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Two-Mode Control: An Oculomotor-Based
Approach to Tracking Systems

Ehud Rivlin, Member, IEEE, Héctor Rotstein, and Yehoshua Y. Zeevi

Abstract—Control theory principles have been used to gain un-
derstanding on how the different components of the oculomotor
system operate. The purpose of this paper is to use the knowledge
about how the visual system organizes these components to
propose a new tracking paradigm.

The tracking system is assumed to be described by linear
time-invariant discrete-time state-space equations. The inputs to
this system are the control action and the reference signal. The
outputs are the controlled variablezzz and the measurements. The
tracking objective is to keepje(t)jje(t)jje(t)j smaller than some prespecified
value


. This is motivated by the organization of the human visual
system, where the target should be kept within the fovea of the
eye. The reference signal is modeled as the filtered version of a
driving signal a(t)a(t)a(t). Its characteristics, together with the tracking
objective, lead to the design of an optimal controller referred to
as the “smooth pursuit controller.”

Since the tracking system should continue to operate in the
event of a controlled variable constraint violation, a more com-
plex control strategy is required. The approach in this paper,
motivated by the behavior of the visual system, is to switch off
the smooth controller whenever a violation occurs and design a
time-optimal control action, i.e., a “saccade,” to drive the control
system so that the constraint is satisfied after the shortest possible
time interval. After that, the smooth controller is switched back
into the loop. The way this switching is performed is critical for
obtaining “good behavior”; a method is proposed which is based
on a careful definition of the target set for the saccade.

The tracking system proposed in this paper is closely related to
recent results in linear optimal and robust control theory. It also
shows that the human visual system poses some very interesting
questions and open problems which may stimulate further control
theoretic work.

Index Terms—State-space methods, switching systems, time-
optimal control, tracking, visual feedback.

I. INTRODUCTION

CONTROL system theory has had a profound and easily
recognizable impact on the investigation and understand-

ing of the oculomotor system [21], [25], [27]. For instance,
much of the research in the early 1960’s was directed toward
finding and analyzing the frequency response of the eye
movements when tracking an object. It soon became apparent
that a single linear system could not provide a good model,
since the tracking of all but very simple movements activates
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two subsystems, namely the saccadic and the smooth pursuit
systems. Therefore, effort was directed toward measuring and
characterizing each one of the subsystems/modes indepen-
dently. The earlier findings and main ideas are summarized
by Robinson in a comprehensive tutorial [21].

As simple models failed to predict the behavior of the
visual system, more concepts and ideas from control theory
were introduced and exploited, and ingenuous devices and
experiments were designed to validate or disprove different
working hypotheses. Examples are the sample-data model for
saccadic control [27], the usage of optimal control theory, and
numerical methods to validate the hypothesis that saccadic
movements are (approximately) time optimal [9] or the idea
of using so-called positive feedback [27] (which turns out to be
the familiar Internal Model Principle). An external, secondary
feedback loop was also introduced in some experiments to
further explore the characteristics of the visual-oculomotor
system [29].

By the end of the 1980’s, the interest in building vision
heads which can alter their position in response to exter-
nal stimulus gave rise to a renewed interest in the human
oculomotor system, with emphasis on using it as a source
of control strategies. For example, the notion of using two
control laws, one relatively slow and continuous and another
fast but discrete in nature, was rapidly adopted into mechanical
designs. Most of the resulting schemes were implemented in
a largely ad hoc manner, relying on lengthy trial-and-error
on-line tuning procedures since, except for a few exceptions,
control theory failed to address the problem of how to orga-
nize the different anthropomorphic-inspired subsystems into
an efficient and precise tracking mechanism. This approach
worked well for the first prototypes, haunted as they were
by mechanical difficulties such as the voluminous size and
weight of the cameras. However, current new technologies
provide small, lightweight cameras and motors with improved
weight/torque characteristics so that reliable vision heads with
fast dynamics can be constructed. A systematic approach to
the design of the control system has therefore become crucial
for achieving the performance that these heads can potentially
deliver.

