Space Overhead Bounds for Dynamic Memory
Management with Partial Compaction

Anna Bendersky

Computer Science Department
Technion
Haifa 32000
Israel

annaben@cs.technion.ac.il

Abstract

Dynamic memory allocation is ubiquitous in today’s runtime envi-
ronments. Allocation and de-allocation of objects during program
execution may cause fragmentation and foil the program’s ability to
allocate objects. Robson has shown that a worst case scenario can
create a space overhead within a factor of log n of the space that is
actually required by the program, where n is the size of the largest
possible object. Compaction can eliminate fragmentation, but is too
costly to be run frequently. Many runtime systems employ partial
compaction, in which only a small fraction of the allocated objects
are moved. Partial compaction reduces some of the existing frag-
mentation at an acceptable cost. In this paper we study the effec-
tiveness of partial compaction and provide the first rigorous lower
and upper bounds on its effectiveness in reducing fragmentation at
a low cost.

Categories and Subject Descriptors D.1.5 [Object-oriented Pro-
gramming]: Memory Management; D.3.3 [Language Constructs
and Features]: Dynamic storage management; D.3.4 [Proces-
sors]: Memory management (garbage collection); D.4.2 [Storage
Management]: Garbage Collection

General Terms Languages, Performance, Algorithms, Theory.

Keywords Runtime systems, Memory management, Storage al-
location, Dynamic storage allocation, Compaction, Partial com-
paction.

1. Introduction

The study of the theoretical foundations of memory management
has not been very extensive. In particular, not much is known about
the theoretical potential and limitations of memory management
functionalities. Previous work that we are aware of includes a
study of fragmentation [16], a study of cache-conscious memory
placement [11], and a study of the space limitations of conservative
garbage collection and lazy reference counting [4, 5]. In this work
we attempt to extend these foundations and study the potential and
limitations of partial compaction.

Modern software employs dynamic memory allocation to sup-
port its memory needs. Allocation and de-allocation of memory
create fragmentation: holes between the allocated objects in the
memory may be too small to further satisty future allocation. Frag-
mentation creates a space overhead, since the memory consumed
may become larger than the memory required to satisfy the alloca-
tion requests when no fragmentation exists.

Robson [15, 16] studied the amount of space overhead that may
be caused by fragmentation when no objects are moved. He showed
that in the worst case, fragmentation causes quite a large space

Erez Petrank

Computer Science Department
Technion
Haifa 32000
Israel

erez@cs.technion.ac.il

overhead. In particular, he presented a program (or an allocation
and de-allocation sequence) that never keeps more than M words
allocated simultaneously, but any allocator that attempts to satisfy
this sequence would require a space of (almost) %M log n words.
The parameter n stands for the largest possible allocated size in the
system. Robson also provided a simple allocation strategy that can
handle any allocation sequence in (approximately) M log n words.

Frequent compaction eliminates fragmentation completely. If
one compacts the heap after each de-allocation, then no fragmenta-
tion appears at all and M words of space always suffice. However,
full compaction is costly since a substantial fraction of the objects
may be moved and all references need to be updated [1, 9, 10].
Therefore, modern systems tend to either use compaction infre-
quently, or employ partial compaction, moving some objects in
an attempt to reduce fragmentation and keep its cost acceptable
[2, 3,7, 12, 13]. Of course, the larger the space that is being com-
pacted, the less fragmented the heap becomes; on the other hand,
the overhead that is posed on the executing program increases. The
question that arises is what is the trade-off between the amount of
space the can be moved and the space overhead that may occur in
the heap? In this work we provide the first lower and upper bounds
for such a scenario.

Since the amount of moved space makes a difference, we need
to bound the amount of relocated space. We choose to study a
scenario in which a predetermined percentage of all allocated space
can be moved. One could generalize the question to allow a quota of
B(S) movement for an arbitrary function B of the allocated space
S. Other budgeting decisions are also possible; for example, one
could limit the relocation according to the amount of live space, or
the deleted space. All these make sense as well, but we felt that
budgeting by a fraction of the allocated space is interesting, as
the amount of allocation typically represents allocation “time” in
the memory management literature, most notably for generational
garbage collection.

In this work we present general results that bound the heap
size required for allocation in the presence of partial compaction.
Let the compaction budget at any point in the execution be 1/c
of the space allocated so far by the program. To provide an upper
bound, we present an allocation and compaction strategy. We show
that for programs that never keep more than M words allocated
simultaneously, it suffices to use a heap whose size is the minimum
between M - (¢ + 1) and M - log n, where n is the largest possible
object that can be allocated. When the compaction budget is high,
i.e., ¢ is small, then the heap size can be significantly smaller than
the heap size obtained when no compaction is used. The above is
formally asserted in Theorem 1 in Section 3.

2010/7/9

To show a lower bound on the space overhead, we present a pro-
gram that incurs a large space overhead for any allocator (whose
compaction budget is limited by % of the allocated objects). This
program never keeps more than M words allocated simultaneously,
and it makes any allocator use a heap whose size is at least the min-

imum of %M -cand 5 M - llog" words. When the compaction
ogc+1

budget is large (c is small), the minimum is obtained with %M -c.
When the compaction budget is tighter, the heap size is at least
M - kiggc'zl. Thus, these asymptotic bounds show that partial
compaction can reduce the heap size, but only to a limited extent,
which depends on the compaction quota. This result is stated as
Theorem 2 in Section 4.

The above results hold for any possible allocator. We continued
this investigation with a study of a specific widely used memory
allocator: the segregated free list allocator (used for example in
[2, 6, 8]). Fixing a specific allocator allows a more accurate analysis
and yields better bounds. We first examine this allocator when no
compaction is allowed and improve Robson’s bounds. It turns out
that the bounds depend on the number of free-lists used by the
allocation scheme. One extreme case is that the allocator maintains
a free-list for any possible object size between 1 and n. In this case
the required space becomes (almost) %M v/n words. This is much
higher than the %M log n words presented in Robson’s papers. The
other extreme case is that a small number of free lists is allowed,
specifically, one for each power of 2. In this case, we show a lower
bound of M logn words, which is two times stronger than the
lower bound for the general allocator. In practice, the number of
free lists kept is somewhere in between, and our analysis can be
applied to any specific choice of sizes to yield the corresponding
lower bound. These results are formalized in Theorems 3 and 4 in
Section 5.2.

Finally, we examine the effects of adding partial compaction
to the segregated free list allocator. We show that a heap size
of M - ¢ + k - n suffices in this case for any program, where
k is the number of different free lists. So when the compaction
budget is large, i.e., ¢ is small, partial compaction helps reducing
fragmentation. See Theorem 5 in Section 5.3. For the lower bound,
the number of free lists employed is important. We first show that
when using free lists for any object size, the space required is at
least the minimum between %M V/n and ﬁ - M - c. So the true
overhead is large if we don’t allow a substantial compaction budget.
If we only keep free lists for objects sizes that are powers of 2, then
the heap size required is at least the minimum between i -M -logn
and % - M - c. See Theorems 6 and 7 in Section 5.3.

This work initiates a study of the cost and effectiveness of par-
tial compaction. New techniques are developed and novel bounds
are shown. The results are asymptotic. They hold for any possible
object size limit n, any possible live space bound M, and any pos-
sible compaction budget ratio c. However, although they represent
the tightest known bounds, their applicability for specific realistic
parameters of modern systems is limited. We hope that these tech-
niques can be extended in future work to provide tighter bounds
and help us better understand the behavior of memory managers in
practice.

Organization. In Section 2 we survey previous results on frag-
mentation when no compaction is allowed, and formally define
the compaction budget model used in this paper. In Section 3 we
present and prove a simple upper bound on the effectiveness of par-
tial compaction. In Section 4 we state and prove the lower bound
on the effectiveness of partial compaction. We divide the proof into
two parts. First, we prove the lower bound for the restricted case of
aligned objects. This proof contains most of the ideas and is eas-
ier to follow. The full proof of the lower bound (with all the hairy
details) follows. In Section 5 we study the specific segregated free

list allocator and prove all the results stated above. We conclude in
Section 6.

2. Problem Description
2.1 Framework and previous work

Dynamic storage allocation that does not move objects can suffer
from fragmentation. J. M. Robson [15, 16] provided lower and
upper bounds on the space overhead for a memory management
system that allocates and deallocates, but cannot move objects.
The lower bound demonstrates the existence of a “bad” program
that makes any allocator use a lot of space overhead. The upper
bound provides an allocator, whose space overhead is limited, for
any program (including the bad program that demonstrates the
lower bound). Clearly, if the program allocates a lot and does not
de-allocate space, then a lot of space is required to satisfy the
request. It is thus interesting to ask how much space is required to
satisfy the allocation requests of a program that never keeps more
than M words alive simultaneously. If compaction is frequently
used, a space of M words suffices. The memory manager can
simply compact the heap after each de-allocation. However, when
no compaction is allowed, some allocation sequences demand a
large space overhead in order to satisfy the allocation requests.

An allocator should be able to handle any allocation (and de-
allocation) sequence, and for each allocator, we can ask what is the
smallest heap that can handle all allocation sequences that never
allow more than M words of memory simultaneously allocated.
The bounds that are going to be derived depend on the size of
the largest possible object in the system. We denote by n the size
of such an object and assume that no allocation in the sequence
requests more than n words for the allocated object.

Some allocators can move allocated objects in the memory.
This is not always the case, as moving objects requires updating
all pointers referencing them, and some runtime systems cannot
always distinguish pointers from integers that hold the same values.
Such systems do not move objects whose references cannot be
identified. Other runtime systems avoid compaction because of its
costs.

The interaction between the program and the memory allocator
is divided into stages. Each stage consists of three parts:

1. Deletion: The program removes objects from the heap
2. Compaction: The memory allocator moves objects in the heap.

3. Allocation: The program makes allocation requests and the
memory allocator returns the corresponding object addresses in
the heap.

For the Upper and Lower bounds the program and the memory
allocator can be viewed as opponents. The program objective is
to make the memory allocator use as much space as possible.
The memory allocator’s objective is to allocate space in a way
that will require as little space as possible. The upper and lower
bounds for the case when is no compaction occurs were studied by
Robson [16]. He showed a tight connection between the upper and
lower bounds. We define P (M, n) as the set of all programs that
never keep more than M words of space allocated simultaneously,
and never allocate an object larger than n words. The function
HS(A, P) is defined as the heap size necessary for allocator A
to answer the allocation requests of a program P, so that P €
P(M,n). The upper and lower bounds Robson showed demand
an overhead of x % log n of the actual allocated space M, i.e.:

e Upper bound: For all M,n > 0 such that n| M, there exists an
allocator A,, such that for all programs P € P(M, n), it holds
that:

HS(Ao,P) < M -logn+ M.

2010/7/9

® Lower bound: For all M,n > 0 such that n| M, there exists an
program P, € P(M,n), such that for all allocators A, it holds
that:

HS(A,PO)2M~%10gn+M—n+1.

In this work we investigate the effect of moving objects during the
run. We allow the allocator to move a fraction of the objects, i.e.
to perform partial compaction. We explore how partial compaction
affects these bounds.

2.2 The compaction budget

Our objective in this work is to explore upper and lower bounds
on the space required by allocators that apply partial compaction.
We now define partial compaction. If there were no limit on how
much space can be moved, the total heap size required for the
allocation would be M, the largest amount of live space throughout
the application run. One simple method of compaction that uses
only M words could be: allocate sequentially using a bump pointer
and compact all of the memory once the M boundary is reached.
The problem with this approach is that compacting the memory
incurs a high computation overhead and is unacceptable in real
systems. Practical systems consider trade-offs between the amount
of compaction executed and the space overhead. Therefore, we
introduce a bound on the amount of space that can be moved. This
space is denoted by B(.S), which is the partial compaction function.
Specifically, after the program allocates a space S, the compactor
may move B(S) = % - S space. c is a constant larger than 1. The
B(S) function is calculated incrementally: the quota is added to on
every allocation, and reduced with every compaction. For example:
B(S) = %S means that after every allocation of S, the compactor
can move 1—10 of the space allocated. In this example, if there were
allocations of 200 words (and maybe some deletions) without any
compactions, space of size of 1—10 - 200 = 20 could be moved.
If only 8 words are moved - a quota of 12 words remains. We
define an algorithm that works within the B(.S) limit as the B(.S)-
bounded partial compaction. In this document we always use the
compaction threshold function B(S) = % - S, for some constant
c>1.

