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Abstract
Concurrent data structures are widely used in modern multi-

core architectures, providing atomicity (linearizability) for

each concurrent operation. However, it is often desirable to

execute several operations on multiple data structures atom-

ically. We present a design of a transactional framework

supporting linearizable transactions of multiple operations

on multiple data structures in a lock-free manner. Our design

uses a helping mechanism to obtain lock-freedom, and an

advanced lock-free contention management mechanism to

mitigate the effects of aborting transactions. When cyclic

helping conflicts are detected, the contention manager re-

orders the conflicting transactions execution allowing all

transactions to complete with minimal delay. To exemplify

this framework we implement a transactional set using a

skip-list, a transactional queue, and a transactional register.

We present an evaluation of the system showing that we

outperform general software transactional memory, and are

competitive with lock-based transactional data structures.
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1 Introduction
Concurrent computing architectures have become widespr-

ead, raising the need for efficient and scalable concurrent

algorithms and data structures. Concurrent data structures

are designed to utilize all available cores, achieving good

performance as well as consistent behavior in the form of

linearizability of operations [12]. Many implementations of

concurrent data structures were proposed in recent years

(e.g., [2, 8, 13]), providing an abstraction of a sequential data

structure that can be accessed concurrently. However, it

is often desirable to have several operations, operating on

multiple data structures appear to take effect simultaneously
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and atomically. Linearizability of a single operation does

not always suffice [1, 6, 10]. For example, moving an item

from one queue to another while maintaining the invariant

that other threads always see it in exactly one queue cannot

be supported by a regular concurrent queue without costly

synchronization.

To ensure the atomicity of such operations one can use a

global lock to synchronize all accesses to the data structures,

but this approach limits concurrency significantly, hindering

scalability. Furthermore, the use of locks is susceptible to

deadlocks, live locks, priority inversions, etc. A different ap-

proach for obtaining atomicity is Transactional Memory [11].
Transactional memories allow the programmer to specify a

sequence of instructions that take effect atomically or not

at all. Transactional Memories can be implemented using

specialized hardware (HTM) or using software (STM)[10, 14].

In these implementations all reads and writes of a transac-

tion logically appear to occur at a single instant of time (or

not at all), and intermediate states are not visible to other

threads. This approach is programmer-friendly, simplifying

programming in a concurrent envirnoment. However, HTMs

are limited in transaction size and STMs carry a performance

cost [3]. In both implementations, conflicting accesses to

data cause transactions to abort, and re-execute. The conflict

detection mechanism and the need to re-execute transac-

tions create an overhead that reduces performance and foils

progress guarantees.

Recently, transactional data structure libraries [1, 9] were

proposed to deal with some of the above disadvantages.

Transactional data structures limit transactions to only exe-

cute operations on data structures, but they provide transac-

tion semantics for concurrent data structures, and support

atomic transactions containing sequences of data structure

operations. Transactional data structures use mechanisms

that build on the specific implementations of these data struc-

tures to reduce both the overhead and the abort rate.

In this work, we propose a framework for linearizable

execution of transactions on data structures called loft that

supports full lock-freedom. In order to be used with loft,

a lock-free data structure has to be extended to support an

adequate API that we define in this work. The proposed

loft mechanism executes loft transactions, which consist

of loft data structures operations. Transactions are always

executed atomically. The loft engine extends and adapts
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a standard helping mechanism to help concurrently exe-

cuting transactions to complete. In addition, the loft en-

gine employs advanced contentionmanagement for handling

cyclic conflicts. Cyclic conflicts are detected dynamically and

transactions are executed in an adequate order that avoids

the conflict. Next, we present an optimization for a common

special case, where transactions contain a predetermined

control flow, and they contain operations whose operands

are known upfront. We formalize this special case and use

reordering to fully avoid transaction aborts. Measurements

show that this optimization (when applicable) benefits per-

formance significantly, due to avoided aborts.

We exemplify loft for transactions on sets, queues, and

register objects. We implemented a transactional abstract

set, by extending a lock-free linked-list with the required

loft API. We then add a skip-list to allow fast indexing into

the list elements. The obtained transactional set is efficient

and allows a transaction with various operations on multi-

ple sets to be executed atomically. Next, we implemented a

transactional queue, and finally we added a transactional reg-

ister. We implemented and measured the loft sets against

software transactional memory and the transactional data

structures of [6]. Results show that the loftmechanism per-

forms better than STMs and transactional data structures (for

most scenarios). In contrast to lock-based transactional data

structures and lock-based STMs, loft provides a lock-free

progress guarantee and an advanced contention manage-

ment mechanism for cyclic helping conflicts.

2 Measurements
We compared the performance of our lock-free loft set to

the one described in TDSL [1].We also evaluated a transaction-

friendly skip list [4] running on top of a TL2 STM [5], imple-

mented in the Synchrobench micro-benchmark suite [7]. We

considered two different workloads: a read − oriented work-

load consisting of 90% contains operations, and a write −
oriented workload consisting of 90% add and remove operati-
ons.

Figure 1. Throughput graphs of transactions over sets

We experimented with transactions containing operations

executed on a collection of four sets. The graph in Figure

1 presents the average throughput with the workload dis-

tributions. Our algorithm outperforms the other algorithms

for both the read and write oriented workloads. While all

algorithms abort less, TDSL still aborts more frequently than

loft which requires more traversals over the list and incurs

smaller throughput.
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