same phase in which it is unlinked from the
data structure. It can only be reclaimed at the next phase or later.
Second, a thread that acknowledges a new phase does not access
objects that were unlinked in previous phases. These two restric-
tions provide a lightweight mechanism to identify a potential read

of a stale value. If a thread is not aware that a phase has changed,
then his read may potentially be of a stale value. Otherwise, i.e., if
the thread is aware of the current reclamation phase, then his read
is safe.

To make the (frequent) read operation even lighter, we move
some of the related computation work to the (infrequent) reclaim-
ing mechanism. To this end, each thread is assigned with an asso-
ciated warning flag that a phase has changed. This flag is called
the warning-bit. This bit is set if a new phase had started without
the thread noticing, and clear otherwise. During a phase change the
warning bits of all threads are set. When a thread acknowledges a
phase change it resets its bit. This way, checking whether a read
might have read a stale value due to reclamation, is as simple as
checking whether the flag is non-zero.

To summarize, reading of shared memory is executed as follows.
First the shared memory is read. Next, the thread’s warning-bit is
checked. Finally, if the warning bit is set, a restart mechanism is
used to roll back the execution to a safe point.

We now deal with program writes. We cannot allow an event
in which a thread writes to an object that has previously been re-
claimed. Such an event may imply a corruption of objects in use by
other threads. Therefore, for writes we adopt a simplified version
of the hazard pointers scheme that prevents writes to reclaimed ob-
jects. A thread declares a location it is about to write to in a hazard
pointer. Reclamation is avoided for such objects. Since writes are
less frequent, the overhead of hazard pointers for writes is not high.
The warning flag allows a quick implementation, as explained in
Section 4 below.

Finally, it remains to describe the the memory reclamation scheme
itself. A simplified version of such an algorithm may work as fol-
lows. It starts by incrementing the phase number, so that it can
identify objects that were unlinked before the reclamation started.
It can then reclaim all objects that were unlinked in previous phases
and are not pointed by hazard pointers.

The problem with the simple solution is that each thread that
starts reclamation will increment the phase number and trigger restarts
by all other threads. This should not happen too frequently. To re-
duce this overhead, we accumulate retired objects in a global buffer
and let a reclaiming thread process objects unlinked by all threads.
This reduces the number of phase changes and hence also the num-
ber of restarts. Even when using global pools, the optimistic access
scheme naturally benefits from using temporary local pools that are
used to reduce the contention on the global pools. Performance is
somewhat reduced when space is limited and measurements of the
tradeoff between space overhead and time overhead are provided in
Section 5.

Advantage of the optimistic access scheme. Hazard pointers
and anchors require an involved and costly read barrier that runs a
verification process and a memory fence. In contrast, ours scheme
works with a light-weight read barrier (that checks the warning bit).
Hazard pointers are used for writes in a ways that is easy to in-
stall (practically, automatic), and being used for writes only, hazard
pointers also incur a low overhead, as shown by the measurements.

3. ASSUMPTIONS AND SETTINGS
In this section we specify the assumption required for our mech-

anism to work and define the normalized representation of data
structures. Finally, in Subsection 3.4 we present a running exam-
ple: the delete operation of Harris-Maged linked list.

3.1 System Model
We use the standard computation model of Herlihy [11]. A shared

memory is accessible by all threads. The threads communicate

through memory access instructions on the shared memory; and
a thread makes no assumptions about the status of any other thread,
nor about the speed of its execution. We also assume the TSO
memory model, used by the common x86 architecture [18].

Finally, as discussed in Section 2, we assume that accessing pre-
viously allocated memory does not trigger traps. Formally, we as-
sume the following of the underlying system.

ASSUMPTION 3.1. Suppose a memory address p is allocated
at time t. Then, if the program at time t ′ > t executes an instruction
that reads from p, then the executing of this instruction does not
trigger a runtime-system trap.

3.2 Normalized Data Structures
The optimistic access scheme assumes that the data structure im-

plementation is given in a normalized form. In this subsection we
provide a motivating discussion and an overview over normalized
representation. The formal definition following [24] is provided in
the full version of this paper [4]. The memory management scheme
proposed in this paper lets threads infrequently access reclaimed
space. When this happens, the acting thread will notice the prob-
lem thereafter and it will restart the currently executing routine.
The strict structure of the normalized algorithm provides safe and
easily identifiable points of restart. Let us now informally explain
how a normalized implementation looks like.

Loosely speaking, a normalized implementation of a data struc-
ture partitions each operation implementation into three parts. The
first part, denoted the CAS generator, prepares a list of CASes that
need to be executed for the operation. It may modify the shared
data structure during this process, but only in a way that can be ig-
nored and restarted at any point, typically these modifications im-
prove the underlying representation of the data structure without
changing its semantics2. The second part, denoted the CAS execu-
tor, attempts to execute the CASes produced by the CAS generator
one by one. It stops when a CAS fails or after all have completed
successfully. The third part, denoted the wrap-up, examines how
many CASes completed successfully and decides whether the op-
eration was completed or whether we should start again from the
CAS generator. A particular interesting property of the CAS gen-
erator and the wrap-up methods, is that they can be restarted at any
time with no harm done to the data structure.

Very loosely speaking, think, for example, of a search executed
before a node is inserted into a linked list. This search would be
done in a CAS generator method, which would then specify the
CAS required for the insertion. For reasonable implementations,
the search can be stopped at any time and restarted. Also, when the
wrap-up method inspects the results of the (single) CAS execution
and decides whether to start from scratch or terminate, it seems in-
tuitive that we can stop and restart this examination at any point in
time. The normalized implementation ensures that the CAS gener-
ator and the wrap-up methods can be easily restarted any time with
no noticeable effects.