2.3 The setting

To present our results we first specify what a program is, what an
allocator is, in what way they are limited, and how we measure their
interaction. We consider a program P that executes a sequence of
allocations and de-allocations. The program’s execution is adaptive
in the sense that it may choose its upcoming allocation according
to the locations in which the allocator chose to place its previous
allocation. However, to save further quantification over the inputs,
we assume that P already has some fixed embedded input, so
that the allocation sequence depends only on P and the allocation
decisions of the allocator (but not on any additional inputs of P).
We also consider an allocator A that receives the sequence of
allocations and de-allocations one by one (sequentially, or on-line)
from the program and must satisfy each allocation request as it
arrives.

Given a specific pair of a program P and an allocator A, their
joint execution is well defined and we measure the size of the heap
that the allocator A uses to satisfy the requests of P. We denote this
heap size by HS(A, P). Of course, for the same program P, there
could be a non-space-efficient allocator A; that requires a large
heap size HS(A1, P) and there could be a better allocator A, for
which HS (A2, P) is much smaller. For a lower bound, we look for
a program P for which HS(A, P) is high for all allocators. For an
upper bound, we look for an allocator A that can serve all programs
with alow HS(A, P).

Finally, we define P (M, n) as the set of all programs that never
keep more than M words of space allocated simultaneously, and
never allocate an object larger than n words.

3. The Upper Bound

We start with the upper bound, which is simpler to show. Formally,
we state and prove the following theorem.

Theorem 1. (Upper bound.) For any real number ¢ > 1, there
exists a memory manager A. that satisfies the compaction bound
%S’, and for all M,n > 0, such that n|M and all programs
P e P(M,n):

HS(Ac, P) <min(M(c+1),M -logn + M).

Proof. For any real number ¢ > 1, we present a specific memory
manager A, that never exceeds the compaction quota % -S and that
uses a heap size of at most M - (¢ 4+ 1) words, i.e., HS(A., P) <
M - (¢ + 1) for any program P € P(M,n). The memory manager
A, allocates objects sequentially by bumping a pointer. When the
bump pointer reaches the M (c + 1) boundary, the live space is
fully compacted to the beginning of the heap. A pseudo-code for
the memory allocator A, is presented in Algorithm 1.

Algorithm 1 Memory Manager A,

Initially: The heap is empty, free = 0;

While (TRUE)
1: Receive an allocation request for an object of size ¢;
2: if free + ¢ > M(c+ 1) then

3 Compact all allocated objects to the beginning;

4: free — first word after the allocated space;

5

6

7

: end if
: Allocate the object at address free;
. free — free+ ¢,

Clearly, Algorithm 1 never uses more than M - (¢ + 1) words.
However, we need to show that there is enough compaction budget
to execute Step 3, which compacts all live objects to the beginning
of the heap. The required compaction quota for this step is at most
M — ¢£. Consider the time interval between any two compactions,
denoted C and Cj. Since P € P(M,n), there are at most M
allocated words at any point in time, and therefore, after the com-
paction C there are at most M words allocated in the beginning
of the heap, and free is smaller than M. After executing C; and
before starting to execute C2, the allocator receives requests for al-
locations and deletions, until it fails to allocate ¢ words — when the
free pointer arrives at a point beyond M (¢ + 1) — £ in the heap.
The total size of the allocations executed between C'; and C'> must
be at least M(c + 1) — M — ¢, since this is (at least) the num-
ber of words that the free pointer has advanced between the two
compactions. Therefore, the compaction quota at Step 3 is at least
L. (M(c+1) = M —£) = M —*. According to our assumptions,
¢ > 1 (and ¢ > 0), and therefore, M — % > M — {. Thus, enough
budget is available in the quota so that all of the M — ¢ allocated
words can be moved to the beginning of the heap.

This memory manager is effective when ¢ + 1 < logn. Oth-
erwise, c is large, i.e. the compaction budget is small, and then it
is possible to obtain a good heap size without moving objects at
all. We can use the allocator presented in Robson’s paper, not use
compaction at all, and consume at most M logn + M words for
any possible program P € P(M,n). This concludes the proof of
Theorem 1. O

4. The Lower Bound

In this section we provide a specific program that can force any
memory allocator to incur a space overhead. To simplify the pre-

2010/7/9

sentation, we start with a program that assumes that the allocators
respect some alignment restriction. We later extend this proof to
eliminate the alignment restriction. Using a similar program, we
provide a proof for Theorem 2.

4.1 Bounding the space consumption with aligned objects

We start by defining what aligned object allocation means. Aligned
object allocation places a limitation on the memory allocator, which
is not allowed to allocate objects in an arbitrary location, but only
in an aligned manner. This constraint simplifies the proofs, and has
less corner cases.

For the lower bound we only consider objects whose size is a
power of two (because the program we build only allocates such
sizes). Thus, it is fine to define alignment only with respect to
objects of size 2° for some integer 7. Without loss of generality, we
assume that the smallest object is of size 1. Otherwise, one could
think of the object sizes as multiples of the smallest object size.

Definition 4.1. We say that an object of size 2% is aligned if it is
located at address k - 2" for some integer k.

Definition 4.2. We say that a memory allocator uses aligned allo-
cation if all the objects it allocates are aligned.

We present a specific program, called Aligned-Waster and de-
noted Paw, and prove that any memory allocator that satisfies the
compaction bound and uses aligned allocation, must incur a space
overhead when supporting the allocation requests of Paw . The
program P4y receives the compaction bound c, the largest object
size n and the bound on the live space M as its input, and for any
¢, M, n itholds that Paw (¢, M, n) € P(M,n). We will show that
the program Paw satisfies the following lemma.

Lemma 4.3. For all ¢ > 1, and all M > n > 4, there exists
a program Paw € P(M,n) such that for all allocators A that
use aligned allocation, and satisfy the compaction bound %(S)
the following holds:

1 . logn 6 .
S(A, Paw) > EM~mm(c, loic—ﬁ”> ifc <4logn
' T iMoo een gy ifc > 4logn
3 loglogn

Note that this lemma is very much like Theorem 2, except that it
is stated for aligned allocation and (therefore) the leading constants
are better: a 1/6 instead of a 1/10.

We start with some intuition for constructing Paw and then
provide its algorithm. P4y works in phases. In each phase, it gen-
erates a series of allocation requests and lets the allocator allocate
the requests. Once it sees the locations of the allocated objects, it
then decides which objects to delete.

The Aligned-Waster algorithm follows. The idea is that at each
phase ¢, for¢ = 0,1,2,...,logn Aligned-Waster requests alloca-
tion of objects of size 2°. It allocates as many of them as possible
while keeping the allocated space below M. It then examines where
the allocator places the objects and decides on object deletions. The
deletion is intended to prevent space reuse in the next phase, Phase
i+ 1. In the aligned setting, an allocated object of size 2°7! must
be placed on a full aligned interval of size 2'T'. Aligned-Waster
examines each such interval, and if it is not empty, Aligned-Waster
makes sure that some object is kept there to avoid re-allocation of
a new object on this interval in the next phase.

However, not leaving an aligned interval of length empty
is not enough to prevent its reuse in the presence of partial com-
paction. The allocator may choose to move the objects on such an
interval and clear it for re-allocation. Therefore, Aligned-Waster ap-
plies a stricter policy when deciding which objects to delete. In par-
ticular, it attempts to keep enough allocated space in each interval
so that it will not be worthwhile for the allocator to waste its com-

2i+1

paction budget and move all these objects out of the interval. Given
the compaction bound ratio %, the algorithm Paw sets a density
é > %, and when deleting objects, P4y attempts to keep a den-

sity of é in each of the aligned 2 '-sized interval. The algorithm
follows.

Algorithm 2 Aligned-Waster Program
Input: M, n, and c.
1: Compute d as a function of ¢ (to be determined).
2: for i = 0tologn do
3: { Deletion step: }
4: Divide the memory into consecutive areas of size 2
5 Remove as many objects as possible from each area,
6: subject to leaving at least 2 /d space occupied.
7: { Allocation step: }
8.
9
0:

Request allocation of as many objects as possible of
size 2° (not exceeding the overall allocated size M).

1 . end for

By definition Paw € P(M,n) since it never allocates an
object larger than n and its overall allocation space never exceeds
M words.

We note that (intuitively) it does not make sense to set d > c.
If the allocated space that remains on an interval is of size 2°/c (or
less), then it makes sense for the allocator to move these allocated
objects away and make space for reuse. This costs the compaction
budget 2*/c, but this budget is completely refilled when the 2°-
sized object is later allocated on the cleared interval. So if we
want to make the allocator pay for a reuse, we must set d < ¢
or in other words, let Paw ’s deletion step leave more allocated
space on each interval. We leave the setting of the density 1/d as
a parameter, but one possible good setting sets d to be ¢/2. In this
case, the deletion step of Paw leaves enough allocated space on
each interval so that not much reuse is possible within the given
allocation budget. If reuse cannot be applied, then the allocator has
to get more fresh space and increase the heap in order to satisfy the
allocation requests of Paw .

The rest of this section provides a rigorous analysis of Paw
showing that it outputs allocation and de-allocation requests that
make any allocation strategy incur a space overhead as asserted
in Lemma 4.3. Section 4.2 extends this algorithm and analysis for
the non-aligned case, extending the analysis to obtain the proof of
Theorem 2.

Before Deletion:

I

1

After Deletion:

=

Figure 1. An example of deleting objects in Aligned-Waster, with
parameter 1/d = 1/4, and phase i = 3.

To bound the space required to satisfy the allocation requests,
we bound, on one hand, the amount of space allocated by Paw in
the execution, and on the other hand, the amount of space that the
allocator manages to reuse during the execution. Let S(A, Paw)
denote the total space allocated during an execution of the program
Paw with an allocator A. Also, let R(A, Paw) denote the total
reused space. A space is considered reused if some object is al-
located on it, the object is then deleted or relocated by the com-
paction, and later the same space is used for allocation of another

2010/7/9

object. The same space can be counted as reused more than once if
more than two objects are placed on it during the execution. Clearly,
during the execution of P4y and A, the size of the heap required
to allocate all objects is at least the total size of the allocated ob-
jects, minus the size of reuse that the allocator manages to make.
Formally, we can state this claim as follows.

Claim 4.4. For any program P and any allocator A, the space
HS(A, P) required by A to satisfy the allocation requests of P
during their joint execution satisfies:

HS(A, P) > S(A, P) — R(A, P).

We stress that Claim 4.4 holds not only for the specific program
Paw, or in the aligned setting. It holds for any program and any
allocator.

To prove Lemma 4.3 we use Claim 4.4 and show that a lot of
space is allocated and not much space is reused. In other words, we
bound S(A, Paw) from below, and R(A, Paw) from above, for
any possible allocator A.

We start with an upper bound on the space reuse R(A, Paw).
The intuition is that reuse can typically be done only after relo-
cating the objects out of this area. For Aligned-Waster, there are
not too many objects that can be moved out, as discussed earlier.
Nonetheless, the actual proof is more complicated than this simple
intuition, because as phases advance, different areas converge into
a single one. An area of Phase ¢ consists of eight areas from Phase
© — 3. Some of these eight areas may be empty, while others may
be dense, still creating a sparse area of size 2°.

Let Q(A, Paw) denote the total size of compacted space (i.e.,
relocated objects) throughout the run of the program Paw against
a memory manager A that allocates in an aligned manner and sat-
isfies the compaction threshold %S. Let d be the deletion threshold
of Aligned-Waster. We show that the reuse R(A, Paw) is bounded
according to the following claim.