In [24], the authors analyze some of the basic control
questions which arise when attempting to implement an
anthropomorphic-inspired design for active vision systems.
Issues like implementing a foveal window or region of high
spatial resolution [19], in a mechanical system based on
cameras which have inherent uniform resolution, or using a
tracking system based on two modes which must interact to
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produce improved performance, were addressed in light of
novel results in linear optimal control theory. Following this
work, it is possible to compute the optimal size of the fovea
by trading-off the time delay in the loop and the stringency
of the control objective; while the former calls for smaller
foveas, the latter is less tight for larger ones. The formulation
also produces a linear time-invariant (LTI) controller which
can be assimilated to the smooth pursuit mechanism observed
in the human eye. Since this controller can only guarantee
good performance for a restrictive set of trajectories of the
target, a second control which overrides the previous one
when specifications fail was also considered; this control law
resembles human saccades.

From this research, it became apparent that the solution to
the tracking problem provided by the oculomotor system can
be put forward as a new approach to tracking. To the best of
our knowledge, this has not been attempted before, in spite
of the fact that the oculomotor system constitutes a handy
and rather successful tracking paradigm. The main purpose of
this paper is to show how to organize two relatively simple
control laws to achieve improved performance, following a
simple model of how the eye tracks. The paper is organized
as follows. In Section II, the main characteristics of the
oculomotor system and some of the current approaches to
tracking are briefly reviewed, and their main differences are
highlighted. In Section III the tracking problem is formulated,
and smooth pursuit is characterized as a family of linear
optimal control problems. This formulation also establishes
a sound basis for putting forward a two-mode controller.
Section IV is devoted to considering the counterpart of human
visual saccades. The main point is not the saccadic control
law itself, which is formulated as a problem of time-optimal
control to a time-varying set, but rather how to interconnect
the two modes without negative transient effects. It is claimed
that the approach for tracking is novel, but it has relevance
and is related to other areas of control. This is discussed in
Section V. Finally, Section VI contains conclusions and an
outline of further works.

II. TRACKING WITH THE EYE AND SYSTEM THEORY

The purpose of this section is to provide some background
information. First, the relevant characteristics of the tracking
mechanisms in the human visual system are considered. Then,
current approaches to tracking systems are briefly reviewed
with special emphasis on those dealing with optimal per-
formance. Finally, the main differences between the two
approaches are stressed, and conditions under which classical
tracking will fail to provide suitable controllers are highlighted.

A. Human Visual System

Most of the processing in human vision is devoted to a very
small portion of field of view called “fovea.” The foveal field
of view is hardly 2 degrees in extent [15], although even within
this region there is considerable variation of visual acuity.
The movements of the eyes shift the foveal field allowing
us high-resolution vision wherever it is needed. Carpenter
[8] has classified eye movements into two main categories:

gaze-shifting and gaze-holding movements. We are interested
especially in two gaze-shifting eye movements, a fast one
called saccadesand a slow one calledsmooth pursuit. The
saccades are fast movements under voluntary control which
cause a change in the fixation point. The smooth pursuit is a
movement which occurs primarily when a moving stimulus is
presented on the retina and is part of the mechanisms giving
foveal tracking abilities.

Smooth pursuit is effective for relatively slow target tra-
jectories. These movements usually have latency of about
130 ms and velocity of less than 20/s [15], though they can
be accelerated under certain conditions (i.e., using dynamic
visual noise [28]) to reach velocities higher than 40/s. These
movements occur when the eye is tracking a smoothly moving
target and appears to keep the target image stabilized with
respect to the retina. Due to “smaller-than-one” gain, the
smooth pursuit does not stabilize the retinal image completely.
When there is a considerable deviation of the image of
the target from the center of the fovea, the smooth pursuit
is interrupted by correcting saccades with a frequency that
increases with target velocity [10].

The saccades are executed with high speed (hundreds of/s)
but have latency of as much as 150–250 ms; once triggered,
they cannot be influenced by visual information. The time
course of saccades to a static object is a nonlinear function
of the amplitudes; the larger the movement, the faster the
saccade, with saturation at about 1000/s for a movement of
approximately 50 [9]. For some time it was thought that
vision is impaired during saccades (the so-called saccadic
suppression), but further experiments showed that a certain
amount of visual processing occur during the course of a
saccade [8].

Tracking of a smoothly moving target in humans is executed
by smooth eye movements with position corrections by sac-
cades which compensate for the retinal slip resulting from the
“smaller-than-one” gain of the smooth eye movement system.
The combination of the two movements results in a rather fast
dynamic fixation of the fovea central on the target.

B. A Comparison

From the discussion above, the following differences are
to be noted between the oculomotor tracking system and the
standard control approach.