In contrast, the actual execution of the CASes prepared by the
CAS generator is not something we can stop and restart because
they have a noticeable effect on the shared data structure. There-
fore, the optimistic access scheme must make sure that the CAS
executor method never needs to restart, i.e., that it does not access
reclaimed space. Here, again, thanks to the very structured nature
of the executed CASes (given in a list), we can design the protec-
tion automatically and at a low cost.

2A typical example is the physical delete of nodes that were previ-
ously logically deleted in Harris-Maged linked list implementation.

One additional requirement of a normalized data structure is that
all modifications of the structure are done in a CAS operation (and
not a simple write). Efficient normalized representations exist for
all lock-free data structures that we are aware of.

The formal definition of the normalized method is required for
a proof of correctness. These details appear in the full version of
this paper [4] and also in the original paper that defined this notion,
but the informal details suffice to understand the optimistic access
scheme as described below.

3.3 Assumptions on the Data Structure
Here, we specify assumptions that we make about the data struc-

ture to which memory management is added. Most of these as-
sumptions are assumed also by all previous memory reclamation
schemes.

Many lock-free algorithms mark pointers by modifying a few
bits of the address. The programmer that applies the optimistic ac-
cess scheme should be able to clear these bits to obtain an unmarked
pointer to the object. Given a pointer O, the notation unmark(O)
denotes this unmarked pointer. This is one issue that makes our
scheme not fully automatic.

Second, we assume that the data structure operations do not re-
turn a pointer to a reclaimable node in the data structure. Accessing
a node can only happen by use of the data structure interface, and a
node can be reclaimed by the memory manager if there is no pos-
sibility for the data structure interface functions to access it.

The data structure’s functions may invoke the memory manage-
ment interface. Following the (standard) interface proposed for the
hazard pointers technique of [17], two instructions are used: al-
loc and retire. Allocation returns immediately, but a retire request
does not immediately reclaim the object. Instead, the retire request
is buffered and the object is reclaimed when it is safe. Deciding
where to put the (manual) retire instructions (by the programmer)
is far from trivial. It sometimes require an algorithmic modification
[16] and this is the main reason why the optimistic access scheme
is not an automatic transformation.

The third assumption is a proper usage of retire. We assume
that retire is operated on a node in the data structure only after this
node is unlinked from the data structure, and is no longer accessible
by other threads that traverse the data structure. For example, we
can properly retire a node in a linked list only after it has been
disconnected from the list. We further assume that only a single
thread may attempt to retire a node.

We emphasize that an object can be accessed after it has been
properly retired. But it can only be accessed by a method that
started before the object was retired. Nevertheless, because of this
belated access, an object cannot be simply recycled after being re-
tired.

3.4 A Running Example: Harris-Michael delete
operation

We exemplify the optimistic access scheme throughout the paper
by presenting the required modifications for the delete operation of
Harris-Maged linked list. In Listing 1 we present the delete opera-
tion in its normalized form and including a retire instruction for a
node that is removed from the list. In its basic form (and ignoring
the constraints of the normalized representation), Harris-Michael
delete operation consists of three steps: (1) search: find the node
to be deleted and the node before it, (2) logical delete: mark the
node’s next pointer to logically delete it, and (3) physical delete:
update the previous node’s next pointer to skip the deleted node.
During the search of the first stage, a thread also attempts to physi-
cally delete any node that is marked as logically deleted.

The normalized form of the operation is written in the three stan-
dard methods. The first method is the CAS generator method which
performs the search and specifies the CAS that will logically delete
the node by marking its next pointer. If the key is not found in the
linked list then a list of length zero is returned from the CAS gener-
ator. The CAS executor method (not depicted in Listing 1) simply
executes the CAS output by the CAS generator, and thus performs
the logical deletion. The wrap-up method checks how many CASes
were on the CAS list and how many of them were executed to de-
termine if we need to return to the CAS generator, or the operation
is done. The wrap-up interprets an empty CAS list as an indication
that the key is not in the structure and then FALSE can be returned.
Otherwise, if the CAS succeeded, then a TRUE is returned. If the
CAS failed, the wrap-up determines a restart.

Note that the third step of the basic algorithm, physical delete,
is not executed at all in the normalized form. The reason is that in
its strict structure the wrap-up method does not have access to the
pointer to the previous node and so it cannot execute the physical
delete. However, this is not a problem because future searches will
physically delete this node from the list and the logical delete (that
has already been executed) means that the key in this node is not
visible to the contains operation of the linked list. Another differ-
ence between the original implementation and the normalized one
is that the original implementation may simply return FALSE upon
failing to find the key in the structure. The normalized implemen-
tation creates an empty CAS list that the wrap-up method properly
interprets and returns FALSE.

Finally, we added a retire instruction to Listing 1 after any phys-
ical delete. This is proper reclamation because new operations will
not be able to traverse it anymore. Using a retire after the logi-
cal deletion is not proper because it is still accessible for new list
traversals.

Listing 1: Harris-Michael linked list delete operation: normal-
ized form with retire instructions

1 bool delete(int sKey, Node ∗head, ∗tail);
2 descList CAS Generator(int sKey, Node ∗head, ∗tail){
3 descList ret;
4 start:
5 while(true) {/∗Attempt to delete the node∗/
6 Node ∗prev = head, ∗cur = head−>next, ∗next;
7 while(true) { /∗search for sKey position∗/
8 if(cur==NULL){
9 ret.len=0;

10 return ret;
11 }
12 next = cur−>next;
13 cKey = cur−>key
14 if(prev−>next != cur)
15 goto start;
16 if(!is marked(next)){
17 if(cKey>=sKey)
18 break;
19 prev=cur;
20 }
21 else{
22 if(CAS(&prev−>next, cur, unmark(next)))
23 retire(cur);
24 else
25 goto start;
26 }
27 cur=unmark(next);
28 }
29 if(cKey!=sKey){
30 ret.len=0;
31 return ret;
32 }

33 ret.len=1;
34 ret.desc[0].address=&cur−>next;
35 ret.desc[0].expectedval=next;
36 ret.desc[0].newval=mark(next);
37 return ret; /∗Return to CAS executor∗/
38 }
39 }
40 int WRAP UP(descList exec, int exec res,
41 int sKey, Node ∗head, ∗tail){
42 if(exec.len==0) return FALSE;
43 if(exec res==1) /∗CAS failed∗/
44 return RESTART GENERATOR;
45 else return TRUE;
46 }

4. THE MECHANISM
In this section we present the optimistic access mechanism, which

adds lock-free memory recycling support to a given data structure
implementation with a memory management interface (i.e., alloc
and proper retire instructions).

