
A Comparison of
Gaussian and Mean Curvatures Estimation Methods

on Triangular Meshes

Tatiana Surazhsky
∗

, Evgeny Magid
†

, Octavian Soldea
‡

,

Gershon Elber
§

and Ehud Rivlin
¶

Center for Graphics and Geometric Computing,

Technion, Israel Institute of Technology, Haifa 32000, Israel.

ABSTRACT
Estimating intrinsic geometric properties of a surface from
a polygonal mesh obtained from range data is an impor-
tant stage of numerous algorithms in computer and robot
vision, computer graphics, geometric modeling, industrial
and biomedical engineering. This work considers different
computational schemes for local estimation of intrinsic cur-
vature geometric properties. Five different algorithms and
their modifications were tested on triangular meshes that
represent tesselations of synthetic geometric models. The
results were compared with the analytically computed val-
ues of the Gaussian and mean curvatures of the non uniform
rational B-spline (NURBs) surfaces, these meshes originated
from. This work manifests the best algorithms suited for
total (Gaussian) and mean curvature estimation, and shows
that indeed different alogrithms should be employed to com-
pute the Gaussian and mean curvatures.
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1. INTRODUCTION
A number of approaches have been proposed to repre-

sent a 3D object for the purposes of reconstruction, recogni-
tion, and identification. The approaches are generally clas-
sified into two groups: a volumetric and a boundary-based
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method. A volumetric description utilizes global charac-
teristics of a 3D object : principal axes, inertia matrix [8],
tensor-based moment functions [5] etc. Boundary-based
methods describe an object based on distinct local proper-
ties of the boundary and their relationship. This method is
well suited for recognition purposes because local properties
are still available with only partial view of an object.

The differential invariant properties such as total (Gaus-
sian) and mean curvatures are one of the most essential fea-
tures in boundary-based methods, extensively used for seg-
mentation, recognition and registration algorithms [17, 19].
Regrettably, these significant geometric quantities are de-
fined only for twice differentiable (C2) surfaces. In con-
trast, geometric data sets are frequently available as polygo-
nal, piecewise linear, approximations, typically as triangular
meshes. Such data sets are common output of, for examples,
3D scanners.

There exist a whole plathora of work [1,2,4,6,7,9–14,16,18]
describing algorithms for curvature estimation from polygo-
nal surfaces. Unfortunately, no rigorous comparison of these
methods exists, nor any errors analysis for these different
algorithms ever provided. The reason for the absence of
such work might be found in the difficulty of comparing the
computed curvature values with the exact curvature infor-
mation.

In [9,14] the authors furnish us with the general overview
of three algorithms on four types of primitive surfaces:
spheres, planes, cylinder and trigonometric surfaces. No
general surface are considered.

In [12], there is an asymptotic analysis of the paraboloid
fitting scheme and an algorithm based on Gauss-Bonnet the-
orem [3, 15], we refer to as the Gauss-Bonnet scheme, that
also known as the angle deficit method [12]. Yet again, no
error analysis for general surfaces is provided.

In [6,10,14], the principal curvatures and principal direc-
tions of a triangulated surface is estimated at each vertex by
a least square fitting of an osculating paraboloid to the ver-
tex and its neighbors. These references use linear approxi-
mation methods where the approximated surface is obtained
by solving an over-determined system of linear equations.

In [13], the authors present a nonlinear functional mini-
mization algorithm that is implemented as an iterative con-



straint satisfaction procedure based on local surface smooth-
ness properties.

In [2,11], circular cross sections, near the examined vertex,
are fitted to the surface. Then, the principal curvatures are
computed using Meusnier’s and Euler’s theorems (see [3,
15]).

In [16], the principal curvatures are estimated with the
aid of an eigenvalues/vectors analysis of 3 × 3 symmetric
matrices that are defined via an integral formulation.

In this work, we attempt to quantitatively compare five
of the above methods for estimating the total and mean
curvature, for triangular meshes. We test these methods
on triangular meshes that represent tesselations of the non
uniform rational B-spline (NURBs) surfaces. The results
are compared to the analytic evaluation of these curvature
properties on the NURBs surfaces.

The paper is organized as follows: a short review of dif-
ferential geometry of surfaces is provided in Section 2. In
Section 3, a concise description of the five algorithms we
considered is given. Then, results of our comparison could
be found in Section 4. Finally, we conclude in Section 5.