Claim 4.5. For any allocator A that allocates objects in an aligned
manner and satisfies the compaction bound %S, and a deletion
factor d > 1 employed by Paw, the following bound holds.

R(A7 PAW) < Q(Aa PAW) -d.

In the proof of this claim we use several definitions of ar-
eas, reuses and compaction quota that hold in the run of Program
Aligned-Waster:

Definition 4.6. If o is an object that is placed on the heap during
the run of Program Aligned-Waster, then |o| is it’s size. 1, is the
space size reused by the allocation of the object o. r, is defined as
the total size of objects parts that existed in the space that is later
occupied by object o. These objects were removed or compacted,
but there was no object placed on top of them between their re-
moval/compaction and until the allocation of Object o. Namely, the
relocation was used for the reuse of o, and not for any previous
reuse. qo is the total size of objects that were located in the space
occupied later by object o. These objects were compacted, but there
was no object placed on top of them until the allocation of o.

Figure 2. An example the definitions o, 7, and g, in the execution
of Aligned-Waster, with parameter 1/d = 1/4, and phase i = 5.

An example of these definitions is in Figure 2. In this figure,
a fraction of the heap of size 32 words is shown. This fraction

of the heap is an empty aligned area, upon which an object o is
placed in Phase 5 in the run of program Aligned-Waster. The dark
gray squares represent words in the heap, that the last operation
on this word was a compaction of an object. The light gray squares
represent words in the heap, that the last operation on this word was
a deletion of an object. The white squares are words on the heap
that were empty since the beginning of the run of the program. In
this example, ¢, equals to the total size of the objects that were last
compacted - i.e. to the total size of the dark words, 13 words. 7,
equals to the total size of the deleted + compacted objects in this
area, i.e. 27 words.

Proof of Claim 4.5. Fix an allocator A and consider a specific ex-
ecution of Paw with A. We break the amount of compaction
on Q(A, Paw) and the amount of reuse R(A, Paw) into small
increments. In particular, consider the space reuse in the execu-
tion. A reuse occurs when a new object is placed upon an empty
aligned area that previously contained allocated objects. Consider
each such allocation of an object o; on an aligned area a of size
2%, Just before the placement of o, we check the size of deletions
and compactions that occurred in order to make space for the al-
location. We show in Claim 4.7 below that r, y < qo g d for any
allocated object o;. Now, summing over all allocations during in
the execution of Aligned-Waster, we get:

R(A,Paw) = Y 1o, <Y o;-d < Q(A, Paw)-d (4.1)
J J

The second inequality follows from Claim 4.7. The last inequality
follows since any relocation that is later used for space reuse is part
of the entire set of relocations executed by A during the execution.
It remains to show that Claim 4.7 holds. O

Claim 4.7. Consider any phase i during the execution of Aligned-
Waster. Observe any object o just before it is being allocated in the
heap during phase i. It holds:

To S qo N d
Proof. We look at the area a where the object o is placed, just
before the allocation of o in phase ¢. The space of a is empty at
that time. This space can be sub-divided into aligned sub-areas of
size 2 s.t. 0 < k < i, using the Algorithm 3.

Algorithm 3 Division of an area a into sub-areas

Input: An area a of size 2°.

1: List L < a new empty list

2: Stack S < a new empty stack

3: S.Push(a,t)

4: while S is not empty do

5. (z,k) «— S.Pop()

6: if £ = 1 then

7: L.Push(z, k)

8: else

9: Look at the removal step in phase k, during the run of Aligned-
Waster. Check if there were any removals in area = during that
step.

10: if there was at least one removal then

11: L.Push(z, k)

12: else

13: Divide z into its two equal sub areas x1, x2.

14: S.Push(xz1,k — 1)

15: S.Push(z2,k — 1)

16: end if

17: end if

18: end while

19: return L.

2010/7/9

The result of Algorithm 3 is a list L that contains sub-areas
of the area a. The sub-areas are distinct, their size is 2% for k €
N, 0 < k < i. The union of the sub-areas is exactly the area a. For
every sub area that is the output of algorithm 3, one of the following
holds:

1. The sub was either was always empty, or was occupied by an
object that was compacted away. The sub-area size is 1.

2. The sub area size is 2° s.t. k > 1, and last time objects were
deleted from this sub-area happened during the deletion step of
phase k in Algorithm Aligned-Waster.

The statement above follows directly from the behavior of Algo-
rithm 3. An area of size 2" is sub-divided only if it had no deletions
in phase k. Therefore, when an area reaches size 1, it never had
any deletions, and statement (1.) is true. Since Algorithm 3 divides
each aligned area of size 2" to its two equal halves, the resulting
sub-areas are the exact same areas that algorithm Aligned-Waster
considered in phase £ — 1. The algorithm actually goes back from
phase ¢ back to phase 1 looking for the last deletion for each sub-
area. For all sub-areas sa(k) resulting from algorithm 3, we exam-
ine cases (1.) and (2.).

In case (1.), it holds that there were no removals at all from the
sub-area sa(k). The reuse, if larger than 0, occurs since an object
was allocated and later compacted (possibly more than once). In
this case, the reuse in phase i of the sub-area sa(k) equals to the
size of the object that was last compacted away from this sub-area:
Tsa(k) = (sa(k)- Since d > 1, it holds that:

Tsa(k) < Gsa(k) * d.

In case (2.), for each sub-area sa(k), phase k captures the time
of the last deletion from the sub area sa(k). If the sub-area sa(k)
was not reused between phases k and ¢ (the first allocation on sub-
area sa(k) after phase k, occurred in phase ¢), then we compute
the reuse based on the following. According to the definition of the
adversarial program Aligned-Waster behavior, for each such area,
after each removal, at least 1/d of the area remains occupied, we
denote these objects by q. These objects must be later compacted
away from this sub-area, so that the space could be reused. There-
fore, if we multiply the size of this compaction by d, we get the size
of the sub-area sa(k). The reuse size in this sub-area is smaller or
equal to the sub-area size, therefore, in this case

Tsa(k) < Gsa(k) * d.

Another option, is that the area was already reused (fully or par-
tially) - an object was already placed on the sub-area sa(k), and
was later compacted away. In this case, it holds that the size that
was compacted but never reused is at least 1/d of the sub-area
sa(k) size. This statement is true since after the last deletion, at
least 1/d of the area remained occupied. If we notice only these
locations in the heap, we can see that objects were compacted, and
possibly partially reused by other objects between phases k and ¢,
but these “’reusing” objects were later compacted, as the sub-area is
eventually empty. Therefore, in this case also there is always 1/d
of the area that was compacted away, and not yet reused. So we get
that:

rsa(k) S qsa(k) -d.
This statement is true for all sub-areas. The sum of 74 (%), where
k denotes the sub-area k of a, holds 7o = Xx7sq(k), and the sum of
Gsa(k)» Where k denotes the sub-area k of a, holds go = Xk qsa(k)-
Since the area a is exactly the location of the newly placed object
o, it holds that

7o < qo -+ d.
This concludes the proof of Claim 4.7 O

Claim 4.8. Let A be any allocator that satisfies the compaction
bound %S, such that ¢ > 1. Let the deletion threshold of Paw
be d > 1 and let the total space allocated during the execution of
Paw with A be S(A, Paw). It holds that:

HS(A, Paw) > S(A, Paw) (1 - g) A

Proof. By Claim 4.4, it holds that
HS(A, Paw) > S(A, Paw) — R(A, Paw). (4.2)
By Claim 4.5, it holds that
R(A, Paw) < Q(A, Paw) - d, 4.3)

where @ is the total compacted space. Furthermore, by the bound
on the partial compaction we know that only 1/c of the allocated
space can be compacted, i.e.,

Q(A, Paw) <

—_

o S(A, Paw). 4.4)
Using Equations 4.2, 4.3, and 4.4, we get:

HS(A, Paw) > S(A, Paw) — S(A, Paw)

c
as required, and we are done with the proof of Claim 4.8. O

We now return to Lemma 4.3, which asserts the lower bound
(for the aligned case). We break the argument into its two different
cases, according to the compaction bound range. We first state
the two key claims, then derive the lower bound from them as a
conclusion, and finally, provide the proofs of these two claims. The
first claim considers the case of a small compaction allowance. In
particular, the compaction ratio ¢ and the density parameter d are
larger than the logarithm of the largest object size n.

Claim 4.9. For all allocators A such that A satisfies the com-
paction bound %S, s.t.c>d > %logn, and M > n > 4, it
holds that:

1 1 d
HS(A, Paw) > -M—2" _on(1-2).
3 " loglogn c
The second key claim considers the general case in which more
compaction can be executed and only requires that ¢ > d > 1.

Claim 4.10. For all allocators A such that A satisfies the com-
paction bound %S, forall M > mn > 2, and forallc > d > 1, it
holds that:

(1 1. logn d
HS(A, P, > M —-M -2 (1 - = .
5(4, AW)_mm(Z% d’(?) logd n) (c))

Having stated these two key claims, we now show that they
imply Lemma 4.3, which is the main focus of this section. To this
end we choose the density parameter d for Paw to be d = 3.
Claim 4.9 holds for d > % log n, and therefore, for ¢ > 4logn. In
this case we get

Loy, losn
3 loglogn

For the case that ¢ < 4logn we can use Claim 4.10 and deduce
that

1
HS(A,Paw) > 6 c, loge M
These two equations yield the lower bound of Lemma 4.3 exactly,
as required.

To finish the proof of the lower bound, we need to prove Claims
4.9 and 4.10. We start with some properties of areas as induced by
the activity of the program Paw .

!
Mmzn(ogn 6”).

2010/7/9

Claim 4.11. Consider any execution of Paw with any allocator
A, and any Phase i, 0 < i < log n. Let d be the deletion threshold.
Just after the deletion step in Phase i, any non-empty aligned area
of size 2" has one of the following two possible configurations:

1. The allocated space in the area is smaller than % -2 (and each

. . . i
object size is smaller than %).
2. The area contains exactly one object that is larger or equal to
2'i
7.

Proof. Recall that the deletion in Phase ¢ attempts to delete as much

. . . . 2t
space as possible, while still leaving a space of at least < words

allocated. Suppose that after the deletion we have an object whose

size is at least 27;. Then before the deletion this object existed in the
area and if the deletion left this object allocated, then it must delete
all other objects in the area and this object must be the only object
alone in this area, satisfying the second case.

~ Otherwise, after the deletion all objects are of size smaller than

%. Let the smallest of the remaining objects be of size 27 for some
J < i. Removing this object was not possible in the deletion step,

therefore, the occupied space in this area can be at most % +29 -1,
which is smaller than % - 2. O

The above claim shows that small objects must be sparsely
allocated after a deletion step. In particular, objects smaller than
% must be allocated on an area with density smaller than %
We generalize this sparseness of small objects in the next claim.
Let ¢ be the phase number, and let k& < d be a size threshold,
i.e., we consider objects of size % as small objects. Denote by
z; (k) the total space consumed by small objects after Phase . The
following claim asserts that the heap size must be large enough to

accommodate these small objects.

Claim 4.12. Consider an execution of Paw against any allocator
A. Let k < d be a size threshold, and x;(k) be the total space
consumed by objects that are smaller than 2/ k after the deletion
step in Phase 1. After the deletion step of any Phase 1 in the
execution, it holds that:

zi(k) -k ifk< %d

wik)-§ -k fyd<k<d

2

Proof. Consider the state of the heap after the deletion step in
any Phase ¢. In this phase the areas considered for allocation and

deletion are of size 2. All objects that are smaller than % belong to
z; (k). Consider any area that holds an object in x;(k). According
to Claim 4.11, either there is only one object in the area and its
size lies between %L and 2—,; or the size of all remaining objects

in the area is at most %1 . % Ifk < %d, then the size of the area
is larger by a factor of at least k£ than the occupied space on this
area with objects from x;(k). If £d < k < d, then the size of the
area is larger by a factor of at least ék than the occupied space on
this area with objects from x; (k). The size of the heap must be at
least the sum of all areas containing objects in x; (k). Therefore, we
get HS(A, Paw) > xi(k) - k or HS(A, Paw) > zi(k) - 3k as
required. Note that the heap size is monotone, because the heap size
required for Phases 1,...,%,¢ + 1 is at least the space required for
Phases 1, ..., . Therefore, the obtained bound holds for the heap
size of the entire execution. O

We now prove the key claims. Intuitively, it can be argued that
either there is a point in the run of the program with many small
objects that are so sparsely allocated that the lower bound follows

easily, or there is no such point. In the latter case, there must
be many memory allocations during the execution of P4y with
A, ie., S(A, Paw) is large, and therefore, Claim 4.8 implies the
correctness of the lower bound.

