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Two-Mode Control: An Oculomotor-Based
Approach to Tracking Systems

Ehud Rivlin, Member, IEEE Héctor Rotstein, and Yehoshua Y. Zeevi

Abstract—Control theory principles have been used to gain un- two subsystems, namely the saccadic and the smooth pursuit
derstanding on how the different components of the oculomotor systems. Therefore, effort was directed toward measuring and
system operate. The purpose of this paper is to use the kn°W|edgecharacterizing each one of the subsystems/modes indepen-

about how the visual system organizes these components tod tv. Th lier findi d in id ized
propose a new tracking paradigm. ently. The earlier findings and main ideas are summarize

The tracking system is assumed to be described by linear by Robinson in a comprehensive tutorial [21].
time-invariant discrete-time state-space equations. The inputs to ~ As simple models failed to predict the behavior of the
this system are the control action and the reference signal. The visual System, more Concepts and ideas from control theory
outputs are the controlled variable z and the measurements. The were introduced and exploited, and ingenuous devices and

tracking objective is to keeple(¢)| smaller than some prespecified . . . . .
value-y. This is motivated by the organization of the human visual €XPeriments were designed to validate or disprove different

system, where the target should be kept within the fovea of the working hypotheses. Examples are the sample-data model for
eye. The reference signal is modeled as the filtered version of asaccadic control [27], the usage of optimal control theory, and
driving signal a(t). Its characteristics, together with the tracking numerical methods to validate the hypothesis that saccadic

glsaj?ﬁgv‘i,ni%(tiht%lgf:seugecscl)%r:rﬁe?rl optimal controller referred to movements are (approximately) time optimal [9] or the idea
Since the tracking system should continue to operate in the Of using so-called positive feedback [27] (which turns out to be

event of a controlled variable constraint violation, a more com- the familiar Internal Model Principle). An external, secondary
plex control strategy is required. The approach in this paper, feedback loop was also introduced in some experiments to

motivated by the behavior of the visual system, is to switch off f,ther explore the characteristics of the visual-oculomotor
the smooth controller whenever a violation occurs and design a system [29]

time-optimal control action, i.e., a “saccade,” to drive the control . . o o
system so that the constraint is satisfied after the shortest possible By the end of the 1980’s, the interest in building vision

time interval. After that, the smooth controller is switched back heads which can alter their position in response to exter-
into the loop. The way this switching is performed is critical for npal stimulus gave rise to a renewed interest in the human
obtaining “good behavior”; a method is proposed which is based oculomotor system, with emphasis on using it as a source

on a careful definition of the target set for the saccade. f trol strateqi = le th fi f using twi
The tracking system proposed in this paper is closely related to O' CONrol strategies. For exampie, the notion of using two

recent results in linear optimal and robust control theory. It also  control laws, one relatively slow and continuous and another
shows that the human visual system poses some very interestingfast but discrete in nature, was rapidly adopted into mechanical

questions and open problems which may stimulate further control - designs. Most of the resulting schemes were implemented in

theoretic work. a largely ad hoc manner, relying on lengthy trial-and-error
Index Terms—State-space methods, switching systems, time-on-line tuning procedures since, except for a few exceptions,
optimal control, tracking, visual feedback. control theory failed to address the problem of how to orga-
nize the different anthropomorphic-inspired subsystems into
I. INTRODUCTION an efficient and precise tracking mechanism. This approach

ONTROL system theory has had a profound and eas mechanical difficulties such as the voluminous size and

recognizable impact on the investigation and understand- . X
ing of the oculomotor system [21], [25], [27]. For instance eight of the cameras. However, current new technologies

. ; . rovide small, lightweight cameras and motors with improved
”.‘“‘?h of the researgh in the early 1960's was directed toWé{/?v(gight/torque characteristics so that reliable vision heads with
finding and analyzing the frequency response of the eye

ast dynamics can be constructed. A systematic approach to

movements when tracking an object. It soon became appargnt . .
: . : e design of the control system has therefore become crucial
that a single linear system could not provide a good model,

since the tracking of all but very simple movements activat%%(_)r Ii?/zrrnevmg the performance that these heads can potentially