The mechanism uses a single bit per thread, denoted thread.warn-
ing. The warning bit is used to warn a thread that a concurrent re-
cycling had started. If a thread reads true of its warning bit, then its
state may contain a stale value. It therefore starts the CAS generator
or wrap-up methods from scratch. On the other hand, if the thread
reads false from its warning bit, then it knows that no recycling had
started, and the thread’s state does not contain any stale values. We
assume that a thread can read its warning bit, clear its warning bit,
and also set the warning bits of all other threads (non-atomically).

Modification of the shared memory is visible by other threads,
and modifying an object that has been recycled is disastrous to pro-
gram semantics. Therefore, during any modification of the shared
data structure we use the hazard pointers mechanism [17] to mark
objects that cannot be recycled. Each thread has a set of three point-
ers denoted thread.HP1, thread.HP2, thread.HP3 that are used to
protect all parameters of any CAS operation in the CAS generator
or the wrap-up methods.

In addition, the CAS executor method and the wrap-up method
can access all the objects mentioned in the CASes list that is pro-
duced by the CAS generator. The optimistic access scheme pre-
vents these objects from being recycled by an additional set of haz-
ard pointers. Let C be the maximum number of CASes executed
by the CAS executor method in any of the operations of the given
data structure. Each thread keeps an additional set of 3 ·C pointers
denoted thread.HPowner

1 , . . ., thread.HPowner
3C . These hazard point-

ers are installed in the end of the CAS generator method and are
cleared in the end of the wrap-up method. A thread may read the
hazard pointers of all threads but it writes only its own hazard point-
ers.

Modifications to the Data Structure Code.
In Algorithm 1 we present the code for reading from shared

memory (the read-barrier for shared memory). This code is used
in the CAS generator and wrap-up methods. (There are no reads in
the CAS executor method.)

As a read from the shared memory may return a stale value, when
using the optimistic access memory recycling scheme, checking the
warning bit lets the reading thread identify such an incident. If the
warning bit is false, then we know that the read object was not
recycled, and the read value is not stale. If, on the other hand, the
warning bit is true, the read value may be arbitrary. Furthermore,
pointers previously read into the thread’s local variables may point
to stale objects. Thus, the thread discards its local state, and restarts

ALGORITHM 1: Read shared memory (var = *ptr)
1: temp = *ptr
2: if thread.warning == true then
3: thread.warning:= false
4: restart
5: end if
6: var = temp

from a safe location: the start of the CAS generator or wrap-up
method.

The code in Algorithm 1 resets the warning bit before restarting.
This can be done because the recycler will only recycle objects that
appear in the recycling candidates list when it starts. This means
that the warning bit is set after the data structure issued a retire
instruction on the objects in the list. Since the retire instruction
is proper in the data structure implementation, we know that all
these objects are no longer accessible from the data structure and
we will not encounter any such object after we restart the method
from scratch. Therefore, upon restarting, we can clear the warning
bit.

In order to exemplify such a read on our running example, con-
sider, for example, Line 12 from Listing 1. It should be translated
into the following code (COMPILER-FENCE tells the compiler to
not change the order during compilation).

Listing 2: Algorithm 1 for Listing 1 Line 12
1 next = cur−>next;
2 COMPILER−FENCE;
3 if(thread−>warning){thread−>warning=0;goto start;}

Next we define the write-barrier for all instructions that modify
the shared memory. By the properties of normalized representation,
this only happens with a CAS instruction. Algorithm 2 is applied to
all modifications, except for the execution of the CASes list in the
CAS executor, which are discussed in Algorithm 3. A simplified
version of the hazard pointer mechanism [17] is used to protect the
objects whose address or body is accessed in this instruction. If a
CAS modifies a non-pointer field then only one hazard pointer is
required for the object being modified. Recall that unmark stands
for removing marks embedded in a pointer to get the pointer itself.

ALGORITHM 2: An observable instruction
res=CAS(&O. f ield,A2,A3)

1: thread.HP1 = unmark(O)
2: if A2 is a pointer then thread.HP2 = unmark(A2)
3: if A3 is a pointer then thread.HP3 = unmark(A3)
4: memoryFence (ensure HP are visible to all threads)
5: if thread.warning == true then
6: thread.warning:= false
7: thread.HP1=thread.HP2=thread.HP3 = NULL
8: restart
9: end if

10: res=CAS(&O. f ield,A2,A3)
11: thread.HP1=thread.HP2=thread.HP3 = NULL

Running Example. The only case where Algorithm 2 is used in
the running example is in Line 22 of Listing 1, which is translated
to the following code in Listing 3.

Listing 3: Algorithm 2 for Line 22 of Listing 1

1 HP[0]=prev;
2 HP[1]=cur;
3 HP[2]=unmark(next);
4 memory fence();
5 if(thread−>warning){thread−>warning=0;goto start;}
6 if(CAS(&prev−>next, cur, unmark(next))){
7 HP[0]=HP[1]=HP[2]=NULL;
8 ...
9 else{

10 HP[0]=HP[1]=HP[2]=NULL;
11 ...

We stress that prev and cur are unmarked. If, for example, prev was
possibly marked, Line 1 would contain HP[0]=unmark(prev);.