Proof of Claim 4.9. We need show that if %d > logn , then

HS(A, Paw) > £ .. 1987 o (1 94))
3 loglogn c

We use Claim 4.12, and set the size bound k to be log n, which is
smaller than %d. This means that in Phase ¢ we consider an object

to be small if it is smaller than %. We divide the analysis into
two cases. In one case there is a phase in which a lot of small
objects are allocated, and in the other case all phases do not have a
large number of small objects allocated. So let o be some fraction,
0 < a < 1 (to be set later) and consider the case in which the

execution has a Phase ¢ for which small objects (smaller than %)
occupy more than (1 — a)M words. Then by Claim 4.12, the
heap size at this point (and on) is larger than (1 —)M - logn.
Otherwise, in each of the Phases ¢ = O0,...,logn, after every
allocation phase ¢, the total space occupied in the heap is at least
M — 2°. It holds that more than o - M — 2" of the heap consists of
o
log

objects that are larger than . The size of the object tells us when

it was allocated. Objects smaller than % words were allocated
in phases that are at least log log n earlier than the current phase,
whereas large objects were created in the last log log n phases. This
means that at least o - M — 2" of the live space must consist of
objects that were created in the last log log n phases. An execution
consists of logn phases. We divide the execution into discrete
sections of log log n phases. In the last phase of each such section,
at least o - M — 2" of the allocated space must have been allocated
during this section. This is true for all sections. Therefore, if we
compute the amount of space allocated in all lol;ﬁ) gn sections, we
get that that the amount of space allocated in the entire execution,
S(A, Paw), satisfies

logn

o> aM 108" o,
loglogn

i=log logn

logn

S(A, Paw) > aM ————
loglogn

According to the relation between the amount of allocation and the
heap size, shown in Claim 4.8, we get that

d
HS(A, PAw) > S(A,PAw) . (1 — E)
logn d
2 <aM ’ logfgogn - 27’L> ’ (1 - E) :
Setting a = ﬁ, and using the fact that d < 7, we get that

HS(A, Paw) > %M -logn
in the first case and that

HS(A, Paw) > 1]V[_logn_ —2n(1- d
3 loglogn c

in the second case and we are done with the proof of Claim 4.9. [

Proof of Claim 4.10. We need to show that
) 1 1. logn d
HS(A,P > -M -M —2n)-(1—-= .
S, “‘W)—m’”(fs d’(3 logd ”) (c))

Similarly to the proof of Claim 4.9, we use Claim 4.12. This time
we set k = d, implying that in Phase i objects are considered small
if they are smaller than 27;. If there is a Phase ¢ where more than

%M of the live space consists of objects smaller than %, then the

2010/7/9

total heap size is larger than %M . %d = %M d. Otherwise, in every
phase i in the execution, it holds that more than 3 M — 2° of the
live space consists of objects that are larger than %. Partitioning
the execution into disjoint consecutive sections of log d phases, we
get that in each such section, at least %M — 2° space was allocated.
Therefore,

log d
1 logn i1 logn
S(A, P >-M- — 2" > =M - — 2n.
(4, Paw) 2 3 logd izlogz;ogd -3 logd "

And again, according to Claim 4.8, we get that

1 logn d
HS(A, P, > =M - -2 (1 =-=.
S(A, Paw) 2 (3 log d n) (c)

One of these cases must hold, and therefore, the heap size satisfies:

. 1 1. logn d
> — — — . - —
HS(A7PAW)7mzn(3Md7(3M10gd 2n) (1 C))’

as required and we are done with the proof of Claim 4.10. O

4.2 Bounding the space consumption when the objects are
not necessarily aligned

In the general form of the allocation problem, there are no align-
ment constraints on the memory allocator, and the objects can be
allocated anywhere. In this section, we modify the Aligned-Waster
program to a different, Waster program denoted Pw, and extend
the proofs presented in the previous section to fit any allocator that
works with the program Waster. Specifically, our aim in this section
is to prove Theorem 2.

Theorem 2. (Lower bound.) Forall ¢ > 1, and all M > n > 4,
there exists a program Py € P(M,n) such that for all allocators
A that satisfy the compaction bound (S) the following holds:

1 . logn 5n .
HS(A, Py) > 0Mmin (c:mests = %) ire<dlogn
7 — 1 .
ifc>4logn

Ly, logn _ n
GM log log n+2 2

The program Waster, or Py is specified in Algorithm 4. This
program is almost identical to the algorithm of Paw (Aligned-
Waster), except for the deletion step. In Phase i, Pw allocates
objects of size 2* exactly like Paw , but unlike Paw, the program
Py considers areas of size 2°~2 in the deletion step. Py removes
objects on these smaller areas if enough space is left allocated on
these areas. A new phenomenon that occurs in the execution of
Py is the fact that objects can spread across area boundaries. Such
an object can be removed only if both areas on which it is placed
remain dense enough, i.e., have enough allocated space on them,
after the removal.

Algorithm 4 Waster Program
Input: M, n, and c.
1: Compute d as a function of ¢ (to be determined).
2: for i = 0tologn do
3: { Deletion step: }
: Partition the memory into aligned areas of size 2¢~2

4

5 Remove as many objects as possible from each area,

6: subject to leaving at least 2°~2 /d space occupied.
7: { Allocation step: }

8: Request allocation of as many objects as possible of

9 size 2° (not exceeding the overall allocated size M).
10: end for

Notice that since the deletion considers areas whose size is 1/4
of the next allocation size, then newly allocated objects will always
cover at least 3 such areas fully. The remaining quarter of the object
may partially cover the other two neighboring areas.

Before Deletion:
I
i

After Deletion:

O S

i

I

Figure 3. An example of deleting objects in Waster, with parame-
ter 1/d = 1/4, and Phase i = 4. The areas size is 2*~? = 4, and
the next allocation size is 2*.

Similarly to the aligned version of the proofs, we bound the total
space used as the total allocated space .S in the execution minus the
amount of reuse 12. Note that Equation 4.4 stating that

HS(A, P) > S(A, P) — R(A, P)

holds in the general case as well. We now proceed to bounding
S and R with no alignment restrictions and given the modified
program Pyy.

Claim 4.13. Consider the execution of Pw with any memory
manager A that satisfies the compaction threshold %S . Let Q be the
total amount of compaction during the execution, let R be the reuse,
and S the total allocated space, and d be the deletion threshold set
by Waster. Then following holds:

R(A, Pu) < 7S(A, Pu) + Q(A, Pw) - d.

We prove Claim 4.13 by summing on the reuse of all of the
allocations during the run of Py . In order to do that we define the
following: (same as the definitions in Section 4.1)

Definition 4.14. If o is an object that is placed on the heap during
the run of Program Waster, then |o| is it’s size. 1o is the space size
reused by the allocation of the object o. ., is defined as the total size
of objects parts that existed in the space that is later occupied by
object o. These objects were removed or compacted, but there was
no object placed on top of them between their removal/compaction
and until the allocation of Object o. Namely, the relocation was
used for the reuse of o, and not for any previous reuse. q, is the
total size of objects that were located in the space occupied later
by object o. These objects were compacted, but there was no object
placed on top of them until the allocation of o.

LT —

T T T T

n

Figure 4. An example the definitions o, 7, and g, in the execution
of Waster, with parameter 1/d = 1/4, and phase ¢ = 5.

An example of these definitions is in Figure 4. In this figure,
a fraction of the heap of size 36 words is shown. The dark line
beneath the squares denotes the location where object o is placed in
Phase 5 during the execution of Waster. The horizontal lines denote
the separations between the areas as defined in Phase 5. |o| = 32,
and the areas size is 8. The fraction of the heap where o is placed
is empty at the moment of placement. The black squares denote
objects that are present in the heap at the time of the allocation.
The dark gray squares represent words in the heap, that the last
operation on this word was a compaction of an object. The light
gray squares represent words in the heap, that the last operation

2010/7/9

on this word was a deletion of an object. The white squares are
words on the heap that were empty since the beginning of the run
of the program. In this example, g, equals to the total size of the
objects that were last compacted - i.e. to the total size of the dark
gray words, 8 words. 7, equals to the total size of the deleted +
compacted objects in where o is placed, i.e. 24 words.

Proof of Claim 4.13. According to definition 4.14, the total reuse
R can be calculated as the sum of reuse of all allocated objects.
R=> ; To;» and the total compaction @ is larger or equal to the
size of compacted reused objects) > Zj o, » Where the index
J traverses over all of the objects that were allocated during the
Program Waster run. According to Claim 4.15, for each allocated
object o; it holds that r,; < $|0;| + o, - d, therefore:

R:Zroj SZ%|oj|+Zqoj~d§%S+Q~d.
J J J

In order to finish this proof it remains to present and prove Claim
4.15.
O

Claim 4.15. Consider any phase i during the execution of Waster.
Observe any object o just before it is being allocated in the heap
during phase i. It holds:

1
o < 1|0H—qo-d.

Proof. According to Algorithm 4, in Phase 7 the size of allocated
objects is 2%, therefore |o| = 2°. Furthermore, in the deletion step of
Phase i, the memory is divided into areas of size 2=2_ Therefore,
the object o covers at least three such areas fully, and at most i|0|
covers two areas partially. In the partially covered areas, the reuse
is at most the size of the covering part: 7o(partial) < i|o\, We now
apply Algorithm 5 to each of the fully covered areas a1, a2, az. The
result of Algorithm 5 is a sub division of an input area into distinct
aligned sub-areas of size 2k st.0 < k < 272 We then bound the
reuse in each sub-area. Summing over the reuse in the sub-areas
equals to the total reuse in the full area - which is exactly what we
are trying to bound.

Algorithm 5 Division of an area a into sub-areas

Input: An area a of size 2772,
1: List L < a new empty list

2: Stack S «+— a new empty stack

3: S.Push(a,i—2)

4: while S is not empty do

5. (z,k) < S.Pop()

6: if k =1 then

7: L.Push(z, k)

8: else

9: Look at the removal step in phase £+ 2, during the run of Waster.

Check if there were any removals in area x during that step.

10: if there was at least one removal then
11: L.Push(z, k)
12: else

13: Divide z into its two equal sub areas x1, x2.
14: S.Push(zi,k —1)
15: S.Push(z2,k — 1)
16: end if
17: end if
18: end while
19: return L.

The result of Algorithm 5 is a list L that contains sub-areas
of the area a. The sub-areas are distinct, their size is 2* for k €
N,;0 < k£ < ¢ — 2. The union of the sub-areas is exactly the area

a. For every sub area that is the output of algorithm 3, one of the
following holds:

1. The sub was either was always empty, or was occupied by an
object that was compacted away. The sub-area size is 1.

2. The sub area size is 2° s.t. k > 1, and last time objects were
deleted from this sub-area happened during the deletion step of
phase k£ + 2 in Algorithm Waster.

The statement above follows directly from the behavior of Algo-
rithm 5. An area of size 2" is sub-divided only if it had no deletions
in phase k + 2. Therefore, when an area reaches size 1, it never had
any deletions, and statement (1.) is true. Since Algorithm 5 divides
each aligned area of size 2" to its two equal halves, the resulting
sub-areas are the exact same areas that algorithm Waster consid-
ered in phase k + 1. The algorithm actually goes back from phase ¢
(looking at areas of size ¢ — 2) back to phase 3 (looking at areas of
size 1) looking for the last deletion for each sub-area. For all sub-
areas sa(k) resulting from algorithm 5, we examine cases (1.) and
2.).