• Structure: Controllers for linear systems resulting from
the tracking approaches discussed above are “simple,”
in the sense that they are themselves linear; this is
justified in many cases (i.e., in linear-quadratic-Gaussian
(LQG) or ) when linear controllers exhibit as a good
performance as nonlinear ones. On the other hand, the
oculomotor system is composed of two subsystems which
interact by means of a switching logic, to achieve a
performance objective. Systems of this type are called
hybrid since they are composed of a dynamical and a
discrete-event system. For their analysis, hybrid systems
are organized in layers, where in the lower layer the
control laws are generated and in the upper a “supervisor”
assigns which control law should be generated. Although
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implicit, this organization will not be mentioned in the
sequel.

• Control Objective: The main objective of the oculomotor
tracking system is to keep the target within the fovea.
When this is not possible and the error becomes larger
than a fixed threshold, a saccade is triggered that aims
to reduce the error to bellow the threshold. The reason
for this behavior is that the information obtained from
the target decreases drastically when it no longer lies
within the fovea, because of the reduced number of
sensors. Notice that a high density of sensors produces
higher resolution at the cost of larger computational
delays, and hence the objective arises as a compromise
between these two. As opposed to this, a linear tracking
system has a smoother behavior, since its objective is
to reduce an overall measurement of performance, like
a quadratic norm criterion. It is fair to say that standard
tracking approaches sacrifice (or at least de-emphasize)
local behavior on behalf of global performance, while the
opposite is true for the oculomotor system.

III. PROBLEM FORMULATION AND SMOOTH PURSUIT

Consider an LTI system with a state-space realization

(1)

Here is the state of the system with initial value
, denotes the available measurements, while

is the difference between the system output
and the reference signal . For simplicity,

both and are assumed to be scalar signals. Notice
that no process or measurement noises have been included in
the model, and the whole state of the plant is assumed to be
available for feedback.

The setup for the tracking problem is illustrated in Fig. 1.
The controller should be designed in such a way that the
error between the reference and the “output” of
the system remains small (in some given sense). As shown
in the figure, the controller generates the control action
based on the state vector of the plant and the reference
signal ; the controller should beinternally stabilizing, i.e.,
so that in the absence of a reference signal any initial state
converges to zero. Tracking paradigms differ in how the size
of is measured and in how the reference signal is
characterized, i.e., what class of signals the system should be
able to track.

If the human oculomotor system is viewed in this frame-
work, the objective of keeping the target within the fovea can
be expressed as having the error smaller than the half size
of the fovea for each time instant; in mathematical terms, this
can be expressed as , with . As mentioned
in the previous section, experimental work suggests that this
is achieved by using one controller designed by penalizing
error velocity (retinal slip) with another one attempting to
reduce large errors (retinal error). These correspond to the

Fig. 1. Configuration for the tracking problem.

smooth pursuit and the saccade subsystems, respectively. More
debatable is the characterization of the class of visual signals
which can be tracked smoothly (i.e., without resorting to
saccadic corrections). For simplicity, it can be assumed that the
eyes attempt to track not the position of the target but rather
its acceleration. This is suggested, for instance, by the fact
that targets with zero acceleration are asymptotically tracked
almost independently of their velocity. However, it is not
consistent with the mechanism for maintaining fixation, where
nonzero steady-state errors may appear; this nonconsistency
suggests that the oculomotor system can only partially be
explained in terms of simple linear system models (but see
the comment below).

For the anthropomorphic-inspired approach to tracking, it
will be assumed that the signal in (1) is generated as
the result of passing an unknown signal through a finite-
dimensional LTI “smooth pursuit” filter

(2)

The filter has the transfer function

Here thehattednotation “ ” denotes the -transform of ,
and likewise for other signals. As an example,

maps discrete-time accelerations, or more correctly
second differences, into positional displacements and induces
the asymptotic tracking capability to ramps found in the
oculomotor system when tracking moving targets. For reasons
to become clear later, the smooth pursuit filter is restricted to
be of the form , where is a polynomial
of appropriate order. The inclusion of implies somea
priori knowledge of the signals to be tracked. More generally,
not a single filter but a collection of them could be used,
with a supervising control logic deciding which one should
be selected for specific tasks. For instance, one could select

for regulating around zero or following slowly
moving targets and for tracking fast targets. The signal

is assumed to be deterministic and norm-bounded, with
the following two different cases of interest:

The spaces of sequences which are bounded in the sense of
these two norms are called and , respectively; the unit
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balls in these spaces will be as with or . Given
a controller which stabilizes the closed-loop system, it is
possible to compute the worst case-norm for the output as

Here denotes the closed-loop transfer function from
to and hence denotes an induced system norm;

internal stability implies that .
By linearity, a given controller can guarantee that the

constraint will not be violated if
. In order to track the largest possible signals with the

norm of the output not exceeding, the controller should be
selected so that can be minimized; any such controller
will be called a “smooth pursuit” controller and denoted
by . If is assumed to be bounded, then the
computation of is an -optimal control problem,
for which efficient numerical computed techniques exists (see
[12] and also below for additional details). As shown in [13],
if there exists a nonlinear time-varying controller meeting the
specification for a given, there also exists an LTI achieving
the same performance, and hence one can assume without loss
of generality that is LTI. Although similar facts are true for

with bounded two-norm (i.e., the generalized problem
considered in [22]), only the previous problem is considered
in the sequel since it simplifies the treatment of saccades.

In summary, there exists an upper boundover the norm
of the signal which can be tolerated while guaranteeing that
the constraint over is not violated. Note that this is a
worst-casecondition: the bound may hold even if

. If for some sample instant the constraint on
is violated, the controller can no longer function, and a
second control law must be generated; this leads naturally to
the two-mode tracking system proposed in this paper. It also
offers an explanation for its occurrence in the human visual
system: if the bound on is hard, in the sense that its violation
produces a drastic reduction of performance, the tracking
system should tolerate relatively large errors over a transient
period in order to eventually satisfy . Since
is optimal, then this can only be achieved by switching to a
second controller. This is elaborated in the next section; before
that, the parameterization of stabilizing controllers which leads
to the computation of is briefly reviewed.

A. Parameterization of Linear Tracking Controllers

Assume that the controller is linear, time-invariant, and
finite-dimensional. Then, introducing the parameterization of
all stabilizing controllers [30] it is possible to write the transfer
function between and as

(3)

where

with

(4)

(5)

and is a matrix such that is stable, i.e., has all its
eigenvalues inside the open unit disk. is the degree
of freedom of the parameterization, a stable linear transfer
function. Suppose now that is equal to the discrete-time
double integrator . Then, in order to
have a bounded error for bounded acceleration, should
be such that and . By
defining and

, the set of all transfer functions
resulting from stabilizing controllers, and such that is
bounded for bounded accelerations, may be written as

(6)

where

and is a stable transfer function. The resulting optimiza-
tion problems are singular because of the existence of a double
zero at one. In the setting, this type of problem is discussed
in [26].

For a generic , the parameter should be selected
in such a way that theunstablepoles of be canceled by
zeros of the closed-loop, i.e., for each polewith ,
one should have and corresponding modifications
for multiplicities larger than one.

IV. THE SACCADIC MODE

Motivated by the fact that the resolution in the human eye
decreases according to the power low outside the fovea [17], it
is assumed in what follows that either the signal-to-noise ratio
in or the calculations involved in processing it increase
significantly whenever . For example, in the active
vision system discussed in [24], a foveal window is included
to speed up computations. If this window is implemented
by spatially down-sampling the signal outside the fovea,
then a larger discretization error appears while processing
time increases substantially if the fovea is implemented by
means of a special purpose camera. As a consequence of this
deterioration, the smooth pursuit controller either cannot be
used because the information is not available when required,
or fails to meet the specifications if the signal becomes noisy.
The tracking system must then switch to a second mode, which
has the objective of driving the system back to the smooth
pursuit regime.

Given an initial time , consider the set bounded signals
over a finite interval

s.t. (7)

and ; in this notation
. Let be such that
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Fig. 2. A signal inA�
1

(0; tb) [ A
�
1

(tc) and the corresponding errore(t).

for , , and for some , .
The objective of saccadic control is to generate a control
action , for , where and
so that can be guaranteed for . Since
during the interval the tracking specifications are not
achieved, the final time should be made as small as possible.
An illustrative example of a signal , together with the
corresponding error signal, is shown in Fig. 2.

More generally, , with ,
and the objective is to design , with

so that for . Since
, or rather , are not knowna priori, the sampling

instants are unknown and hence can only be computed
online. Given a constraint violation at time , one can attempt
to minimize the final time for the saccade , hoping that

for some . This is the solution that
the oculomotor system seems to have achieved and is the one
pursued in the sequel.