r.(\[g)rked well for the first prototypes, haunted as they were

In [24], the authors analyze some of the basic control
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produce improved performance, were addressed in light gdize-shifting and gaze-holding movements. We are interested
novel results in linear optimal control theory. Following thigspecially in two gaze-shifting eye movements, a fast one
work, it is possible to compute the optimal size of the foveealled saccadesand a slow one calledmooth pursuit The
by trading-off the time delay in the loop and the stringencgaccades are fast movements under voluntary control which
of the control objective; while the former calls for smallecause a change in the fixation point. The smooth pursuit is a
foveas, the latter is less tight for larger ones. The formulationovement which occurs primarily when a moving stimulus is
also produces a linear time-invariant (LTI) controller whiclpresented on the retina and is part of the mechanisms giving
can be assimilated to the smooth pursuit mechanism obserf@ekal tracking abilities.
in the human eye. Since this controller can only guaranteeSmooth pursuit is effective for relatively slow target tra-
good performance for a restrictive set of trajectories of thectories. These movements usually have latency of about
target, a second control which overrides the previous ot80 ms and velocity of less than 26 [15], though they can
when specifications fail was also considered; this control lave accelerated under certain conditions (i.e., using dynamic
resembles human saccades. visual noise [28]) to reach velocities higher thar?40 These
From this research, it became apparent that the solutionnbt@vements occur when the eye is tracking a smoothly moving
the tracking problem provided by the oculomotor system caarget and appears to keep the target image stabilized with
be put forward as a new approach to tracking. To the bestreSpect to the retina. Due to “smaller-than-one” gain, the
our knowledge, this has not been attempted before, in spét@ooth pursuit does not stabilize the retinal image completely.
of the fact that the oculomotor system constitutes a hantlyhen there is a considerable deviation of the image of
and rather successful tracking paradigm. The main purposetioé target from the center of the fovea, the smooth pursuit
this paper is to show how to organize two relatively simplis interrupted by correcting saccades with a frequency that
control laws to achieve improved performance, following encreases with target velocity [10].
simple model of how the eye tracks. The paper is organizedThe saccades are executed with high speed (hundréds)of
as follows. In Section Il, the main characteristics of thbut have latency of as much as 150-250 ms; once triggered,
oculomotor system and some of the current approachestitey cannot be influenced by visual information. The time
tracking are briefly reviewed, and their main differences amourse of saccades to a static object is a nonlinear function
highlighted. In Section Il the tracking problem is formulatedpf the amplitudes; the larger the movement, the faster the
and smooth pursuit is characterized as a family of lineaaccade, with saturation at about 18@80for a movement of
optimal control problems. This formulation also establishezpproximately 50 [9]. For some time it was thought that
a sound basis for putting forward a two-mode controllevision is impaired during saccades (the so-called saccadic
Section IV is devoted to considering the counterpart of humanppression), but further experiments showed that a certain
visual saccades. The main point is not the saccadic contashount of visual processing occur during the course of a
law itself, which is formulated as a problem of time-optimasaccade [8].
control to a time-varying set, but rather how to interconnect Tracking of a smoothly moving target in humans is executed
the two modes without negative transient effects. It is claimdy smooth eye movements with position corrections by sac-
that the approach for tracking is novel, but it has relevancades which compensate for the retinal slip resulting from the
and is related to other areas of control. This is discussed“smaller-than-one” gain of the smooth eye movement system.
Section V. Finally, Section VI contains conclusions and afhe combination of the two movements results in a rather fast
outline of further works. dynamic fixation of the fovea central on the target.

Il. TRACKING WITH THE EYE AND SYSTEM THEORY B. A Comparison

The purpose of this section is to provide some backgroundg o the discussion above, the following differences are

information. First, the relevant characteristics of the tracking pe noted between the oculomotor tracking system and the
mechanisms in the human visual system are considered. Th@8ndard control approach.

current approaches fo tracking systems are briefly reviewed Structure Controllers for linear systems resulting from
with special emphasis on those dealing with optimal per- the tracking approaches discussed above are “simple,”
formance. Finally, the main differences between the two in the sense that they are themselves linear; this i,s
approaches are stressed, and conditions under which classical . !

X . . . I justified in many cases (i.e., in linear-quadratic-Gaussian
tracking will fail to provide suitable controllers are highlighted. (LQG) or H..) when linear controllers exhibit as a good

performance as nonlinear ones. On the other hand, the
oculomotor system is composed of two subsystems which
Most of the processing in human vision is devoted to a very interact by means of a switching logic, to achieve a
small portion of field of view called “fovea.” The foveal field performance objective. Systems of this type are called
of view is hardly 2 degrees in extent [15], although even within  hybrid since they are composed of a dynamical and a
this region there is considerable variation of visual acuity. discrete-event system. For their analysis, hybrid systems
The movements of the eyes shift the foveal field allowing are organized in layers, where in the lower layer the
us high-resolution vision wherever it is needed. Carpenter control laws are generated and in the upper a “supervisor”
[8] has classified eye movements into two main categories: assigns which control law should be generated. Although

A. Human Visual System
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implicit, this organization will not be mentioned in the

sequel. r z
< Control Objective The main objective of the oculomotor

tracking system is to keep the target within the fovea. P

When this is not possible and the error becomes larger T K " il

than a fixed threshold, a saccade is triggered that aims —

to reduce the error to bellow the threshold. The reason
for this behavior is that the information obtained from
the target decreases drastically when it no longer lies
within the fovea, because of the reduced number of , , _
sensors. Notice that a high density of sensors producFé%' 1. Configuration for the tracking problem.

