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Abstract 

The navigational tasks of computing time-to-impact 
and controlling movements within specific range are 
addressed here. By using specially designed lenses various 
components of these procedures, consisting of mathematical 
transformations, can be provided at image acquisition time, 
and therefore, speed up execution time. This s t u 4  discusses 
the optical implementation of different correlators based on 
the Fourier transform and Mellin transform. In addition, the 
fractional versions of these correlators are defined and 
analyzed here. Based on the experimental results it can be 
concluded that the optical implementation of 
transformations can indeed play a significant role in 
speeding up execution time in respect to the above 
mentioned navigational tasks. 

1. Introduction 

Algorithms concerning visual navigation aspects 
are usually known to be computationally heavy and 
considered as time consuming. Therefore, physical sensors 
that provide as much information as possible directly at 
acquisition time have an utmost importance. Sensors 
performing special operations can considerably save 
processing time. An example to such a sensor can be a 
retina-like sensor performing the log-polar mapping, which 
has many applications in motion estimation [ 1-81. 
Constructing such special purpose sensors can be a very 
complicated task from an engineering point of view, because 
it usually involves a special geometrical positioning of 
known sensors. Moreover, the use of many sensors and the 
supporting algorithms enlarges significantly the overall cost 
of the system. 

Here, a different approach is taken, which suggest 
the common use of cameras, but with optically implemented 
functions. This means that the functions we wish to obtain 
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directly at acquisition time, will be implemented within the 
camera, by using special purpose lenses. In addition to the 
high speed in which relevant data can be supplied, lenses are 
usually cost effective. Thus, this solution is optimal in both 
senses, speed and cost. 

The special lenses are formed by different 
combinations of regular Fourier lenses and special purpose 
designed filters [9-111. This paper concentrates on two 
designs: (a) Fourier and Mellin based correlators, and (b) 
Fractional Fourier and Fractional Mellin based correlators, 
which concept is first introduced here. Each design answers 
a specific problem in visual navigation. The first design 
serves in the computation of time-to-impact, and the later in 
controlling and estimating specific ranges. 

2. Optical Transformations and Visual 
Navigation 

In what follows we present two optical 
transformations and their possible implementation to visual 
navigation. First, correlators, optical correlators, and their 
possible application to time-to-impact calculation are 
discussed. Then, the concept of fractional correlators is 
introduced, and its possible application to selective range 
estimation is explained. 

2.1 Correlators and Their Application to Time-to-Impact 
Estimation 

The 2D Mellin Transform is given by: 
m m  

M(u,v) = j j f  ( X , Y ) .  
--0-9 
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Therefore, the Mellin Transform of an image is in fact its 
Fourier Transform in a log-polar representation. Replacing 
x and y with the log-polar coordinates (p,B), the Fourier 
Transform of the image in its log-polar coordinates is 
obtained. The log-polar mapping is defined by: 

p = In,/-- 
IY ( 2 )  

B = tan- - 
.a 

and therefore, 

meaning, that the time-to-impact can be extracted from the 
change in the temporal variations of the logarithm of the 
object in the image plane. 

Therefore, if two images of the object are taken At 
time apart, the derivative of lnl  can be calculated from 
these images, and the time-to-impact can be obtained 
directly. If the object has length L, in the first image and 
length L, in the second image then 

(9) 

Both L and L, can be given directly in pixels, because any 
other representation is equivalent to summation and 
subtraction of the same constant. 

Note that by using the Mellin based correlators, the 
time-to-impact computation of the imaged object is straight 
forward. Let L, be a scaled version of L , meaning L, = 

s L , then: 

2lr m 

MW) = j j&, +p{- 2 d u p  + ve)}dpde 
0 -D 

= F T ( f  (P, 0)) (3) 

where FT denotes the Fourier Transform. 
Thus, if the tested pattern is a rotated and scaled 

version of the reference pattern, the correlation image using 
the Mellin Transform instead of the Fourier Transform will 
produce a translated correlation-peak in the p and B plane. 
Clearly, a translation in the p coordinate is actually a 
scaling in the x-y plane, and a translation in the 0 
coordinate is actually a rotation in the x-y plane. Therefore, 
the resulted transform is invariant both to scaling and 
rotation. 