In case (1.), it holds that there were no removals at all from the
sub-area sa(k). The reuse, if larger than 0, occurs since an object
was allocated and later compacted (possibly more than once). In
this case, the reuse in phase ¢ of the sub-area sa(k) equals to the
size of the object that was last compacted away from this sub-area:
Tsa(k) = Gsa(k)- Since the deletion threshold holds d > 1, then:

Tsa(k) < Gsa(k) * d.

In case (2.), for each sub-area sa(k), phase k + 2 captures the
time of the last deletion from the sub area sa(k). If there was
no reuse in sub-area sa(k) between phases k + 2 and 4 (the first
allocation on sub-area sa(k) after phase k + 2, occurred in phase
1), then we compute the reuse based on the following. According
to the definition of the adversarial program Waster behavior, for
each such area, after each removal, at least 1/d of the area remains
occupied, we denote these objects by q. These objects must be
later compacted away from this sub-area, so that the space could
be reused (as in phase ¢, this sub-area is empty). Therefore, if we
multiply the size of this compaction by d, we get the size of the
sub-area sa(k). The reuse size in this sub-area is smaller or equal
to the sub-area size, therefore, in this case:

Tsa(k) < Gsa(k) * d.

Another option, is that the area was already reused (fully or par-
tially) - an object was already placed on the sub-area sa(k), and
was later compacted away. In this case, it holds that the size that
was compacted but never reused is at least 1/d of the sub-area
sa(k) size. This statement is true since after the last deletion, at
least 1/d of the area remained occupied. If we notice only these
locations in the heap, we can see that objects were compacted, and
possibly partially reused by other objects between phases k -+ 2 and
1, but these reusing” objects were later compacted, as the sub-area
is eventually empty. Therefore, in this case also there is always 1/d
of the area that was compacted away, and not yet reused. So we get
that:

Tsa(k) < Gsa(k) * d.
This statement is true for all sub-areas. The sum of 754 (), where
k denotes the sub-area k of a, holds 7o = Xx7sq(x), and the sum of
Gsa(k)» Where k denotes the sub-area k of a, holds go = Xiqsa(k)-

Therefore, it holds that
e < Qo - d

for each one of the full areas a1, a2, a3. When we sum the total
reuse r,, we get:

1 1 1
To < 1|0‘+Ta1+7"a2+7“a3 < Z|O‘+(qa1+qaz+qa3)'d < Z‘OH‘QO'CL

2010/7/9

This concludes the proof of Claim 4.15 O

Next we assert the analogue of Claim 4.8 for the non-aligned
case.

Claim 4.16. For all allocators A such that A satisfies the com-
paction bound %S, s.t.c > 1, M,n > 0. The total space allocated
during the execution of Pw with A is S, and the deletion threshold
is d > 1, it holds that:

3 d

HS(A, Pw) > S(A, Pw) (Z _ E)

Proof. The heap size is at least the total allocated space minus the
reuse, i.e.,

HS(A, Pw) > S(A, Pw) — R(A, Pw). 4.5)

According to Claim 4.13, it holds that
R(A, Pw) < iS(A, Pw)+ QA Pw)-d. (46)

The total amount of compaction is bounded by:

Q(A, Puv) <+ 5(A, Fiv). @7

By Equations 4.5, 4.6, and 4.7, we get

HS(A, Pw) > S(A, Pw) G - g)

and we are done. O

Proceeding with the analogue proof for the non-aligned case, we
now state the key claims, which assert the lower bound for large ¢’s
and for general c’s. Note that the constants are less tight in this case.

Claim 4.17. For any ¢ > d > logn, for all allocators A that
satisfy the compaction threshold %S, and for all M > n > 4, it
holds that:

1 logn 3 d
HS(A,Pyw)> > M- —8" oy (2_¢
S(4, Pw) 2 6 loglogn + 2 n<)

Claim 4.18. For all allocators A that satisfy the compaction
threshold %S, st.c,d>1, M >n > 1,itholds:

. 1 2 logn 3 d
HS(A’PW)me(SMd’<5Mlogd+2 2n) <4 c)>
Proceeding in the same avenue used in Section 4.1 to prove
Lemma 4.3, we now show that these two key claims imply Theorem
2. To this end we choose the density parameter d for Py to be
equal to 5. Claim 4.17 holds for %d > logn, and therefore for

¢ > 4logn and in this case we get

1 logn n

6 loglogn+2 2

For the case that ¢ < 4logn we can use Claim 4.18 and deduce
that

HS(A, Pw) >

HS(A7PW)ZT10~M-mm(log n 5—”)

© logc+1 M

These two equations yield exactly the lower bound of Theorem 2
as required.

To finish the proof of the lower bound, we need to prove Claims
4.17 and 4.18. Similarly to what we did in Section 4.1, we start with
some properties of areas as induced by the activity of the program
Pw.

During the execution of Py with any allocator, after the dele-
tion step in every phase i, the heap is partitioned into areas of size
29=2_The objects located in the heap could be objects of two types:

(1.) objects that are located fully inside an area, and do not cross
area boundaries or (2.) objects that are located on top of area bound-
aries. We first address the minimal heap size required by objects of
type (1.), and later discuss the minimal heap size required by ob-
jects of type (2.). The maximal of the two is the total heap size
required in the execution of phase .

Claim 4.19 (The analogue of Claim 4.11 in Section 4.1). Consider
any execution of Pw with any allocator A, and any Phase 1,
2 < i < logn. Let d be the deletion threshold, so that d > 1.
Consider the space consumed by objects that are fully contained
inside any non empty aligned area of size 2°2, just after the
deletion step in Phase i. There are two possible configurations for
this space:

1. The space consumed by these objects is smaller than # -2
(and each object size is smaller than ?).
2. The area contains fully exactly one object that is larger or equal
i—2
to 2~
d

Note that each area might also contain objects that are not fully
contained inside it. Namely, objects that cross area boundaries. We
ignore these objects in this claim. Of-course, the proof holds in the
presence of such objects. Let us now prove Claim 4.19

Proof. Recall that the deletion in Phase ¢ attempts to delete as
much space as possible from every area of size 2972 while still
leaving a space of size at least # allocated. Suppose that after
the deletion we have an object whose size is at least ?, and it is
fully allocated inside an area. Then before the deletion this object
existed in the area and if the deletion left this object allocated, then
it must delete all other objects that are fully allocated in the area,
and it must be the only object that is fully allocated inside this area
(there might only be objects that are located on top of this area
boundaries, in addition to itself), satisfying the second case.
Otherwise, after the deletion all objects that are contained fully
i

. . 2
inside the area are smaller than =——. Let the smallest of the

remaining fully contained objects be of size 27 for some j <
¢ — 2. Removing this object was not possible in the deletion step,

. N -2

therefore, the occupied space in this area can be at most % +
) o 2

27 — 1, which is smaller than % 2. O

The above claim shows that small objects that are fully con-
tained inside areas must be sparsely allocated after a deletion step.
In particular, the space consumed by objects that are smaller than
272 /d, and are fully allocated in an area, is smaller than 2/d of
the area size. We generalize this sparseness of small objects in the
next claim.

Claim 4.20. Consider an execution of Py against any allocator
A. Let k < d be a size threshold, and x} (k) be the total space
2i7‘2

consumed by objects that are smaller than =—, and are located

fully inside areas of size 2'=2 after the deletion step in Phase i.
Then after the deletion step in any Phase 1 in the execution it holds
that

i (k) -k

ifk<=d

zi(k) %k ffod<k<d
Proof. Consider the state of the heap after the deletion step in any
Phase i. In this phase the areas considered for deletion are of size
2972 All objects that are smaller than 2°72/k, and reside fully
inside an area belong to (k). Consider any area that contains
an object in (k). According to Claim 4.19 either there is only

2010/7/9

one object in the area and its size lies between 2°~2 /d and 272/,
or the size of all remaining objects fully contained inside the area
is at most ? - 1. If k < 1d, then the size of the area is larger
by a factor of at least k than the occupied space on this area with
objects from z; (k). If $d < k < d, then the size of the area is
larger by a factor of at least %k than the occupied space on this
area with objects from z; (k). The size of the heap must be at least
the sum of all areas containing objects in z; (k). Therefore, we get
HS(A,Pw) > wzj(k) -k or HS(A,Pw) > zi(k) - 1 -k as
required. Note that the heap size is monotone, and therefore the
obtained bound holds for the heap size of the entire execution. [

Claim 4.21. Consider an execution of Py against any allocator
A. Let k < d be a size threshold, and x? (k) be the total space
consumed by objects that are smaller than 2°~> /k, and are located
on top of area boundaries, after the deletion step in Phase i. Then
after the deletion of any Phase 1 in the execution it holds that

HS(A, Pw) > 23(k) - &

Proof. We compute a lower bound on the total space used, by
bounding the number of areas used after the deletion step of Phase
i. The total number of existing areas in the heap is at least the
number of area boundaries. The number of area boundaries must
be at least the number of objects smaller than 22 that are located
on top of them. The number of objects whose space is accounted
for in 27 (k) is at least the accumulated size z7 (k) divided by the

2 2
largest possible object size, i.e., Z;E; = Z;Ejz . Each area size is

R k
2772 and therefore, the total space consumed is at least 27 (k) - k
and we are done. O

Claim 4.22. Consider an execution of Pw against any allocator
A. Let k < d be a size threshold, and x;(k) be the total space
consumed by objects that are smaller than 22 /k after the deletion
step in Phase i. Then after the deletion step of any Phase 1 in the
execution, it holds that

1

wi(k) -2k ifk<=d

HS(A, Pw) > ? 12
wik)-§ -k ifgd<k<d

Proof. According to the definitions, z;(k) = z}(k) + 22(k).
For k < 3d, according to Claims 4.20 and 4.21, it holds that
HS(A,Pw) > zi(k) - k and also HS(A, Pw) > 27(k) - k.
Therefore, the minimal value of the heap is resulted when z} (k) =
27 (k) = $2:(k), which leads to the conclusion that

HS(A, Pw) > (k) -k
. For %d < k < d, according to Claims 4.20 and 4.21, it holds that
HS(A, Pw) > x}(k)-1-kandalso HS(A, Pw) > (k) -k. To

get the minimal heap value, both of these bounds should give the
same value, i.e.:

Therefore, 27 (k) = %i(k), and
HS(A, Pu) > si(k) - b
as required. O
We now prove the key claims. Intuitively, the proof will argue

that either there is a point in the run of the program with many
small objects that are so sparsely allocated that the lower bound

follows easily, or there is no such point, but then there must be
many memory allocations during the execution of Py with A, i.e.
S is large, and therefore Claim 4.16 implies the correctness of the
lower bound.

Proof of Claim 4.17. We show that for all allocators A that satisfy
the compaction bound %S, st.c>1land M > n > 4, and given
that the density threshold d set by Py satisfies %d > logmn, the
following holds:

1 logn 3 d
HS(A,Pw)> = M- —8" 9y (2_ %),
54, W)_G loglogn + 2 n(4 c>

We use Claim 4.22, and set the size bound £ = logn. We can
use Claim 4.22 since k = logn < %d. We also use a fraction
parameter o, satisfying 0 < a < 1, to be determined later. We
partition the analysis into two cases. First, if there is a Phase ¢

where more than (1 — a) M of the live space consists of objects
i—2

smaller than 12—,
ogn

than (1 — a)M -log n. Otherwise, in all phases it holds that more
than o - M — 2° of the live space consists of objects that are larger

then by Claim 4.22, the total heap size is larger

than 120%7? This means that in every phase i, at least o - M — 2°
of the live space must consist of objects that were created in the
last log logn + 2 phases. The execution consists of log n phases.
We partition the program execution into consecutive sections of
log log n + 2 phases each. In each such section, at least o« - M — 2"
space was allocated. Therefore, the total allocation in the execution,
S, satisfies

logn
logn ;
S(A, P >a- M ——— — 2°
(4, Pw) 2a loglogn+2 Z
i=log log n
Sa M. 18" o
loglogn + 2

According to the relation between total allocation and heap size
asserted in Claim 4.16, we get that

logn 3 d
M- log logn + 2 —Qn) . (Z B E) '

1

m and using the fact that d < 3, we get that
4

the bound in the first case is

HS(A, Pw) > (a~

Setting o =

HS(A, Pw) > %M~logn.