The saccadic control depends on the value of at
some future sample time; since the function is measured on-
line, a model is required to predict this value. The computation
of a saccade then involves four distinct stages.

1) Switch On: After the constraint on has been vio-
lated and before has been computed, the tracking
system must be operated “open loop” since the smooth
pursuit controller is no longer operational. This is what

happens, for instance, to the visual system when a fast
moving object is followed and a saccade is triggered by
a positional offset. In this stage one can only use the
information available at .

2) Modeling: The behavior of must be modeled in or-
der to predict its value at some future sample time. This
model should be able to produce accurate predictions of

over a short horizon, but simple enough so that its
parameters can be estimated relatively fast.

3) Saccade:The control signal must be computed at
this stage, based on the value of the state and on the
estimate value for the reference signal.

4) Switch Off: After the correcting control action has been
taken, the smooth controller should be switched back
into the loop. It is clear that this switching is critical to
guaranteeing the satisfaction of the constraint for .

Saccadic control can also be formulated in the more general
frame of hybrid systems, but the present scheme has the ad-
vantage that it can deal effectively with transients by carefully
designing the saccadic action. This is discussed next, together
with a more detail treatment of the different stages.

A. Switch On

Suppose that the constraint on is violated at time
. Then, according to the standing assumption, cannot

continue its normal operation and a control action should
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be computed to meet the specification at some future time.
However, this computation takes some time and the tracking
system should somehow be driven. A simple solution would
be to set for each , but this can lead to
poor performance. Instead, one could selectin such a way
that the error criterion remains constant; the resulting virtual
reference signal may be computed as

(8)

Several other choices are possible, depending on the particular
application and thea priori knowledge available on.

B. Modeling

Before the saccadic control action is designed, it is necessary
to identify a model that can accurately predict for .
This model is referred to in the sequel as the “saccadic model”
and is not to be confused with the reference model introduced
in the previous section.

This stage is the one called “tracking” (e.g., in [2]), which
contains an array of different algorithms to achieve the goal.
The specific algorithm should be selected depending on the
available a priori knowledge on the reference signal; this
selection is important since it will determine the number of
sample instants required for having an accurate prediction of

. In the active vision field, or filters are used
because of their simplicity, with their coefficients selected by
using the steady-state solution of a Kalman filtering problem
[2].

C. Saccade

This is the main step. It is assumed in what follows that the
smooth controller has been implemented as

where is a matrix such that as in (4) is stable and
is a stable transfer function. From the parameterization of all
stabilizing controllers [30], it is always possible to implement

in such a way. Moreover, it is assumed that (and hence
) is real-rational, i.e., it has a state-space representation.

Consider then the following minimal state-space realization
for :

with stable (i.e., all the eigenvalues of are in the open
unit disk). The system from to may be represented as

Consider now the smooth pursuit filter

with state-space realization

(9)

where

...
...

...
...

...

...

The filter is assumed to beanti-stable so that
has all its eigenvalues outside the unit disk (i.e., if is an
eigenvalue of , then ); this is without loss of
generality since all stable dynamics may be absorbed into the
description of the plant above. Let
denote the closed-loop state vector. The closed-loop equations
have the form

where

Assuming , let denote the LTI operator that
maps into closed-loop state vector

(10)

Since stabilizes the closed loop, the system fromto is
stable and hence the modes are all unobservable. Taking

, where the matrices
solve the Sylvester equation

exposes the unobservable states, and the system fromto
may be written as

(11)

(12)



RIVLIN et al.: OCULOMOTOR-BASED APPROACH 839

or, after eliminating the unobservable states

(13)

(14)

with ;
is referred to as thereduced state vector. The

new representation is internally stable and will be assumed
to be minimal for simplicity. Let denote the linear time
invariant operator that maps signals into the
reduced state-vector at time

and let be the set ofreachablestates

for some (15)

where is closed, bounded, and is said to bePositive
Invariant [3], since at implies

for all , if . Since is
associated with a smooth controller , implies that

for the corresponding . This fact has far-
reaching consequences, as illustrated by the work of Blanchini
and Sznaier [4] on static-state feedback for-optimal control.

The key observation that will allow the construction of
a target set for saccades is that if the plant is driven so
that for some time , the reduced state , then
the corresponding control action satisfies the specifications
of saccadic control. This is because the state vector of the
controller, stored in the computer used for control, can be
initialized arbitrarily; hence only is constrained. As it turns
out, this can also be used for solving a more general static
feedback problem [23].