At 
(10) 

interesting application of the correlators is the Thus, one needs to h o w  Only the scaling factor, S, which is 
of time-to-impact. the motion is 

restricted to rotation and scaling, without allowing any other 
form of translation. is known that under perspective 
projection of a camera with focal length F, the length, I ,  of 
an object in the image plane is given by 

calculated directly from the shift of the correlation peak. 

2.2 Fractional Correlators and Their Application to 
Range 

The common correlators provide information 
regarding the translation of a certain object or about its 
scaling and rotation. In some visual systems there is no need 
to how every type of motion, and the only interesting 
movements are limited to a specific range. For example, if a 
robot is moving around in a room consisting of known 
obstacles, it should not come near an obstacle if it is at a 
certain distance away. We would like to be able to detect 
only the nearby obstacles and ignore the others. A variant of 
this example would be a stationary robot sorting objects 
from the same type, that should ignore objects bigger or 1 dR 1 

R d t  R R smaller than a desired range of sizes. In this case, we would 
like to recognize only the objects that are in the desired 
range and 'Pore Others. Another be an 

Here, a new type of correlators, that can recognize 
movements in a specific range, are introduced. The 

(7) correlators are based on the concepts of fractional 
transformations, i.e. the Fractional Fourier Transform (FRT) 

where TTI denotes the time-to-impact. Combining the last and the Fractional Mellin Transform. The optical 

implementation of the FRT in optics is well documented two equations yields 
[9-151, and is done by changing the distances and the focal 
length of the lenses performing the Fourier Transform and 
its inverse. 

(4) 
L I = F -  
R 

where L is its physical length, and R is its distance from the 
center of projection of the camera. If the natural logarithm of 
1 is taken, then 

and by taking its derivative, we obtain 
( 5 )  lnl = lnL +In F -1nR 

-- dln l  - d(1nL + In F -In R )  - - 

(6)  
dt dt 

V v = -- - - _-- = -- 

where is the velocity ofthe imaged object. Note that and 
Fare  constants, and thus the derivatives of their components 

the object is given by 
are zero. On the other hand, the distance of the camera from that should fly Over a target in a specific range. 

1 v  
TTI R 
-=- 

(8) 
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The 2D Fractional Fourier Transform of order 
(pl, p , )  is given by: 

m m  

-m-a 

( 1  1 )  

. exp A4 

where C is a constant, and 

(12) and q52 =T P2X 4, =-j- 
Note that F(")(u,v)= f ( x ,  y ) ,  which is the image itself, and 

F" ' ) ( U ,  v )  = F(u, v )  , which is the Fourier Transform of the 
image. 

We define the 2D Fractional Mellin Transform of 
order (PI 9 P2 ) by: 

---a 

where and 4 are the same as in the FRT case. Note that 
M(O.o)(u, v) = f(p, 0) , which is the image itself in log-polar 
representation, and M(',')(u, v )  = M(u, v )  , which is the 
Mellin Transform of the image. In the general case 
M(PI.P2)(u, v)= FRT (A 'p2 )  (f(p, B)), which is the Fractional 
Fourier Transform of order ( p , , p , )  of the image in its 
log-polar representation. 

How does the correlation pattern change when we 
apply the fractional correlators instead of the conventional 
correlators? The fractional transformations of order ( 1,l) are 
actually the 2D Fourier or Mellin transforms of the image, 
and the correlation pattern has a peak at the positions 
corresponding to those of the conventional correlators. As 
the order decreases, enlarging the movement results in a 
lower magnitude of the principal peak and increase of the 
side lobes (additional peaks). If the order is only slightly 
decreased, then the location of the principal peak still 
corresponds to the position of the peak in the regular 
correlators, otherwise it may not correspond. Therefore, in 
order to limit the range of the desired movement, we should 
pre-determine the order of the fractional transformation used 
and the threshold level, in such a way, that the resulted peak 
would still be in a position corresponding to the correct 
movement. An object moving outside the range that was 
pre-determined will produce a correlation-peak which falls 
below the threshold level. 