With this «, the bound in the second case becomes

1 logn 3 d
> . —_ - — —).
HS(A, Pw) > 6 M Toglogn 1 2 2n (4 c)

In both cases Claim 4.17 holds and we are done. O

Proof of Claim 4.18. We need to show that for all allocators A that
satisfy the compaction bound %S, withe > 1, M > n > 2,it
holds that:

1) 2logn 3 d
HS(A,Pw)>—--M- d——— | -——]].
(A4, Pw) 2 5 mm(’logd+2 (4 c))
Similarly to the proof of Claim 4.17, we use Claim 4.22 and
look at two possible cases. This time we set k = d. If there is a
Phase ¢ where more than %M of the live space consists of objects

i—2 . .
smaller than QT, then the total heap size is larger than %M -d.

Otherwise, in every phase ¢ during the run of the program,

it holds that more than %M — 2¢ of the live space consists of

. i—2 e .
objects that are larger than QT Partitioning the program run into

2010/7/9

consecutive sections of log d + 2 phases each, we get that in each
such section, at least %M — 2" words was allocated. Therefore,

9 10gn logn
S(A,Pw)>-M-———-—
(4, W)*S logd+2
i=loglogn
By Claim 4.16, we get that
2 logn 3 d
M—=" _ _ 9 R
5" logd + 2 ”) (4 c)

Combining the two cases we get that

HS(A, Pw) > (

> — — [= — . - — —

5. Segregated Free List Allocator

In the previous section we presented a specific program that man-
ages to create a large space overhead for any possible memory al-
location method. In practice, systems implement specific alloca-
tors that can be specifically studied. It is possible that a program
can cause more overhead to a given specific allocator. One very
common memory allocator is the segregated free list allocator, and
in particular, the one that is block-oriented (e.g., [2, 6, 8]). In this
section we study limits of this specific allocator and prove tighter
lower bounds based on its specific behavior. We start by defining
this segregated free list allocation method. We then show bounds
on the space requirement when no compaction is allowed, and fi-
nally, in Section 5.3, we show bounds on the space requirements
when partial compaction is used to aid in reducing fragmentation
for a segregated free list allocation.

5.1 Definition of a Segregated Free List Allocator

A segregated free list allocator divides the free list into several
subsets, according to the size of the free chunks. Each subset forms
a list of free chunks of the same size (or a small range of sizes)
and an array of pointers is used to index the various free lists. A
freed object is placed on the appropriate list according to its size.
An allocation request is serviced from the appropriate list.

Segregated free lists are typically implemented in a block ori-
ented manner [2, 6, 8]. The heap is partitioned into blocks (typi-
cally, of a page size, i.e., 4KB) and each block may only contain
objects of one size. Whenever a full block is freed, it is returned
to the pool of free blocks. Whenever an allocation is requested for
an object whose free list is empty, a free block is pulled from the
block pool, it is partitioned into as many free chunks as possible
in an aligned manner, and then the new chunks are added to the
appropriate free list to allow allocation.

The free lists are known as buckets. Each bucket is characterized
by the chunk size (or range of chunk sizes) that can be allocated
in it. The allocation within each bucket is executed in a first-fit
manner, in the first free chunk in the bucket’s list that can satisty
the allocation. The simplicity of this method comes with a cost.
This method is susceptible to high external fragmentation, as shown
below.

In the following sections we simplify the discussion by assum-
ing that the maximal object size, n, equals the block size. This is
close to what happens in practice, and small adjustments, e.g., if
the block size is 2n, have small impact on the results. As before,
we denote by M the total space that can be allocated simultane-
ously.

5.2 Memory usage without compaction

Let us start with the case that no compaction is used. The general
lower bound of Robson [15, 16] holds in this case, implying that an

o2
3 QLZEM-&—%.

overhead factor of at least x % logn can occur in practice for the
worst fragmenting program. We extend this bound for the specific
segregated free list allocator. Denote by s1, ..., sk the different
maximal object sizes inside each bucket, and assume for simplicity
that the program only allocates objects whose sizes are one of
S1,...,Sk. (When proving a lower bound, it is enough to show
that there exists one bad program.) A block contains objects of the
same size, but this can be any size as long as s < n. As stated
earlier, for simplicity we also assume that n = s.

Different segregated free list allocators have different segrega-
tion policies, which are determined by the size vector s1, ..., sk.
We study two rather extreme cases by looking at an allocator that
keeps a bucket for each possible object size (i.e., a lot of buckets)
and an allocator that has buckets for exponential object sizes, i.e.,
sizes that increase by a factor of two. Typical implementations use
something in between these extreme cases and the tools developed
here can be used to explore each specific set of sizes.

We first look at the allocator SFL,;; that implements the seg-
regated free list method, with a full assortment of bucket sizes:
s1 = 1,80 = 2,83 = 3,84 = 4,...,8n = n. Let the class
P(M,[s1,...,5n]) be the class of all programs that always keep
the allocated space smaller or equal to M, and allocates objects
only of the sizes si, ..., . The theorems below show that with no
compaction, the space overhead is quite large. It is of the order of
the square root of n. This is much higher than the logarithmic factor
that was shown for the general allocator.

Theorem 3. There exists a program P € P(M, [s1, ..., sn]), and
the heap size required for allocator SFLq1; to execute the allocation
requests of P satisfies:

HS(SFLQH,P) 2 %M\/» — %n — %\/ﬁ

The result for the smaller set of buckets is very different. Par-
ticularly, let SFL;,4 be an allocator that implements the segre-
gated free list method, with a logarithmic assortment of bucket
sizes: s1 = 1,50 = 2,53 = 4,54 = 8,...,S10gn+1 = n. Let
P(M,[s1,.-.,S10gnt+1]) be a set of programs that always keep the
live space smaller or equal to M, and allocates objects only of the
SiZeS S1, ..., Slog n41-

Theorem 4. There exists a program P € P(M, [s1, ..., Slogn+1]),
and the heap size required for allocator SFL4 to execute the allo-
cation requests of P satisfies:

HS(SFLjog, P) > Mlogn — %M —n.

Note that Theorems 3 and 4 improve on the general results
obtained by Robson [15, 16]. Robson could only show an overhead
of % log n since he needed to work with a general allocator, unlike
the segregated free list allocator that we assume in this section.

To prove these theorems, we present the Bucket-Waster pro-
gram, denoted Ppw, which causes heavy space overhead for an
allocator that uses the segregated free list allocation method. We
then analyze its behavior and finally prove Theorems 3, and 4.

Algorithm 6 Program Prw with bucket sizes s1, ..., Sk.
1: for i = 1to k do do
2: Allocate as many object as possible of size s;
3: Deallocate as many objects as possible subject to leaving exactly
one object in each allocated block.
4: end for

Below we investigate the execution of Ppy with a segregated
free list allocator. This run is structured, and satisfies the following
property. After each deallocation step, there will be a single object
in each allocated block. Moreover, this single object will not be

2010/7/9

deleted until the end of the execution. Therefore, the objects that are
deallocated in Phase i, are only objects allocated in (the first step
of) Phase ¢ and they are all of size s;. Denote by H.Sj, the size of
the heap used by the SFL allocator to satisfy the allocation requests
of Pew up to the point at the end of Phase k. For now, the SFL
allocator uses a general form of the bucket sizes: s1, ..., sg. The
concrete choice of bucket sizes will be determined later. Denote
by M, the space that the allocator can allocate at the beginning of
phase i. M; depends on the total live space to allocate, M, and
the space that is already in the heap in the form of objects that
were placed on the heap, and were not removed by the beginning
of phase ¢. We first present a lower bound on M;, then continue
to prove a lower bound on H Sy, and finally prove the theorems
presented in the beginning of this section.

Claim 5.1. In the execution of Pew against the SFL allocator, let
M; be the total space available for allocation in Phase 1. s; the
objects size in Phase i, and n the block size. In the first phase it
holds that M\ = M. In subsequent phases it holds that:

2]

Miy1 > M; —

© 8.

Proof. In the first phase the space to allocate equals the maximal
live space size: M1 = M. In subsequent phases, M; depends on
how much live space is already allocated in the form of smaller

objects. The number of objects allocated in Phase ¢ is VZI—:J . Any

block can contain LﬁJ objects of size s;. Note that the allocator

must get new blocks for the allocation of Phase ¢ since a block can
only hold allocations of a particular size. Therefore, the number of
L M; J
cording to the deletion strategy in Algorithm 6, after eaéh deletion
step, a single object remains in every block. Therefore, the size of
objects of size s; remaining in the heap after the deletion step in

|5

n
Si

Phase ¢ + 1 is the live space we had in Phase ¢ minus what remains

live in the heap after the removal step in Phase i:

B

blocks used in the allocation of Phase 7 is at least . Ac-

Phase ¢ is

- si. The space remaining for allocation in

M1 = M; —

O

First, we remove the integral operations by introducing an error
factor.

Definition 5.2 (Definition of the error factor €;). Denote by €;, the
difference between the number of actual blocks in Phase i, and the

non-integral value:
M M;
sS4 sS4

E[E]

Using €;, we can simplify the value of M; in the next claims.

Claim 5.3. In the execution of Pew against the SFL allocator, let
M; be the total space available for allocation in Phase 1. s; the
objects size in Phase i, and n the block size. In the first phase it

holds that M1 = M. In subsequent phases it holds that:

i i
Sj
MHIZM—MQ s > 055
iz

Jj=1

Proof. First, we use the definition of €; within Claim 5.1, simplify-
ing the value of M;:
[%]

]

Next, we bound the non integral parts in the above equation:

M1 = M; —

+€ | - S;i.

M;

Miyr > Mi—(nsi 1 +€i> “8i > Mi'(l— niis‘)_Gi'SzU

S

After repeatedly substituting the values of M; in this equation,
tracing back until My = M, we get that:
I (1 B)
n — St

2 7
Sj)
Mi+12M.,||(l_nfsj)_E €5 S5 .
Jj=1 Jj=1 t=j+1

, «; it holds that

We use the fact that for any positive a1, . . .

[[a-a)=1->a; (5.1

j=1 j=1

to simplify the equation above. The result is:

Mi 2M(1—Znifsj>—zlej.sj (1— 3 nitSt
=

i=1 t=j+1
T S
>M|(1- J - iS5
SUE =N
Jj=1 Jj=1
which ends the proof. O

This bound on M; will be used in the next claims as we continue
to prove a lower bound on H.Sj.

Claim 5.4. In the execution of Ppw against the SFL allocator; let
HSy, be the heap size after phase k, M; be the total space size
available for allocation in Phase i. s; the objects size in Phase 1,
and n the block size. The heap size after Phase k, H Sk, holds the
following:

HSy = é &]\S’?JJ

Proof. The number of blocks used in the allocation of Phase ¢ is
M;

*n.

at least

. Since each block has size n, this means that the
n

S
additional heap size that is required for the new allocations of Phase
M;

Si

i,1s - n. According to the deletion strategy in Algorithm

6, after ezich deletion step, a single object remains in every block.
Therefore, no blocks are ever removed, and the total heap size after
Phase k, H Sy, equals the size of blocks occupied after this phase:

HSy = ;kl &:JJ

- n.

2010/7/9

We simplify the bound above using the values of ¢;, and M;
achieved in previous claims.

Claim 5.5. In the execution of Pew against the SFL allocator; for
any phase k, the heap size after phase k, H S}, satisfies:

k—1
HS,>M-k— M- (k—i
Sk ;n—sl)
k k
+> en—sic(k—1i) =Y si.
i=1 i=1

Proof. First, we use the error factor ¢; to simplify the value of H S},
as appears in Claim 5.4

>y So—nteon> Y (Mi—site-n).

i=1 S

Next, we replace the value of M; with the result we got in Claim
5.3:

k i—1 i—1
.
HS, > M- M- I i 8; — 8+ € -
e > ;(;nfsj ZEJ Sj—Si+e€
el
> M-k—M- —(k—i
- STETA
k B k
+> an—si-(k—i) =Y s
i=1 i=1
which is what we wanted to prove in this claim. O

We now turn to proving the main theorems.