Finally, the optimistic access scheme also protects all the objects
that are accessed during the execution of the CASes list. Recall that
this list is generated by the CAS generator method and executed
thereafter by the CAS executor method. We need to protect all
these objects so that no CAS is executed on reclaimed memory.
To that end, we protect the relevant objects by hazard pointers at
the end of the CAS generator method. The protection is kept until
the end of the wrap-up method, because these objects are available
to the wrap-up method and can be written by it. All these hazard
pointers are nullified before the wrap-up method completes. The
code for this protection is presented in Algorithm 3.

ALGORITHM 3: End of CAS Generator.
Input: A list of ` CASes S= CAS(&O1.field,
A1,2,A1,3),. . . ,CAS(&OC.field, AC,2,AC,3).

1: for i ∈ 1 . . . ` do
2: thread.HPowner

3·i+1 = unmark(Oi)
3: if Ai,2 is a pointer then thread.HPowner

3·i+2 = unmark(Ai,2)
4: if Ai,3 is a pointer then thread.HPowner

3·i+2 = unmark(Ai,3)
5: end for
6: memoryFence (ensure HP are visible to all threads)
7: if thread.warning == true then
8: thread.warning:= false
9: for i ∈ 1 . . . `, j ∈ 1,2,3 do thread.HPowner

i, j =NULL
10: restart
11: end if
12: return S (finish the CAS generator method)

A basic optimization. A trivial optimization that we have ap-
plied in our implementation is to not let two hazard pointers point
to the same object. Algorithm 3 guards objects until the end of the
wrap-up method. So all these objects need not be guarded (again)
during this interval of execution. Moreover, in case this optimiza-
tion eliminates all assignment of hazard pointers in Algorithm 3 or
2, then the memory fence and the warning check can be elided as
well.

Running Example. There are three places where the CAS gen-
erator method finishes: Line 10, Line 31, and Line 37. For Lines 10
and 31 there is no need to add any code because, in this case, the
CAS generator method returns a CAS list of length zero and there
is no object to protect. Thus there is no need to execute the mem-
ory fence or the warning check. For Line 37 we add the following
code:

Listing 4: Algorithm 3 for Listing 1 Line 37
1 //Original code before the return (Lines 34−36).
2 ret.desc[0].address=&cur−>next;
3 ret.desc[0].expectedval=next;
4 ret.desc[0].newval=mark(next);

5 //Algorithm 3 added instructions
6 HP[3]=cur;
7 HP[4]=next;
8 //No need to set HP[5] (equal to HP[4])
9 memory fence();

10 if(thread−>warning)
11 {thread−>warning=0; HP[3]=HP[4]=NULL;goto start;}
12 //End of Algorithm 3
13 return ret;

The Recycling Mechanism.
Having presented code modifications of data structure opera-

tions, we proceed with describing the recycling algorithm itself:
Algorithms 4-6.

The recycling is done in phases. A phase starts when there are
no objects available for allocation. During a phase, the algorithm
attempts to recycle objects that were retired by the data structure
until the phase started. The allocator can then use the recycled
objects until exhaustion, and then a new phase starts.

The optimistic access scheme uses three shared objects pools,
denoted readyPool, retirePool, and processingPool. The readyPool
is a pool of ready-to-be-allocated objects from which the allocator
allocates objects for the data structure. The retirePool contains ob-
jects on which the retire instruction was invoked by the data struc-
ture. These objects are waiting to be recycled in the next phase. In
the beginning of the phase, the recycler moves all objects from the
retirePool to the processingPool. The processingPool is used dur-
ing the recycling process to hold objects that were retired before the
current phase began and can therefore be processed in the current
phase. Note that while the recycling is being executed on objects
in the processingPool, the data structure may add newly retired ob-
jects to the retirePool. But these objects will not be processed in
the current phase. They will wait for the subsequent phase to be
recycled. During the execution of recycling, each object of the pro-
cessingPool is examined and the algorithm determines whether the
object can be recycled or not. If it can, it is moved to the readyPool,
and if not, it is moved back to the retirePool and is processed again
at the next phase.

Since we are working with lock-free algorithms, we cannot wait
for all threads to acknowledge a start of a phase (as is common with
concurrent garbage collectors). Since no blocking is allowed and
we cannot wait for acknowledgements, it is possible that a thread
is delayed in the middle of executing a recycling phase r and then
it wakes up while other threads are already executing a subsequent
recycling phase r′ > r. The optimistic access scheme must ensure
that threads processing previous phases cannot interfere with the
execution of the current phase. To achieve this protection, we let
a modification of the pools only succeed if the phase number of
the local thread matches the phase number of the shared pool. In
fact, we only need to protect modifications of the retirePool and
the processingPool. Allocations from the readyPool do not depend
on the phase and also once a thread discovers that an object can
be added to the readyPool, this discovery remains true even if the
thread adds the object to the readyPool much later.

There are various ways to implement such phase protection, but
let us specify the specific way we implemented the pools and the
matching of local to global phase numbers. Each pool is imple-
mented as a lock-free stack with a version (phase) field adjacent
to the head pointer. The head pointer is modified only by a wide
CAS instruction that modifies (and verifies) the version as well.
When adding an object or popping an object from the pool fails
due to version mismatch, a special return code VER-MISMATCH
is returned. This signifies that a new phase started, and the thread

should update its phase number. Each thread maintains a local vari-
able denoted localVer that contains the phase that the thread thinks
it is helping. The thread uses this variable whenever it adds or re-
moves objects to or from the pool.