2. DIFFERENTIAL GEOMETRY OF SUR-
FACES

Let S(r, t) be a regular C2 continuous freeform parametric
surface in IR3. The unit normal vector field of S(r, t) is
defined by

N(r, t) =
∂
∂r

S(r, t) × ∂
∂t

S(r, t)
∥

∥

∂
∂r

S(r, t) × ∂
∂t

S(r, t)
∥

∥

.

The normal curvature κn of curve C ⊂ S passing through
the point S(r0, t0) is defined by the following relation, known
as

Theorem 2.1 Meusnier’s theorem:

κn = κ cos ϕ (2.1)

where κ is the curvature of C at S(r0, t0) and ϕ is the angle

between the curve’s normal n and the normal N(r0, t0) of

S.

The principal curvatures, κ1(r0, t0) and κ2(r0, t0), of S
at S(r0, t0) are defined as the maximum and the minimum
normal curvatures at S(r0, t0), respectively. The directions
of the tangents of the two curves that are the result of the
intersection of the surface S(r0, t0) and the planes containing
N(r0, t0) and having the curvature values of κ1(r0, t0) and
κ2(r0, t0) are denoted the principal directions (see [3, 15]).

Theorem 2.2 Euler’s theorem: The normal curvature κn

of surface S(r, t) in tangent direction T is equal to:

κn = κ1 cos2 θ + κ2 sin2
θ (2.2)

where θ is the angle between the first principal direction and

T .

The total and mean curvatures, K(r, t) and H(r, t), are
uniquely defined by the principal curvatures of the surface:

K(r, t) = κ1(r, t) · κ2(r, t); (2.3)

H(r, t) =
κ1(r, t) + κ2(r, t)

2
. (2.4)

3. ALGORITHMS FOR CURVATURE ES-
TIMATION

In this work, we consider five methods for the estimation
of the principal curvatures, for triangular meshes. We as-
sume that the given triangular mesh approximates a smooth,
at least twice differentiable, surface.

3.1 Paraboloid Fitting
This algorithm approximates a small neighborhood of the

mesh around a vertex v by an osculating paraboloid. The
principal curvatures of the surface are considered to be iden-
tical to the principal curvatures of the paraboloid (see [6,10,
14]).

Vertex vi is considered an immediate neighbor of vertex
v if edge ei = v vi belongs to the mesh. Denote the set of
immediate neighboring vertices of v by {vi}

n−1
i=0 and the set

of the triangles containing the vertex v by {T v
i }

n−1
i=0 ,

T
v
i = 4(vi v v(i+1) mod n), 0 ≤ i ≤ n − 1. (3.1)

Let Nv be the normal of surface S at vertex v. Normals
are, in many cases, provided with the mesh toward Gouraud
and/or Phong shading. Otherwise, let

N
v
i =

(vi − v) × (v(i+1) mod n − v)
∥

∥(vi − v) × (v(i+1) mod n − v)
∥

∥

. (3.2)

be the unit normal of triangle T v
i . Then, Nv could be esti-

mated as an average of normals Nv
i :

Nv =
1

n

n−1
∑

i=0

N
v
i ; Nv =

Nv
∥

∥Nv

∥

∥

. (3.3)

v is now transformed along with its immediate neighbor-
ing vertices, {vi}

n−1
i=0 , to the origin such that Nv coalesce

with the z axes. Assume an arbitrary direction x (and
y = z×x). Then, the osculating paraboloid of this canonical
form equals,

z = ax
2 + bxy + cy

2
. (3.4)

The coefficients a, b and c are found by solving a least
square fit to v and the neighboring vertices {vi}

n−1
i=0 . Then,

the total and mean curvatures are computed as,

K = 4ac − b
2; H = a + c. (3.5)

3.2 Circular Fitting
This algorithm from [2, 11] uses the Meusnier’s 2.1 and

Euler’s 2.2 theorems for the estimation of the principal cur-
vatures. The justification for this algorithm comes from
Equation (2.2) that is equivalent to

κn =
1

2
(κ1 +κ2)−

1

2
(κ1−κ2)(cos 2θ0 cos 2α+sin 2θ0 sin 2α),

(3.6)
where θ0 is the angle between some arbitrary chosen refer-
ence direction T0 in the tangent plane of vertex v and the
principal direction that corresponds to κ1. α is the angle
between the tangent direction corresponding to the normal
curvature κn and the reference direction T0. We can rewrite
Equation (3.6) as

κn = A − B cos 2α + C sin 2α. (3.7)

One can derive the values of A, B and C using a least
squares fit of at least three circles, where each one passes



through point v = S(r0, t0), and two of v’s immediate neigh-
bors. Then, the principal curvatures and principal directions
could be computed as:

κ1 = A +
√

B2 + C2,

κ2 = A −
√

B2 + C2, (3.8)

θ0 =
1

2
arctan

(

C

B

)

.