Using the saccadic model for the signal constructed
in the modeling stage, compute

, where is some future time and the notationis
used to denote that not the true values but some estimates are

available. By the state-space model in (3)

...

The state vector for the reference model at timecan then
be reconstructed based only on the measurement fromto

, i.e., independently of the input over the same period.
This is possible due to the special structure assumed for the
smooth pursuit filter, which plays the role of the full state
measurability assumed for the plant. Indeed, since the filter
is an artifice for formulating the smooth control problem, its
(fictitious) state vector cannot be measured, but the structure
of the filter is such that the state vector can be determined in
a unique way from the signal , which can be measured or,
in the current case, estimated.

Given a vector , consider the set of all signals
that drive the state vector of the saccadic filter from zero to

at some time

such that

(16)

Equivalently, if we have (17), as shown at
the bottom of the page. It is easy to see that

; take . Since is
assumed to have its eigenvalues outside the open unit disk,
cannot be taken large due to the numerical problems associated
with taking powers of the matrix and verifying the equality
(17). From a computational point of view, one should then
consider an upper bound for .

Given a state vector for the smooth pursuit filter ,
consider the set

(18)

such that

for some

...

(17)

...
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where is as defined in (10). Equivalently, if
for some

...

By the same numerical considerations as before, it is
preferable to work with the smaller set

, which can be described by a finite
number of equalities and inequalities. The main result of this
section can now be stated.

Theorem 1: Assume that for
, , and for some ,

(refer again to Fig. 2). Let be the state vector of the
plant at time , be the state vector of
the smooth pursuit filter at time , and let
be such that

(19)

It is then possible to find a state vector for , so that
if the smooth pursuit controller is used for ,

Proof: By the assumption that , there
exists and a signal such as that shown
in the at the bottom of the previous page, for some vector.
Define the signal

From the choice of , it follows that for
each .

Assume now that the plant is driven by using to
at time , and set . Since the resulting closed-
loop state vector coincides with and

, it follows from basic state-space theory that
for and the proof follows.

The state results from driving the plant from
to with the input signal , and hence can be
computed for any . The lapse between and

is used to identify a saccadic filter and then compute the
saccadic control law based on the predictions of this filter for
the signal . This computation may be formulated as the
optimization problem as shown in (20) at the bottom of the
page. In order to get the optimal solution, the limit
should be taken; by the previous numerical considerations,
it is convenient to replace by a finite upper bound .
Notice that for each fixed , the problem reduces to finding
a feasible solution for a linear problem, which can be done
efficiently so that an optimal (or-suboptimal) solution may
be computed iteratively as in [14]. Additional constraints (e.g.,
on the control authority) may also be added in the formulation.
The sample instant is requireda priori for computing
and is bounded below by the time it takes to identify the
saccadic filter, plus an upper bound on the computation time
for .

The fact that the driving signal is constrained to lie in
simplifies both the derivations and interpretations of the results
discussed above. However, it is also possible to consider other
norms, in particular the one, along the lines discussed in
[23].

V. CONNECTIONS WITH OTHER WORKS

The two-mode tracking paradigm presented in this paper
has been motivated by the way the human visual system
organizes the different components of the oculomotor system.
The approach has connections with other works on active
vision tracking and linear control theory, which are briefly
revised next.

The need for better control for active vision systems con-
stitutes the original motivation for the current work. Until
recently, tracking in computer vision was done mostly with
a static camera and hence was more related to tracking as
understood in [2], both in two-dimensional (2-D), i.e., tracking
of an image, and in three-dimensional (3-D). In this context,
it is very common to find the usage of Kalman filtering as
an off-the-shelf estimator. A survey of these methods and
algorithms for the case of a fixed camera can be found in

min such that:

...

...

(20)
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[1]. When cameras become mobile, and motors are included
in the loop, then the problem becomes one of tracking in
the sense described in this paper. In [6] and [7] tracking of
the Rochester Robot head is described. Tracking was done
by using a proportional–integral–derivative (PID) controller
for the camera, driven by the retinal positional error of the
image of the target in the dominant camera. In [5] and [11]
tracking of the Oxford head was described. The tracking makes
use of image motion and position rather than position alone.
Using this head to track corner clusters was described in [20].
Corners are tracked from frame to frame using a constant
image velocity Kalman filter.