A phase starts by moving the content of the retirePool to the
processingPool (which also empties the retirePool), and increasing
the version of both pools. This operation should be executed in an
atomic (or at least linearizable) manner, to prevent a race condition
where an object resides in both the retirePool and the processing-
Pool. We use a standard trick of lock-free algorithms to accomplish
this without locking (in a lock-free manner). The versions (localVer
and the versions of the pools) are kept even (i.e., they represent
the phase number multiplied by 2) at all times except for the short
times in which we want to move the items from the retirePool to the
processingPool. Swapping the pools starts by incrementing the re-
tirePool version by 1. At this point, any thread attempting to insert
an object to the retirePool will fail and upon discovering the reason
for the failure, it will help swapping the pools before attempting to
modify the retirePool again. Then the thread attempting to recycle
copies the content of the retirePool into the processingPool while
incrementing its version by 2. This can be done atomically by a
single modification of the head and version. Finally, the retirePool
version is incremented by 1 (to an even number), and the pool con-
tent is emptied. Again, these two operations can also be executed
atomically.

When the data structure calls the retire routine, the code in Al-
gorithm 4 is executed. It attempts to add the retired object to the
retirePool (and it typically succeeds). If the attempt to add fails due
to unequal versions (VER-MISMATCH), the thread proceeds to the
next phase by calling Recycling (Algorithm 6), and then retries the
operation.

ALGORITHM 4: Reclaim(obj)
1: repeat
2: res=MM.retirePool.add(obj,localVer)
3: if res==VER-MISMATCH then
4: Call Recycling (Algorithm 6)
5: end if
6: until res!=VER-MISMATCH

The allocation procedure appears in Algorithm 5. It attempts to
pop an object from the readyPool. If unsuccessful, the thread calls
Recycling (Algorithm 6), which attempts to recycle objects. Then
it restarts the operation.

ALGORITHM 5: Allocate
1: repeat
2: obj = MM.readyPool.pop()
3: if obj==EMPTY then
4: Call Recycling (Algorithm 6)
5: end if
6: until obj!=EMPTY
7: memset(obj, 0); //Zero obj
8: return obj

The recycling procedure of the optimistic access scheme is pre-
sented in Algorithm 6. It starts by moving the content of the retire-
Pool into the processingPool in a linearizable lock-free manner as
described above, and it then increments the local phase counter. In
Line 10, the thread checks if the (new) retirePool version matches
the thread version. If not, the current phase was completed by other

threads and the thread returns immediately. Note that the thread is
unable to access the retirePool or the processingPool until it calls
the recycling procedure again. The thread then sets the warning
bits of all threads at Line 12. This tells the threads that objects for
which the retire procedure was invoked before the current phase
are candidates for recycling, and accessing them may return stale
values. Finally, the thread collects the hazard pointer records of all
threads. Objects that are pointed to by an hazard pointer are poten-
tially modified, and should not be recycled in the current phase.

ALGORITHM 6: Recycling
1: //Start a new phase
2: localRetire=MM.retirePool
3: localProcessingPool=MM.processingPool
4: if localRetire.ver==localVer or

localRetire.ver==localVer+1 then
5: MM.retirePool.CAS(<localRetire, localVer>,

<localRetire, localVer+1>)
6: MM.processingPool.CAS(<localProcessingPool,

localVer>, <localRetire, localVer+2>)
7: MM.retirePool.CAS(<localRetire, localVer+1>,

<Empty, localVer+2>)
8: end if
9: localVer=localVer+2

10: if MM.retirePool.ver > localVer then return
11: //Phase already finished
12: for each thread T do
13: Set T.warning = true
14: end for
15: memoryFence (ensure warning bits are visible)
16: for each HP record R do
17: Save R in a LocalHParray.
18: end for
19: //Processing the objects
20: while res = MM.processingPool.pop(localVer) is not empty

do
21: if res!=VER-MISMATCH then
22: if res does not exist in LocalHParray then
23: MM.readyPool.add(n)
24: else
25: res=MM.retirePool.add(res, localVer)
26: end if
27: end if
28: if res==VER-MISMATCH then return
29: //Phase already finished
30: end while

Next, the processingPool is processed. For each candidate object
in the processingPool, if it is not referenced by a hazard pointer,
then it is eligible for recycling and therefore it is moved to the
readyPool. Otherwise, the object cannot be recycled and it is re-
turned to the retirePool, where it will be processed again in the
next phase. Accesses to the processingPool and to the retirePool
are successful only if the phase number is correct.

In order to determine if a given object is protected by a hazard
pointer it is advisable to sort the hazard pointers to make the search
faster or to insert the hazard pointers into a hash table (which is
what we did).

5. METHODOLOGY AND RESULTS
To evaluate the performance of the optimistic access reclamation

scheme with lock-free data structures, we have implemented it with

three widely used data structures: Harris-Maged linked list and
hash table [16], and Herlihy and Shavit’s skip list [13]. The opti-
mistic access memory management scheme (and additional schemes
as well) were applied to the baseline algorithm in a normalized
form, which performs no memory recycling. The baseline algo-
rithm, denoted NoRecl, serves as a base for performance compari-
son. The proposed optimistic access method is denoted OA in the
measurements.

To obtain an allocator that does not unmap pages that were pre-
viously allocated (as specified in Assumption 3.1), we use object
pooling for allocation. The pool is implemented using a lock-free
stack, where each item in the stack is an array of 126 objects. To al-
locate, a thread obtains an array from the stack (using the lock-free
stack pop operation) and then it can allocates 126 times locally with
no synchronization. To fairly compare the memory management
techniques and not just the underlying allocator, we converted all
implementations to use the same object pool allocation for all allo-
cations of objects of the data structure (except for the EBP method,
discussed below, which uses its own allocator). As a sanity check,
we verified that the object pooling method performed similarly (or
better) than malloc on all measured configurations.

Additional Memory Management Schemes compared. We
discuss related memory management techniques for lock-free data
structures that are available in the literature in Section 6. Let us
now specify which methods were compared per data structure.