The method proposed in [2, 11] constructs the fitted cir-
cles through the vertex v and a pair of v’s neighbors, vi

and vj , such that the angle between vectors (vi − v) and
(vj − v) is close to π. Thus, by selecting k ≥ 3 pairs of
such neighbors, the k constructed circles can prescribe us-
ing Meusnier’s theorem (see Equation (2.1)) the values of A,
B, C, and consequently, κ1 and κ2.

3.3 The Gauss-Bonnet Scheme
Consider again vertex v and its immediate neighborhood

{vi}
n−1
i=0 . Then, for i = 0 . . . n−1, let αi = ∠(vi, v, v(i+1)mod n)

be the angle at v between two successive edges ei = v vi.
Further, let γi+1 = ∠(vi, v(i+1)mod n, v(i+2)mod n) be the
outer angle between two successive edges of neighboring ver-
tices of v. Then, simple trigonomy can show that

n−1
∑

i=0

αi =

n−1
∑

i=0

γi. (3.9)

The Gauss-Bonnet [3,15] theorem reduces, in the polygo-
nal case, to

∫∫

A

KdA = 2π −

n−1
∑

i=0

γi, (3.10)

which, by Equation (3.9) equals to,

∫∫

A

KdA = 2π −

n−1
∑

i=0

αi, (3.11)

where A is the accumulated areas of triangles T v
i (Equa-

tion (3.1)) around v.
Assuming K is constant in the local neighborhood, Equa-

tion (3.11) can be rewritten as

K =
2π −

∑n−1
i=0 αi

1
3
A

. (3.12)

This approach for estimating K is used, for example, by [1,
4,7,12,14]). In [4,7] a similar intergal approach to the com-
putation of the mean curvature is also proposed as

H =
1
4

∑n−1
i=0 ‖ei‖βi

1
3
A

, (3.13)

where ‖ei‖ denotes the magnitude of ei and βi measures nor-
mal deviations βi = ∠(Nv

i , Nv
(i+1)mod n) (see Equation (3.2)).

3.4 The Watanabe and Belyaev Approach
A simple method for estimating the principal curvatures

of a surface that is approximated by a triangular mesh was
proposed in [18].

Consider an oriented surface S. Let T be a tangent vector
and N be the unit normal at a surface point P . A normal
section curve r(s) associated with T at P is defined as the
intersection between the surface and the plane through P

that is spanned by T and N . Let T1 and T2 be the principal
directions at P associated with principal curvatures κ1 and
κ2, respectively. κn(ϕ) denotes the normal curvature of the
normal section curve, where ϕ is the angle between T and T1.
Using Euler’s theorem (See Theorem 2.2), integral formulas
of κn(ϕ) and its square are derived:

1

2π

∫ 2π

0

kn(ϕ)dϕ = H;
1

2π

∫ 2π

0

kn(ϕ)2dϕ =
3

2
H

2−
1

2
K.

(3.14)
In order to estimate the integrals of Equation (3.14), one

needs to estimate the normal curvature around v, in all pos-
sible tangent directions.

Assume P coalesces with mesh vertex v and recall the
normal Nv of v (Equation (3.3)). Here, the average of the
normals of the adjacent faces to vertex v takes into account
the relative areas of the different faces.

v is now transformed along with its immediate neighbor-
ing vertices, {vi}

n−1
i=0 , to the origin such that Nv coalesces

with the z axes. Consider the intersection curve r = r(s) of
the surface by a plane through v that is spanned by Nv (the
z axis in our canonical form) and edge ei = v vi. A Taylor
series expansion of r(s) gives.

r(s) = r(0) + sr
′(0) +

s2

2
r
′′(0) + . . . ,

= r(0) + sTr +
s2

2
κnNr + . . . , (3.15)

where Tr and Nr are the unit tangent and normal of r(s).
Recall that v = r(0) and that vi = r(s). The arclength s
could be approximated by the length of edge ei = v vi, or
s ≈ ‖v vi‖. Multiplying Equation (3.15) by Nv = Nr yields,

Nv · v vi ≈ κn
‖v vi‖

2

2
; κn ≈

2Nv · v vi

‖v vi‖2
. (3.16)