The research in active vision tracking borrows heavily from
the work of Bar-Shalom and coworkers [2], where tracking is
understood in a sense closely related to estimation or filtering.
Some connections may be recognized between the present
work and the problem of maneuvering target presented there,
in which case the target is modeled by the discrete-time
dynamics

(21)

where is a zero-mean, white random noise, andis the
unknown input to the system; a maneuver then corresponds
to a relatively large excursion of the input signal. Two broad
approaches to the problem are offered according to whether

is assumed to be: 1) a random process or 2) nonrandom
and estimated in real-time. These approaches aremultimode:
either several noise levels are tried, several models are run
in parallel, and compared, or filters with different degrees
are used for the “normal” and “maneuvering” operations. A
statistic criterion, like maximum likelihood, is used to decide
which output should be selected.

The tracking notions discussed are also related to recent
results in linear control. In particular, the optimal smooth
controller is constructed as an or a generalized -optimal
control [4], [22], while the mechanism for switching is inspired
by [4]. The fact that a switching control law is designed also
suggests connections with adaptive control, in particular, with
adaptive stabilization with relaxed assumptions and switching-
based control laws [16], [18]. The setting there, though, is quite
different: a number of controllers are assumed to be known in
advance and are switched on and off the loop according to
some high-level logic. The motivation for this problem comes
from robust control: it is assumed that the “true” plant one
wants to control lies on a relatively large set, which cannot
be properly controlled by a single LTI controller. The critical
problem of initializing the controller after each switching was
solved in [18] by assuming that all the controllers share a
state space and differ only on the output matrix. Such a
solution is not possible in the approach introduced in this paper
since the controllers are not known in advanced but rather a
control action is computed based on the reference signal and
is nonlinear.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, a two-mode approach to tracking motivated by
the human oculomotor system has been presented. Following

the simple model also considered in [24], visual tracking
is based upon two distinct control laws, which appear to
have evolved as a tradeoff between computational delays
and tightness of the control specifications. More generally,
a two-mode mechanism seems to be beneficial whenever the
resources available for control are in some sense constrained
(for instance, if there are limitations on the computational
resources or times) or hard specifications need to be met
“most” of the time.

The tracking objective considered is to keep the value of
the controlled variable below some prespecified bound. In
order to achieve this objective, a smooth controller is designed,
assuming that the reference signal is generated by a signal

passing through a filter. If the driving signal belongs to
some normed space and, moreover, is within a ball of radius
, then a controller can be chosen optimally by maximizing

the tolerance . In the event that the error signal violates
the constraint, the smooth controller has to be replaced by
a control strategy which attempts to drive the system back to
specifications in the shortest possible time. This control action
is chosen so as to provide an adequate switching between
the two modes of operation. Following the anthropomorphic
paradigm, the first mode is called “smooth pursuit” and the
second “saccadic control.”

It is worth stressing that more work should be done to
implement the two-mode tracking in practical applications. If
only the smooth controller is taken into account, then this
transition can be done with relative ease, since the problem
reduces to a standard one in robust optimal control. It is then
possible to modify the formulation so that a more realistic
situation in which: 1) some outputs and not all the state
vector are available for feedback; 2) signals are corrupted by
noise; and 3) norm bounded plant uncertainty is considered.
If noise and uncertainty are appropriately characterized, then
a controller can be computed by using established techniques.

On the other hand, several issues should be clarified in order
to implement the saccadic control strategy, since even in the
idealized situation considered in this paper, the computational
cost appears to be very high. The current approach depends
on the fact that all states are available for feedback, and
it is not clear at this point how this condition may be
relaxed if the smooth controller is designed following an
criterion. Moreover, the behavior of the time-optimal control
and subsequent switching to the smooth controller deserves
more study if noise and plant uncertainty are to be incorporated
into the picture. These observations pose some interesting and
challenging control problems, some of which are currently
under study (see, e.g., [4]).

Currently, the research advances along the following three
avenues. First, a tracking system designed according to the
approach described in this paper is being implemented on the
Technion Robot Head. Second, some of the claims regarding
the oculomotor system, like the optimality of smooth pursuit,
are planned to be contrasted with actual experimental data.
Third, the theoretical control problems are pursued; prelim-
inary results suggest that the computational effort may be
lowered if the optimality criterion is replaced by a suboptimal
one. It is expected that results that will emerge from this
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research will both advance the understanding of the human
visual tracking and will give rise to better active vision and
general tracking systems.
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