For Harris-Maged linked list [16], a comprehensive comparison
of memory management techniques was done by [3]. We used their
baseline implementation (NoRecl), their hazard pointers implemen-
tation (HP), and their anchors implementation3. We also compare
the Epoch Base Reclamation (EBR), proposed by Harris [9]; we
took an implementation of this method by Fraser [8], which uses
its integrated allocator. Namely, We did not replace the allocator.
The latter method is not lock-free, but is sometimes used in practice
to implement lock-free algorithms (to reduce the overhead associ-
ated with lock-free reclamation methods). Its disadvantage is that it
does not deal well with threads failures, which is a major concerns
for the lock-free methods. Finally, we implemented the optimistic
access technique proposed in this paper. All implementations were
coded in C.

For the hash table, each bucket was implemented as a linked list
of items and the above linked-list implementations were used to
support each of the buckets. For the hash table size, we used a
load factor of 0.75. While both the linked list test and the hash ta-
ble test use Harris-Maged linked list, the list length differed greatly
for the two tests. In the linked list test all items reside on a single
(relatively long) linked list, while in the hash table test the average
length of a linked list is below one item. A hash table is proba-
bly a better example of a widely used data structure. We did not
implement the anchors version of a hash table because the anchors
improve accesses to paths of pointer dereferencing, while the lists
in the hash table implementation are mostly of size 1, i.e, contain
only a single entry.

For Herlihy and Shavit’s skip list [13], we ported the Java imple-
mentation of [13] into C, and then converted it into a normalized
form. We implemented the hazard pointers scheme for the skip list;
the implementation uses 2 ·MAXLEN +3 hazard pointers. Finally,
we implemented the optimistic access technique. The CAS genera-
tor method of the delete operation generates at most MAXLEN +1
CASes to mark the next fields of the deleted node. This implies that
3 ·MAXLEN +6 hazard pointers are needed by the OA implemen-

3Loosely speaking, the anchors implementation installs a hazard
pointer once every every K reads. We picked K = 1000 for best
performance results, as thread failures are rare.

tation. However, many of the protected objects are the same, and
so the actual number of hazard pointers required is MAXLEN +5:
all CASes executed by the CAS executor method share one single
modified object, and for each level the expected and new object
pointers are the same. An anchor version for the skip list was not
used because it is complex to design and no such design appears in
the literature.

Methodology. It is customary to evaluate data structures by run-
ning a stressful workload that runs the data structure operations
repeatedly on many threads. Similarly to Alistarh et al. [1], in all
our tests, 80% of the operations were read-only. Additional test
configurations are reported in the full version of this paper [4]. The
hash table and the skip list were initialized to 10,000 nodes before
the measurement began. The linked list was initialized to 5,000
nodes (thus denoted LinkedList5K). We also measure a short linked
list which is initialized to 128 nodes (thus denoted LinkedList128),
which creates reasonable high contention. Each micro-benchmark
was executed with a varied number of threads being power-of-2
numbers between from 1 and 64 to check the behavior in differ-
ent parallel settings. Each execution was measured for 1 seconds,
which captures the steady-state behavior. We ensure that a 10-
seconds test behave similarly to a 1-second test.

The code was compiled using the GCC compiler version 4.8.2
with the -O3 optimization flag. We ran the experiments on two
platforms. The first platform featured 4 AMD Opteron(TM) 6272
2.1GHz processors, each with 16 cores (64 threads overall). The
second platform featured 2 Intel Xeon(R) CPU E5-2690 2.90GHz
processors, each with 8 cores with each core running 2 hyper-threads
(32 threads overall). Measurements for the Intel Xeon platform are
provided in the full version of this paper [4].

For each micro-benchmark we tested, we depict the ratio of the
throughput between the evaluated memory management mecha-
nism and the baseline algorithm (NoRecl), across different num-
bers of threads. A high number is better, meaning that the scheme
has higher throughput. E.g., a result of 90% means the throughput
was 0.9 of the baseline’s throughput. A figure depicting the actual
throughput is provided in the full version of this paper [4]. Each
test was repeated 20 times and the ratio of the average throughput
is reported with error bars that represent 95% confidence level. The
x-axis denotes the number of threads, and the y-axis denotes the av-
erage throughput for the evaluated method divided by the average
throughput for the NoRecl method.

Results. In Figure 1 we compare the running time of the mea-
sured data structures with the various memory management meth-
ods. In this test, reclamation is triggered infrequently, once every
50,000 allocations, to capture the base overhead of the reclamation
schemes. For the LinkedList5K micro-benchmark, operations have
long execution time that is mostly spent on traversals. The OA has a
very low overhead in most configurations and at max it reaches 4%.
The EBR also has very low overhead, and in some cases it even ran
slightly faster (recall that it uses a different allocator). However, for
64 threads its overhead was 12%. The HP overhead always exceeds
3x. The Anchors has an overhead of 3%− 52%, and the overhead
increases as the number of threads increases.

For the LinkedList128 micro-benchmark, operations are shorter,
and traversals do not take over the execution. Also, the baseline
reaches maximum throughput at 16 threads, and then throughput
decreases due to contention. For higher numbers of threads, mem-
ory reclamation methods behave better and even slightly improve
performance of over no-reclamation by reducing contention. (This
was previously reported by [6, 1].) The OA has an overhead of
−1%−19% and the overhead is lower for a high number of threads.
The EBR has an overhead of −2%− 26%, again lower for high

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Threads	

LinkedList	
 5K,	
 80%	
 searches	

OA	

HP	

EBR	

Anchors	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Threads	

LinkedList	
 128,	
 80%	
 searches	

OA	

HP	

EBR	

Anchors	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Threads	

Hash,	
 80%	
 searches	

OA	

HP	

EBR	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Threads	

SkipList,	
 80%	
 searches	

OA	

HP	

EBR	

Figure 1: Throughput ratios for the various memory management techniques and various data structures. The x-axis is the number
of participating threads. The y-axis is the ratio between the throughput of the presented scheme and the throughput of NoRecl.

number of threads. The overhead of the HP method is above 3x for
up to 16 threads. For 32−64 threads it behaves better with an over-
head of 25%− 46%. The Anchors responds poorly to the shorter
linked-list length, and incurs an overhead of 2x− 5x. For a large
number of threads (and higher contention), it became even slower
than the hazard pointers method.