Proof of Theorem 3. The number of phases that Pgw executes de-
pends on the phase in which it runs out of space to allocate. Using
the notation above, this happens when M; < s;, and it is not pos-
sible to allocate an object in Phase 7. However, Claim 5.5 holds for
any number of phases in which the bucket size is smaller or equal to
n, even if there were no actual memory allocated during that phase.
The only downside of using advanced phases with Claim 5.5, is that
the bound becomes less accurate after the last phase when objects
were allocated. In order to prove Theorem 3 we use the bound on
the heap size, received in Claim 5.5, for phase y/n. This phase is
close to the final phase for the setting of an arithmetic collection of
buckets.
By setting the variables in Claim 5.5, we get:

HS /7(SFLat, Pew) > M -y/n—M - Z — (v — 1)
v VA
+Zei(n—i-(\/ﬁ—i))—2i.
=1 i=1

We can further bound the equation from above by replacing all
of the denominators with n — y/n + 1. Additionally, notice that
(n—j-(y/n—7)) has a positive value for all 1 < j < /n.
Therefore, we can bound this equation from above by setting €; =
0 (Remember that for all values of j, 0 < ¢; < 1).

HS\/E(SFLGH,PB‘/V) > M\/ﬁ
V-1

1 . . .
_Mm Z z(ﬁ—z)—Zz.

i=1 i=1

n)

Using the closed sum for squares:

s k(k+1)(2k+1)

M=

=" (5.2)
i=1 6
and some algebra we get:
1

HS 7 (SFLoy, P, > M ——M
il uw, Pew) > NG f(n—f—&—l)

f(erl)

> 4M\/ﬁ—fn—ff

O

Proof of Theorem 4. The number of phases that Ppw runs depends
on the phase in which it runs out of available space to allocate.
Using the notation above, this happens when M; < s;, and it
is not possible to allocate an object in Phase ¢. However, Claim
5.5 holds for any number of phases in which the bucket size is
smaller or equal to n, even if there were no actual space allocated
on that phase. The only downside of using advanced phases is that
the results of Claim 5.5, is that the bound becomes less accurate
after the last phase when objects were allocated. In order to prove
Theorem 3 we use the bound on the heap size, received in Claim
5.5, for Phase log n. This phase is close to the final phase for the
setting of a logarithmic collection of buckets.
By setting the variables in Claim 5.5, we get:

HSi0gn(SFLiog, Pew) > M logn

logn—1 z 1
-M Z — 2i— n _ 9i—1
logn logn

+ Z € <n — 2" (logn — 1)) — Z 211
i=1 i=1

Similarly to what we did in the proof of Theorem 3, we can replace
all the denominators with 3n,/4, and notice that (n —2°~"' - (log n —
1)) has a positive value for all 1 < j < log n. Therefore, we can
bound this equation from above by setting €; = 0.

H Siog n(SFLiog, PBw) > M logn

(logn — 1)

logn—1 logn

i—1 . i—1

fMﬁ E 2" (logn — 1) — E 2"
i=1 =1

Using the following equation:

k=1
> it =2"(k -
i=1

and some algebra, we get what we wanted to prove.

HS\ogn(SFLiog, Pew) > Mlogn — M5=(n —logn — 1)
-n+1
> M-logn—%M—n.

2) +2 (5.3)

5.3 Space overheads with compaction

In Section 5.2, we built Pew that wasted many blocks by leaving
a single object in each. With no compaction that program created a
lot of fragmentation. Modern collectors employ partial compaction
especially for such scenarios, and they clear sparse blocks by mov-
ing their elements to a different block. The evacuated blocks can
then be used for further allocations. In this section we first discuss a
simple upper bound on the heap usage by looking at a simple com-
paction strategy (which is similar to what is used in actual systems
in practice). We then provide a program that makes the allocator

2010/7/9

waste blocks by leaving enough allocated space on them so that the
compaction budget will not allow effective defragmentation.

5.3.1 The Upper Bound

Our memory manager allocates in a (block-oriented) Segregated
free list manner as before, but it also has a compacting strategy. We
call this memory manager a Compacting Segregated Free List allo-
cator and denote it by CSFL. We specify the compaction strategy,
and later show that using this compaction strategy the following
upper bound on the heap size holds.

Theorem 5. Let c be the compaction threshold, k be the number
of buckets, and n be the block size. The maximal heap size required
for CSFL to execute any program P that never uses more than M
words of allocated space simultaneously and never allocates an
object larger than n satisfies:

HS(CSFL,P)< M -c+k-n.

In order to prove this upper bound, we first present the com-
paction strategy of CSFL, show that it is consistent (always has
enough budget for compaction), and finally prove the bound in The-
orem 5.

The definition below assumes a last block in any bucket. Be-
tween all blocks that are allocated for the bucket, the last block is
the one that was most recently allocated for this bucket. By the be-
havior of the segregated free list allocator, all objects on all other
blocks were exhausted before the last one was allocated.

Definition 5.6 (CSFL Compaction Strategy). We denote by b, a
block that contains objects of size i. CSFL will compact all objects
within Block b to other block(s), if Block b holds the following
constraints:

1. Block b is not the last block for objects of size i,

2. At most 1/c of the space in Block b is allocated,

3. There is enough free space in blocks containing objects of size
i to contain all of the objects that are currently placed in Block

b.

Claim 5.7. CSFL with the compaction strategy of Definition 5.6
has enough compaction budget to execute all required compaction.

Proof. We show that enough space was allocated on this block
alone to provide the budget for compacting it at the appropriate
time in the execution. By the allocation strategy of the segregated
free list, any block that is not the last block, was filled with objects
at some point in the execution. Otherwise, the next block would
not have been allocated. There were no compactions made on this
block since it was taken from the pool, according to the algorithm
(by which every compaction frees an entire block and returns it
to the blocks pool). Since this block was taken from the blocks
pool, the accumulated compaction quota due to allocations on this
block is at least 1/c of the block size. (It can be larger if space on
this block was reused.) At the execution point in which compaction
is triggered on this block, at most 1/c of the block is allocated,
therefore all this space can be moved using only budget in the
quota that originated from allocations on this block. After all of
the objects in this block are compacted away, the block is returned
to the block pool and can be reused in the future for other bucket
sizes. O

Proof of Theorem 5. According to Claim 5.7, all blocks (except
maybe the last block) are at least 1/c full (otherwise, the block
would have been cleared using compaction). Therefore, the total
heap size required for these blocks is at most: ¢ - M7, where M;
is the total space in all blocks except the last ones in each bucket
size. Therefore, the total heap size required is at most c- M + k - n,

where k is the number of different possible sizes, and n is the block
size. O

5.3.2 The Lower Bound

We now construct a program that creates a lot of fragmentation for
the compacting segregated free list allocator. As before, we look at
a CSFL that uses a large number of buckets and at a CSFL that uses
a small number of buckets. We provide lower bounds for these two
extreme cases, and the same techniques can be used to work with
any specific bucket sizes employed in any practical system.

Denote by P(M, [s1,...,sk]) the set of programs that never
allocate more than M words simultaneously and allocate only ob-
jects whose size is in the set {s1, ..., $» }. The following theorems
assert the two lower bounds.

Theorem 6. Let CSFLq be an allocator that implements the
segregated free list method and keeps the compaction bound of
% - S for ¢ > 4. Let it’s bucket object sizes contain be the complete
assortment of: s1 = 1,82 = 2,83 = 3,54 = 4,...,8, = n for
n > 2. Then there exists a program P € P(M, [s1, ..., syn]), such
that the heap size required for allocator CSFLgyy to execute the
allocations and deallocations of P, HS(CSFLqy1, P), satisfy:

ife>2vn
ifc<2yn.

Theorem 7. Let CSFL;,y be an allocator that implements the
segregated free list method and keeps the compaction bound of
% - S. Let it’s bucket object sizes contain a logarithmic assortment
of bucket sizes: s1 = 1,52 = 2,83 = 4,54 = 8§, ..., Slogn+1 = N.
Then there exists a program P € P(M, [s1, ..., Slogn+1]), Such
that the heap size required for the allocator CSFL;,q4 to execute all
allocations and deallocations of P, HS(CSFLiog, P), satisfy:

-M -logn —2M ifc>2logn
-M-c—2M ifc <2logn

HS(CSFLay, P) > { g

1
HS(CSFLyog, P) > { 1
8

‘We now present the program Segregated-Waster, denoted Psw,
that creates a large fragmentation for the compacting segregated
free list allocator.

Algorithm 7 Program Segregated-Waster for the compacting seg-
regated free list allocator

1: Compute d as a function of the input compaction threshold c.

2: fori = 1to k do do

3: Allocate as many objects as possible of size s;

4 In each block, deallocate as many objects as possible subject to
leaving at least 1/d of the space allocated in this block.

5: end for

Algorithm 7 is similar to Algorithm 6 presented in Section 5.2
in its allocation steps, but differs in its deallocation steps. The
difference is that Algorithm 7 keeps the allocated space remaining
in each block larger than 1/d of the space allocated within this
block. Leaving more allocated space in a block makes it difficult
to compact away all of the objects in it. A block can be used for
allocating objects of a different size only when all of the objects in
it are moved away.

Below we investigate the joint run of CSFL and Psw and
provide claims that lead to the proof of the Theorems 6 and 7. Note
the difference between the execution of CSFL against a program
P (with compaction enabled), and the execution of SFL against
it (with compaction disabled). The difference is the fact that in
the compacting scenario space can be reused. After objects on
a block are compacted away, this same block can be reused for
objects of larger sizes. Therefore, it will be necessary to calculate
the heap size depending on compaction as well as allocation. The

2010/7/9

Compaction is the reason why in Algorithm 7, deletions leave 1/d
of the space in a block, where d is chosen according to the value
of c. This is done in order to make the compaction more costly,
but it has another effect: less deletion leaves less space for future
allocations. Below, we present some claims that lead to the proof
of Theorems 6 and 7 presented above.

Claim 5.8. Consider the execution of a CSFL allocator with the
program Psyy. For any phase i in the execution, let M; denote
the space available for allocation in Phase 1, and let s; denote the
object size allocated in Phase i. Let k denote the number of phases
in the execution. The heap size required for the execution of Psw
with CSFL satisfies:

N | =

k
1
HSy(CSFL, Psw) > 5 Zl M; —

k
E Si.
=1

Proof. According to the definition of Psy, the program run con-
sists of phases. In each phase the space available for allocation is

M;. The program requests allocations of as many objects as it can

of size s;. The number of allocation requests is, therefore, {%J,

and the total space allocated in Phase ¢ is {%J -5;. The total space

Si

allocated from the beginning of the run untily(including) Phase k is

sk—ZL;J-siz;Mi—lei. (5.4)

=1

The total quota for compaction is Sy, - %

In each phase, the program removes as many objects as it can,
subject to leaving at least 1/d of the space already allocated in each
block. In order to free a bucket for reuse, all the objects in this block
must be moved to another block. Therefore, the total space reuse
during the execution is at most d times the space compacted, which
isatmost d - S - % Setting d = 5 in Psw, we get that the space
reuse is at most %Sk. The total heap size necessary is at least the
space allocated, Sj, minus the space reused, which is at most %Sk.