The trapezoid approximation of Equation (3.14) leads to

2πH ≈

n−1
∑

i=0

κ
i
n

(

ϕi + ϕ(i+1) mod n

2

)

, (3.17)

and

2π

(

3

2
H

2 −
1

2
K

)

≈

n−1
∑

i=0

k
i
n

2
(

ϕi + ϕ(i+1) mod n

2

)

. (3.18)

3.5 The Taubin Approach
Let T1 and T2 be the two principal directions at point

P of surface S and let Tθ = cos(θ)T1 + sin(θ)T2 be some
unit length tangent vector at P . Taubin, in [16], defines the
symmetric matrix Mp by the integral formula of

Mp =
1

2π

∫ +π

−π

κ
p
n(Tθ)TθT

t
θdθ. (3.19)

where κp
n(Tθ) is the normal curvature of S at P in the di-

rection Tθ.
Since the unit length normal vector N to S at P is an

eigenvector of Mp associated with the eigenvalue zero, after
the factorization,

Mp = T12
t

(

m11
p m12

p

m21
p m22

p

)

T12 (3.20)



where T12 = [T1, T2] is the 3 × 2 matrix constructed by
concatenating the column vectors T1 and T2. The principal
curvatures can then be obtained as functions of the nonzero
eigenvalues of Mp:

k1 = 3m
11
p − m

22
p , k2 = 3m

11
p − m

22
p . (3.21)

The first step of the implementation estimates the normal
vector Nv at each vertice v of the surface with the help of the
Equation (3.2). Then, for each vertex v, matrix Mv is ap-
proximated with a weighted sum over the neighbor vertices,
vi:

M̃v =

n−1
∑

i=0

wiκn(Ti)TiT
t
i , (3.22)

where

Ti =
(I − NvN t

v)(v − vi)

‖(I − NvN t
v)(v − vi)‖

(3.23)

is the unit length normalized projection of vector vi − v
onto the tangent plane 〈Nv〉

⊥. The normal curvature indi-
rection Ti is approximated with the help of Equation (3.16)

as κn(Ti) =
2Nt

v
(vi−v)

‖vi−v‖2 .

The weights, wi, are selected to be proportional to the
sum of the surface areas of the triangles incident to both
vertices v and vi (two triangles if the surface is closed, and
one triangle if both vertices belong to the boundary of S).

By construction, the normal vector Nv is an eigenvec-
tor of the matrix M̃v associated with the eigenvalue zero.
Then, M̃v is restricted to the tangent plane 〈Nv〉

⊥ and, us-
ing a Householder transformation and Givens rotation the
remaining eigenvectors T1 and T2 of M̃v (i.e., the principal
directions of the surface at v) are computed. Finally, the
principal curvatures are obtained from the two correspond-
ing eigenvalues of M̃v using Equation (3.21).

3.6 Modifications
We considered two modifications of the Taubin’s algo-

rithm [16]:

• Taubin A, (Constant integration): In Equation (3.22),
the weights wi are selected to be proportional to angles
∠(vi, v, vi+1) instead of the surface areas.

• Taubin B, (Smoothing with a trapezoidal rule): The
directional curvature κn(Ti) in Equation (3.22) is se-
lected as an average of values κn(Ti) and κn(Ti+1).

We also considered two modifications to the algorithm of
Watanabe and Belyaev [18]. In the two following modifi-
cated algorithms, the first step was the same. We employ
the tangent directions Ti at vertex P produced by Equa-
tion (3.23). Having two vertices (v and vi), tangent direction
Ti and the normal in P , we compute the radius of the fitted
circle and from that derive κn(ϕi), the normal curvature in
the specified direction Ti.

• Watanabe A: Having the normal curvatures, we apply
Equations (3.17) and (3.18).

• Watanabe B: From the set of the normal curvatures
of each vertex v, {κn(ϕi)}

n−1
i=0 , we select the maximal

(k1) and the minimal (k2) normal curvature values and
apply the classic Equations of (2.3) and (2.4).

(1) (2) (3)

(4) (5) (6)

(7)

Figure 1: The NURB surfaces that were used for
curvature estimation tests.

(1) (2) (3)

(4) (5) (6)

Figure 2: The tesselations of the spout surface were
produced for the following resolutions: 128 trian-
gles (1), 288 triangles (2), 512 triangles (3), 1152
triangles (4), 2048 triangles (5) and 5000 triangles
(6).