For the hash micro-benchmark, operations are extremely short,
and modifications have a large impact on insert and delete opera-
tions. Contention has noticeable effect for 64 threads, letting exe-
cutions with memory reclamation demonstrate low overheads and
sometimes even slightly improved performance. The OA has an
overhead of −1%− 12%. EBR responds poorly to the short oper-
ation execution times, and it demonstrates an overhead of 2x− 3x
for 1−32 threads. For 64 threads it slightly improves with an over-
head of 30%. HP has an overhead of 16%−40% for 1−32 thread
and −2% for 64 threads.

For the skip list micro-benchmark, operations take approximately
the same time as LinkedList128, but face less contention. More-
over, operations are significantly more complex (executes more in-
structions). The OA has an overhead of 8%− 12%. the EBR has
overhead of 8%− 13% for 1− 32 threads, but slightly improved
performance for 64 threads. The HP has overhead of 2x−2.5x.

To summarize, the OA overhead is at most 19% in all measured
configurations, which is significantly faster than currently state-
of-the-art lock-free reclamation methods. The optimistic access
method has comparable performance to the EBR method (which
is not lock-free), and is significantly better than EBR for the hash
micro-benchmark.

Next, we study how the various choice of parameters affects per-
formance. The impact of choosing the size of the local pools is
depicted in Figure 2. Measurements for the LinkedList5K and the
Hash micro benchmarks are depicted, showing the behavior with
long and short operations time. All tests were executed with 32
threads. We started a new reclamation phase approximately ev-
ery 16,000 allocations. We later show that this choice is imma-
terial. It can be seen that the choice of local pool size has minor
effect on the LinkedList5K micro-benchmark. For the hash micro-
benchmark, all methods suffer a penalty for small local pools, but
the OA scheme suffers a penalty also for a medium sized local
pool. Using the perf Linux tool, we found that Algorithm 6 was
the source of this slow-down. The reason is that local pools are
popped from the processingPool and pushed into the readyPool in
a tight loop, so contention becomes noticeable for medium sizes.
Reasonably sized pools of 126 objects are sufficiently large to ob-
tain excellent performance for OA.

Next, we study how the frequency of reclamation phases affects
performance; the results are depicted in Figure 3. All tests were
executed with 32 threads. The OA triggers a new phase when no
object is available for allocation. We initialized the number of en-
tries available for allocation to be the data structure size plus an

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0.70	

1	
 6	
 14	
 30	
 62	
 126	
 254	

M
ill
io
n	

op

er
a+

on
s	
 p

er
	
 se

co
nd

	

Local	
 pool	
 size	

LinkedList	
 5K,	
 80%	
 searches	

NoRecl	

OA	

HP	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1	
 6	
 14	
 30	
 62	
 126	
 254	

M
ill
io
n	

op

er
a+

on
s	
 p

er
	
 se

co
nd

	

Local	
 pool	
 size	

Hash,	
 80%	
 searches	

NoRecl	

OA	

HP	

Figure 2: Throughput as a function of the size of the local pools.

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0.70	

8000	
 12000	
 16000	
 24000	
 32000	

M
ill
io
n	

op

er
a+

on
s	
 p

er
	
 se

co
nd

	

#Alloca+ons	
 per	
 reclama+on	
 phase	

LinkedList	
 5K,	
 80%	
 searches	

NoRecl	

OA	

HP	

EBR	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

8000	
 12000	
 16000	
 24000	
 32000	

M
ill
io
n	

op

er
a+

on
s	
 p

er
	
 se

co
nd

#Alloca+ons	
 per	
 reclama+on	
 phase	

Hash,	
 80%	
 searches	

NoRecl	

OA	

HP	

EBR	

Figure 3: Throughput as a function of collection phases fre-
quency.

additional δ , for δ equals 8000, 12000, 16000, 24000, or 32000.
Thus a new phase is triggered approximately every δ allocations.
We started with δ = 8000 because allocations are counted system-
wide. For example, δ = 32000 means that each thread allocated ap-
proximately 32000/32 = 1000 objects before a phase begin. Each
thread has two local pools: one for allocation and one for retired
objects. The local pool size is 126. Thus δ = 8000 ≈ 32 · 126 · 2
is the minimum size where threads do not starve. With δ < 7600
performance indeed drops drastically, due to thread starvation. In
Figure 3 it is possible to see that different frequencies have a low
impact on the performance of OA.

The other schemes do not use a global counting mechanisms.
Therefore, measuring same effect for other schemes might mean a
significant change in their triggering. Instead, we made an effort to
compare the reclamation schemes without changing the algorithmic
behavior. In the HP scheme we picked k = δ/32, where each thread
starts a reclamation phase locally after it retired k objects. In the
EBR scheme, a reclamation starts locally after q operations started.
We picked q = (δ/32) · 10 since deletions are about 10% of the
total operations. We also made sure that threads do not starve in
the other schemes for these settings of δ .

6. RELATED WORK
The basic and most popular lock-free reclamation schemes are

the hazard pointers and pass the buck mechanisms of [17] and

[12]. In these schemes every thread has a set of hazard pointers
or guards, which mark objects the thread is accessing. Before ac-
cessing a data structure node, the object’s address is saved in a
thread’s hazard pointer. A validation check is executed to verify
that the object was not reclaimed just before it became guarded
by a hazard pointer. If the validation fails, the thread must restart
its operation. A node can be reclaimed only if it is not guarded
by any thread’s hazard pointers. The main disadvantage of these
schemes is their cost. Each access (even a read) of a node requires
a write (to the hazard pointer), a memory fence (to make sure that
the hazard pointer value is visible to all other threads), and some
additional reads for computing the validation test. Fence elision
techniques [7] can be used to ameliorate this overhead, but such
methods foil lock-freedom.