Now using the Inequality 5.4 for Sy, gets the desired bound. O

Claim 5.9. Consider the execution of a CSFL allocator with the
Program Psw. Let k be the number of phases in the execution, let
M; be the total space size available for allocation in Phase 1, let s;
be the size of objects allocated in Phase 1, let n be the block size,
and let d be the density threshold. Then in all phases 1 < i < k it

holds that:
Mi+12Mi(1_1_ %)

d n-—s;

Proof. The allocator allocates according to the segregated free list
method. This means that objects of different sizes are allocated
in different blocks, and are allocated in these blocks sequentially.
Therefore, if the space that could be allocated at the beginning of
Phase 7 is M;, and the size of objects to allocate in Phase ¢ is s;,
then the number of objects actually allocated in Phase ¢ is L%

The number of objects in each full block is {ﬂJ . The number of

Si
My
s

n
Si

might be a last block that was only partially allocated. The allocated

fully allocated blocks is, therefore, . Additionally, there

n

space inside each full block is | - | - s;.

The program Psy, removes as many objects as possible from
each block, subject to leaving at least 1/d of the objects that were
allocated in each block. This means that the amount of space that
remains allocated and cannot be freed for use in future allocations

from the full blocks is at most the number of full blocks used in this
phase times the allocated space remaining in each block:

{EJJ (2] -wben).

The additional s; in the above equation appears because 1/d of the
block size might not contain a integral number of objects of size s;.
Therefore an extra object might be needed in the block.

Now it remains to investigate the space remaining in the last
block used in Phase ¢. This last block might have not been filled
completely as there were not enough allocatable words to fill it. The
number of objects allocated in the last block is the total number
of objects allocated, minus what was allocated in the other (full)

{EJJ 12,

The space remaining in the last block is the number of objects
allocated in that block, multiplied by the object size, and by 1/d,
plus one additional object (for the case that the numbers do not
divide well). If there is indeed a last block that contains less objects
than all other blocks, then the live space remaining in it is at most:

]

This remaining space in the last block can be bounded from above

by:
2]

H

which we will use in what follows.

The total space that becomes available for allocation in the next
phase is the amount of space that gets deleted in the blocks in
which allocation occurred in this phase. This can be computed as
the space that was available for allocation in this phase minus the
space that was allocated but not deleted in this phase. Note that
this computation provides a lower bound on the amount of space
available for allocation in the next phase as compaction that the
program executes may make the memory manager delete more
objects by moving objects from sparse blocks to dense ones and
triggering deletions of objects from previous phases. The space
available for allocation in the next Phase ¢ + 1 is at least:

My > M; — LEJ ({iJSZ%_F Z)
- VZJ_ &;JJ {TJ (Sz%-ksz)
e B o o)

2010/7/9

[%]
from above by L, we get:

H

Miyn > M; — HS”;JJ (51 - L:—ZJ Sz) - HIZ‘J (3 + i)

Bounding

si

2= (gy+e)

Bounding L];{1

zJ from above by Af:, and bounding { J from
below by - — 1, we get:

M; Si Si 1 Si
] > i — . — | > i - = — .
Mz+1_Mz Py <:_1+d>_Mz(1 d TL—SZ‘)

Claim 5.10. Consider the execution of a CSFL allocator with
the program Psvwy. Let M; be the size of the space available for
allocation in Phase i, let s; be the objects size in Phase 1, let n
be the block size, and let d be the density threshold. In all phases
2 <3 < kit holds that:

1—1
i—1 S
M; > M — M - E J .
a < d +j1nsj)

Proof. By removing the recursion from the result of Claim 5.9, we
get:

i-1
1 Si

M, > M 1-=- .

- 31:[1< d n—s,-)

By using Equation 5.1 we substitute the product operation with the
sum operation:

i—1
Mi2M<1—Z(;+nii8‘)>.

j=1

Which is what we wanted to prove. O

Claim 5.11. Consider the execution of a CSFL allocator with the
program Psw. Let HSy be the total heap size required for the
allocations of CSFL until the end of phase k. The heap size can be
bounded by:

k(k —1)
4d

k
1 (k —i—1)s;
M —
Proof. According to Claim 5.8, the total heap size until Phase & is:
k k
1 1
=) Mi— - i

Substituting the value of M; with the result of Claim 5.10, we get:
HSk(SFL Psw)

HSy(CSFL, Psw) > %Mk - M-

fISk(CSFL7 Psw) >

k
1
> - M-M - = i
k 1
1 k(k 1 —i—1)s

> -Mk—M. -2~ - .

> Mk —M QMZ; — Zs
By substituting —s; in the denominator, with the maximal value of
Si, which is sx_1, we get the claim. O

We now use the above claims to prove Theorems 6 and 7.

Proof of Theorem 6. The object sizes in this case are: s; = 1,52 =
2,53 = 3,54 = 4, ..., $n = n. We set these sizes in the expression
of Claim 5.11:

1 k(k—1)
2Mk—M- 1d

k—1 k
1 (k—i—1)i 1~
EESYVA Wl Gl Al (NS e

Using Equation 5.2 and some algebra, we get:

HSy(CSFLau, Psw) >

HS)(CSFLaw, Psw) > Mk — M - ’C(kfgl)
M- (k—1)(k—2)(k—3) k(k+1)
6(n—k:+1) 4 .

The above bound is correct for any phase k, 1 < k < /n, but the
quality of the bound is best at where the computation actually stops.
We divide into two possible cases. The first case is when d > /n.

In this case, we choose k = @ and get:

HS i (CSFLan, Psw) > sMy/n— M - Vnlyn = 2)
2

16d
_yWn=2(/n-4)n-6) Vnyn+2)
48(n — ¥ 4-1) 16

Since we assume that d > /n, we can bound % from above by
1. Note also that for n > 2

Wn=2(n-HVn=-6 _ ~

(n— %" +1)
Therefore,
1 —
HS /= (CSFLau, Psw) > EMf—M\/?iG 2
2
1 n+2yn
4—8M(\/ﬁ 6) 15

According to our definition M > n. Therefore, we can replace the
last n + 24/ with 3M, and get that:

HS (CSFLau,Psw) > M\/>-|— 16M
2

The other case is when d < /n. In this case, we choose k = %.
Therefore:
HS% (CSFLau, Psw) >
(d—2) 7M(d— 2)(d—4)(d—6) d(d+2)
16 48(n — 4 + 1) 16

IMd—M -

Since v/n > d, we can replace n with d>. We also use the fact that
ford > 2,

(d=2)(d-4)(d—6) _

d—6.
(d2— 2 +1) -

Therefore,

1 d—2 d—6 d*+2d

a > — —M- — - .
HS%(CSFL 1w, Psw) > 4Md M 16 M 18 16
Since M > n > d?, we can replace the last d? 4+ 2d with 3M, and
get that:

HSd (CSFLall,Psw) > 6Md+ 16M

setting d = ¢/2 the claim holds. O

2010/7/9

Proof of Theorem 7. The object sizes in this case are: 51 = 1,52 =
2,83 = 4,54 = 8§,...,s, = 2". Setting the object sizes in the
expression of Claim 5. 11 we get:

-1
HSy(CSFLiog, Psw) > 2Mk— M- %
— 17— 1)21 1 i
MZ n—9—1 9 ; 2
Using equation 5.3 and some algebra, we get:
k(k—1
HSi(CSFLiog, Psw) > +Mk — M - %
2" —k 1 /9k+1
M = 5 (20).

We split the analysis into two possible cases. First, assume that
d < log(n). In this case we look at the phase k = logn. In this
case, we get:

HS1ogn(CSFLiog, Psw) > 1Mlogn — M -

n_ 4d
5 — logn
Y - L G P
-2
I I -1
Z%Mlogn_M.%in)
7M+M.21°g"—n+§.
n
logn

Since d > logn, we can bound
use the fact that M > n > 1 to get:

from above by 1. Also, we

(logn — 1)

HSlogn(CSFLlogypsw) 2 %MlognfM

M4 M. 2logn

L n
> yMlogn —2M.

1
—n+3

The other case is that d < log n. In this case, we choose k = d
and obtain:

-1
HS4(CSFLiog, Psw) > $Md— M - d(%T)
2d—1 —d a1
1 (od+
My 527 1),
We replace n with 2%, and use the fact that M > n > 29 to get:
HS4(CSFLiog, Psw) > 3Md— M@
2d71 —d 4 L
M 2+
> iMd—2M
and again, setting d = ¢/2, the claim holds. O

6. Conclusion

In this work we studied the effectiveness of partial compaction
for reducing the space overhead of dynamic memory allocation.
We developed techniques for showing lower bounds on how much
space must be used when the amount of compaction is limited by
a given budget. It was shown that partial compaction can reduce
fragmentation, but up to a limit, determined by the compaction
budget. We also studied the effectiveness of partial compaction
for a specific common allocator: the segregated free list allocator.
Tighter bounds have been shown based on the specific behavior of
this allocator.

This work extends our understanding of the theoretical founda-
tion of memory management, specifically for compaction. We hope
future work can build on our techniques and provide even tighter

logn(logn — 1)

bounds to further improve our understanding of the effectiveness
of partial compaction for modern systems.

References

[1] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. An
efficient parallel heap compaction algorithm. In Proceedings of the
Nineteenth ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, ACM SIGPLAN No-
tices 39(10), pages 224-236, Vancouver, Canada, October 2004.

David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Conference
Record of the Thirtieth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices 38(1), pages 285—
298, New Orleans, LA, USA, January 2003.

Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuiper, and Vic-
tor Leikehman. An algorithm for parallel incremental compaction.
In Hans-J. Boehm and David Detlefs, editors, Proceedings of the
Third International Symposium on Memory Management (June, 2002),
ACM SIGPLAN Notices 38(2 supplement), pages 100-105, Berlin,
Germany, February 2003.

[2

—

[3

=

[4

=

Hans-Juergen Boehm. Bounding space usage of conservative garbage
collectors. In POPL 2002 [14].

[5] Hans-Juergen Boehm. The space cost of lazy reference counting. In
Proceedings of the Thirty-First Annual ACM Symposium on Principles
of Programming Languages, ACM SIGPLAN Notices 39(1), pages
210-219, Venice, Italy, January 2004.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in
an uncooperative environment. Software Practice and Experience,
18(9):807-820, 1988.

Cliff Click, Gil Tene, and Michael Wolf. The Pauseless GC algorithm.
In Michael Hind and Jan Vitek, editors, Proceedings of the First ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments, pages 46-56, Chicago, IL, USA, June 2005.

[8] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Elliot E. Salant,
Katherine Barabash, Itai Lahan, Erez Petrank, Igor Yanover, and Yossi
Levanoni. Implementing an on-the-fly garbage collector for Java.
In Craig Chambers and Antony L. Hosking, editors, Proceedings of
the Second International Symposium on Memory Management, ACM
SIGPLAN Notices 36(1), pages 155-166, Minneapolis, MN, October
2000.

Richard E. Jones. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996. With a
chapter on Distributed Garbage Collection by R. Lins.

[6

=

[7

—

[9

—

[10] Haim Kermany and Erez Petrank. The Compressor: Concurrent, in-
cremental and parallel compaction. In Michael 1. Schwartzbach and
Thomas Ball, editors, Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, ACM SIG-
PLAN Notices 41(6), pages 354-363, Ottawa, Canada, June 2006.

[11] Erez Petrank and Dror Rawitz. The hardness of cache conscious data
placement. In POPL 2002 [14], pages 101-112.

[12] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgard.
STOPLESS: A real-time garbage collector for multiprocessors. In
Greg Morrisett and Mooly Sagiv, editors, Proceedings of the Sixth
International Symposium on Memory Management, pages 159-172,
Montréal, Canada, October 2007. ACM Press.

[13] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of con-
current real-time garbage collectors. In Rajiv Gupta and Saman P.
Amarasinghe, editors, Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, ACM SIG-
PLAN Notices 43(6), pages 33—44, Tucson, AZ, USA, June 2008.

[14] Conference Record of the Twenty-ninth Annual ACM Symposium
on Principles of Programming Languages, ACM SIGPLAN Notices
37(1), Portland, OR, USA, January 2002.

[15] J. M. Robson. An estimate of the store size necessary for dynamic
storage allocation. Journal of the ACM, 18(3):416-423, July 1971.

[16] J. M. Robson. Bounds for some functions concerning dynamic storage
allocation. Journal of the ACM, 21(3):419-499, July 1974.

2010/7/9