4. EXPERIMENTAL RESULTS
We tested all the algorithms described in Section 3 on

a set of synthetic models that represent the tesselations of
seven NURB surfaces: a cylinder, a cone, a sphere, a surface
of revolution generated by a non circular arc, the body and
the spout of the infamous Utah teapot model and ellipsoid,
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Figure 3: Average of the absolute error for the value
of total curvature for the tesselations of the surface
of revolution generated by an arc (see Figure 1 (4)).
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Figure 4: Average of the absolute error for the value
of mean curvature for the tesselations of the surface
of revolution generated by an arc (see Figure 1 (4)).
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Figure 5: Average of the absolute error for the value
of total curvature for the tesselations of the Utah
teapot’s spout NURBs surface (see Figures 1 (6)
and 2).

see Figure 1. These models along with the curvature values
for each vertex are also available in

http://www.cs.technion.ac.il/∼gershon/poly crvtr.

The tesselations of each model were produced for several
different resolutions: from about a hundred triangles to sev-
eral thousand triangles for the finest resolution. The differ-
ent tesselations of the spout surface are shown in Figure 2.
These different resolutions helped us gain some insight into
the convergence rate of the different examined algorithms as
the accuracy of the tesselation is improved.

For all the tested models, the comparison between the
different algorithms showed similar results. Denote by Ki

and Hi the values of total and mean curvatures computed by

S. Rev. : H - absolute error
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Figure 6: Average of the absolute error for the value
of mean curvature for the tesselations of the Utah
teapot’s spout NURBs surface (see Figures 1 (6)
and 2).

one of the methods from the triangular mesh data in vertex
vi, while Ki and Hi are the exact (analytically computed)
values of the total and mean curvatures, in the same surface
location vi = S(ri, ti) on the corresponding NURBs surface.
We considered the following error values:

1. Average of the absolute error value of the total curva-
ture K

1

m

m
∑

i=1

|Ki − Ki|,

2. Average of the absolute error value of the module of
the mean curvature |H|

1

m

m
∑

i=1

||Hi| − |Hi||,

In the vast majority of previous results, only primitives
such as cones and sphere were examined for the accuracy of
these curvature approximation algorithms.

In all our tests, two algorithms out performed the rest. It
was clear thoughout our tests that the parabolic fitting is
the best scheme to derive the mean curvature. Further the
Gauss-Bonnet (angle deficit) scheme always provided the
best results for the total curvature.

Figures 3 and 4, show the results of the tests for the tes-
selations of the surface of revolution generated by a non
circular arc (see Figure 1 (4)), whereas Figures 5 and 6
demonstrate the comparison of the curvature estimation al-
gorithms for the tesselations of the spout of the Utah teapot
(see Figures 1 (6) and 2).

These graphs shows few examples of the results we got
throughout our tests. The Gauss-Bonnet scheme shines
when K is computed and the parabolic fitting scheme works
best for H. Hence, the optimal approximation scheme for
triangular meshes should be based on a synergy of two schemes.

Another significant result that can be drawn from these
graphs is that this synergetic scheme converges as the fine-
ness of the mesh is improved. This convergance was not wit-
nessed by all schemes, yet both the Gauss-Bonnet scheme
for K and the parabolic fitting scheme for H always did
converge.

Interestingly enough, for K the parabolic fitting scheme
was continuously second and followed a stride behind the
Gauss-Bonnet scheme. If one must select only one method
of choice, it should therefore be the parabolic fitting scheme.



5. CONCLUSION
In this work, we have provided a comparison of five dif-

ferent algorithms for curvature estimation over triangular
meshes.

We have built a library of triangular meshes that repre-
sent approximations (with different resolutions) of the syn-
thetic models given as NURB surfaces. For each surface we
have produced several polyhedral approximation with vary-
ing number of the triangles. The library files contain the
following information for each vertex vi:

• 3D coordinates;

• Analytically precomputed values of total curvature Ki

and squared value of the mean curvature H2
i at point

vi = S(ri, ti), computed from the original NURBs sur-
face.

The output of the tests of five different schemes on seven
models (Figure 1) shows that:

1. The best algorithm for the estimation the total curva-
ture is the Gauss-Bonnet scheme.

2. The best method for the estimation of the mean cur-
vature is the paraboloid fit method.

The most stable method that always had a good conver-
gence is that osculating paraboloid fitting scheme. In [12],
the authors proved that the paraboloid fit method has a
quadratic error bound using asymptotic analysis even for
non-uniform meshes (that is usually the case in practice),
while the Gauss-Bonnet scheme has quadratic error bound
in the case of uniform mesh and linear error bound other-
wise.
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