Braginsky et al. [3] proposed the anchor scheme as an improve-
ment to the hazard pointer scheme. The anchor scheme allows a
hazard pointer to be registered only once per each k reads of the
data structure. The anchor method significantly reduces the over-
head, but not to a negligible level (see measurements in Section
5). Moreover, the complexity of designing an anchor reclamation
scheme for a given data structure is high, and the authors only pro-
vided an example implementation for the linked list.

Alistarh et al. [1] have recently proposed the StackTrack method,
which utilizes hardware transactional memory to solve the memory
reclamation problem. This method breaks each operation to a se-
ries to transactions, such that a successfully committed transaction
cannot be interfered with a memory reclamation.

Another method for manual object reclamation that supports lock-
freedom is reference counting. Each object is associated with a
count of threads that access it and a node can be reclaimed if its
reference count is dropped to 0. Correctness requires either a type
persistence assumption [25, 23] or the use of the double compare-
and-swap (DCAS) primitive [5] which is not always available. The
performance overhead is high as these methods require (at least)
two atomic operations per object read [10].

If lock-freedom is not required, then in most cases the epoch-
based reclamation method is a high performant solution [9, 16].
Before an operation starts, the executing thread reports the times-
tamp it reads, and upon operation completion it clears the published
timestamp. An object A can be reclaimed when every thread that
started an operation before A was retired completes its operation.

7. CONCLUSIONS
This paper presents the optimistic access lock-free memory man-

agement mechanism. Unlike previous memory managers, this al-
gorithm allows threads (infrequent) access to reclaimed objects.
This optimistic mechanism obtains a drastic reduction in the recla-
mation overheads compared to other schemes available in the liter-
ature. It is also simpler to implement. In order to preserve correct-
ness in spite of potentially reading stale values, the algorithm im-
plements a low-overhead cooperation mechanism, where a thread
that reclaims objects warns other threads that a reclamation has
taken place, and accessing threads check for this warning at ap-
propriate locations. As far as we know this is the first memory
management scheme that allows accessing reclaimed objects in or-
der to obtain (considerable) performance improvement.

8. REFERENCES
[1] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and

N. Shavit. Stacktrack: An automated transactional approach
to concurrent memory reclamation. In EuroSys. ACM, 2014.

[2] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron,
C. Gracie, B. McCloskey, A. Micic, and R. Sciampacone.

Tax-and-spend: Democratic scheduling for real-time garbage
collection. In EMSOFT, pages 245–254, 2008.

[3] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor:
lightweight memory management for non-blocking data
structures. In SPAA, pages 33–42. ACM, 2013.

[4] N. Cohen and E. Petrank. Efficient memory management for
lock-free data structures with optimistic access.
http://www.cs.technion.ac.il/~erez/papers.html.

[5] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele Jr.
Lock-free reference counting. DISC, pages 255–271, 2002.

[6] D. Dice, M. Herlihy, Y. Lev, and M. Moir. Lightweight
contention management for efficient compare-and-swap
operations. In EuroPar. ACM, 2013.

[7] D. Dice, H. Huang, and M. Yang. Techniques for accessing a
shared resource using an improved synchronization
mechanism, 2010. Patent US 7644409 B2.

[8] K. Fraser. http://www.cl.cam.ac.uk/research/srg/netos/lock-
free/src/temp/lockfree-lib/.

[9] T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In DISC, pages 300–314. Springer, 2001.

[10] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole.
Performance of memory reclamation for lockless
synchronization. JPDC, pages 1270–1285, 2007.

[11] M. Herlihy. Wait-free synchronization. TOPLAS, pages
124–149, 1991.

[12] M. Herlihy, V. Luchangco, P. Martin, and M. Moir.
Nonblocking memory management support for
dynamic-sized data structures. TOCS, 23(2):146–196, 2005.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming, Revised Reprint. Elsevier, 2012.

[14] M. P. Herlihy and J. E. B. Moss. Lock-free garbage
collection for multiprocessors. TPDS, pages 304–311, 1992.

[15] R. L. Hudson and J. E. B. Moss. Sapphire: Copying GC
without stopping the world. In Joint ACM-ISCOPE
Conference on Java Grande, pages 48–57, 2001.

[16] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In SPAA, pages 73–82. ACM,
2002.

[17] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. TPDS, 15(6):491–504, 2004.

[18] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory
model: x86-tso. In Theorem Proving in Higher Order Logics,
pages 391–407. Springer, 2009.

[19] E. Petrank. Can parallel data structures rely on automatic
memory managers? In MSPC, pages 1–1. ACM, 2012.

[20] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgard.
Stopless: A real-time garbage collector for multiprocessors.
In ISMM, pages 159–172, 2007.

[21] F. Pizlo, E. Petrank, and B. Steensgaard. A study of
concurrent real-time garbage collectors. In PLDI, pages
33–44, 2008.

[22] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and
J. Vitek. Schism: Fragmentation-tolerant real-time garbage
collection. In PLDI, pages 146–159, 2010.

[23] H. Sundell. Wait-free reference counting and memory
management. In IPDPS, pages 24b–24b. IEEE, 2005.

[24] S. Timnat and E. Petrank. A practical wait-free simulation
for lock-free data structures. In PPoPP, pages 357–368.
ACM, 2014.

[25] J. D. Valois. Lock-free linked lists using compare-and-swap.
In PODC, pages 214–222. ACM, 1995.