3. Experimental Results and Discussion 

The images of the computer depicted in Figure l a  
and Figure l b  are taken one time unit apart, which we will 
assume to be equal to one second. The first image is taken 
approximately 2.85 meters away from the computer and the 
second image is taken approximately 2.6 meters away from 
the computer. A rough approximation of the time-to-impact 
can be logically deduced by assuming a constant velocity of 
0.25 meters per second, which turns out to be -10.4 seconds. 

Now, we will assume that we do not know the 
actual location of the computer in the room, and we would 
like to estimate the time-to-impact using only the two 
images. The scaling factor using the Mellin correlator on 
these two images resulted in a 1.1 scaling, and the resulted 
time-to-impact is: 

TTI = (+) = - = 10.492 seconds 
lnl . l  

This result agrees with the rough approximation done by 
calculating the real distances and velocities. 

Hence, the computation of time-to-impact can be 
deduced straight forward by using the Mellin based 
correlators. The location of the correlation peak corresponds 
to the scaling of the object in the second image in respect to 
the object in the first image. This technique can be 
implemented optically to give a correlation image at 
acquisition time, and therefore, can be used as a real-time 
technique. 

In1 1 -I 1 

(4 (b) (4 
Figure 1: A sequence of images with a scaling factor of 1.1. 

The sequence of the three images depicted in 
Figure 1 can be used also in order to demonstrate the 
specific range estimation capability of the fractional 
correlators. Images la, lb, and IC, are taken in such a way 
that each is a scaled version of the previous with a scaling 
factor of 1.1. Image l a  was correlated using the fractional 
Mellin correlator with itself and with the other two images, 
and the correlation peaks were measured. A variety of 
fractional orders, p ,  were used, and the table presented in 
Figure 2 indicates the locations of the correlation peaks 
measured for each fractional order. All the ffactional orders 
used had values in the range [0.95,1], which implies that 
regular Mellin properties are strongly dominant. In other 
words, where shifts in specific ranges are concerned, the 
locations of the correlation peaks in these ranges should be 
around the locations of the correlation peaks resulted ffom 
using the Mellin transform. 
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The table shows that a fractional order of 0.995 
allows scaling of 1.1 but does not allow scaling of 1.2 1. This 
means that when using p=0.995, an object that is located 
away from the camera a distance corresponding to a scale of 
1.1 will be detected. On the other hand, positioning the 
object in a distance corresponding to a scale of 1.2 1 will not 
produce a detection indication. Note that the auto-correlation 
peaks of the image with itself are located at the center of the 
image for any choice ofp, as is expected. 

0.99 

0.95 

P 

image la  image 1 b image IC 

3 1.8727 28.93 12 26.8 12 1 
121,121 122,12 1 122,121 
3 1.7952 28.9273 26.7971 
121,121 121,121 121,121 

I 31.5852 I 28.8348 I 26.7478 I 
Figure 2: Using the Fractional Mellin correlator on the 
images from Figure 1 produced the correlation peaks 
(locations in pixels and values) given in the table. It can be 
seen that a choice of fractional order p=0.995 allows scaling 
of 1.1 but not of 1.21. This implies that ranges up to a 
scaling of 1.1 can be detected, and ranges larger that 1.21 
can not be detected. 

The conclusion that can be drawn out of such 
experiments is that movements with specific ranges can be 
controlled via the fractional correlators, by a proper choice 
of the fractional order that fits the desired ranges. This 
technique can be implemented optically to give a correlation 
image at acquisition time, and therefore, can be a real-time 
technique. 
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