higher resolution at the cost of larger computational . )

delays, and hence the objective arises as a compronﬁé%oom pursu|t and the sac'cad.e subsystems, respgctlvely. More
between these two. As opposed to this, a linear tracki l_)atable is the characterization of_ the clgss of V|suaI_S|gnaIs
system has a smoother behavior, since its objective W&lich can be tracked smoothly (i.e., without resorting to
to reduce an overall measurement of performance, lig@&ccadic corrections). For simplicity, it can be assumed that the
a quadratic norm criterion. It is fair to say that standary®$ attempt to track not the position of the target but rather
tracking approaches sacrifice (or at least de-emphasiﬁé) acceleration. This is suggested, for instance, by the fact

local behavior on behalf of global performance, while thihat targets with zero acceleration are asymptotically tracked
opposite is true for the oculomotor system. almost independently of their velocity. However, it is not

consistent with the mechanism for maintaining fixation, where
nonzero steady-state errors may appear; this nonconsistency
suggests that the oculomotor system can only partially be
Consider an LTI system with a state-space realization  explained in terms of simple linear system models (but see
_ . the comment below).
2t +1) = Aa(®) + Boult) + Bur(?) For the anthropomorphic-inspired approach to tracking, it
e(t) = Cra(t) + Du(t) — r(?) will be assumed that the signalt) in (1) is generated as
(t) = [x(t)} (1) the result of passing an unknown sigrét) through a finite-
r(t) dimensional LTI “smooth pursuit” filtetF

Here z(¢) € IR™ is the state of the system with initial value r(t) = (Fa)(t). (2)
xz(0) = =z, y(t) denotes the available measurements, whi , s

e(t) is the difference between the system outg(t) = the filter 7 has the transfeAr functioffy, (=)
Crz(t) + Du(t) and the reference signaft). For simplicity, (z) = fam(2)a(z).
both »(¢) and e(¢) are assumed to be scalar signals. Notic

that no process or measurement noises have been includeﬁ? N .thehgttednotanon " denotes thez-transform ofr(t),
likewise for other signals. As an examplgy(z) =

the model, and the whole state of the plant is assumed to 5 . . :
1/](z—=1)?] maps discrete-time accelerations, or more correctly

available for feedback. : . e . .
The setup for the tracking problem is illustrated in Fig. 1second differences, into positional displacements and induces

The controllerC should be designed in such a way that thg]e Iasymptotlc trackr:ng caplz(a_blhty to_ ramps foulr:1d in the
errore(t) between the referenogt) and the “output’s(¢) of oculomotor system when tracking moving targets. For reasons

the system remains small (in some given sense). As sho nbecome clear later, the smooth pursuit filter is restricted to
in the figure, the controller generates the control actigy 2¢ Of the formfy (z) = 1/[d(2)], whered(z) is a polynomial

based on the state vecto(t) of the plant and the referenceOf, appkroprilatéa ordferﬁ The deUSit?n dFkirrcliplies somea I
signalr(t); the controller should biternally stabilizing i.e., priori knowledge of the signals to be tracked. More generally,

so that in the absence of a reference signal any initial st:ﬂ%t a single filter but a collection of them could be used,

converges to zero. Tracking paradigms differ in how the si%}é'th a supervising control logic deciding which one should
of e(t) is measured and in how the reference sigr) is e selected for specific tasks. For instance, one could select

/‘1 o . .
characterized, i.e., what class of signals the system shouldf@é(’j’) = 1 for regylatmg afo“”‘?‘ zero or following slgwly
able to track. moving targets ang?, (z) for tracking fast targets. The signal

If the human oculomotor system is viewed in this framei(f) is assumed to be deterministic and norm-bounded, with
work, the objective of keeping the target within the fovea cdfi€ following two different cases of interest:

I1l. PROBLEM FORMULATION AND SMOOTH PURSUIT

be expressed as having the ere@r) smaller than the half size llalloo = sup|a(t)]

of the fovea for each time instatitin mathematical terms, this t

can be expressed d8||., < 7, with v = 1°. As mentioned s 1/2
in the previous section, experimental work suggests that this llall2 = <Z |a(t)|2>

is achieved by using one controller designed by penalizing t=0

error velocity (retinal slip) with another one attempting toThe spaces of sequences which are bounded in the sense of
reduce large errors (retinal error). These correspond to tiese two norms are calledd, and /-, respectively; the unit
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balls in these spaces will be #&; with i = 2 or co. Given with
a controller K which stabilizes the closed-loop system, it is

possible to compute the worst casenorm for the output as Ap =A+ B, F (4)
Cr=C1+ DF (5)
J(K) = 2| oo . . . . .

i (K) ”33%”7” and F' is a matrix such thatdy is stable, i.e., has all its

= || L0 ()| oo eigenvalues inside the open unit disiz) is the degree

of freedom of the parameterization, a stable linear transfer

Here 7., (K) denotes the closed-loop transfer function frorfinction. Suppose now thaf is equa2l to the discrete-time
a to e and henceyu;(K) denotes an induced system normdouble integratorfy(z) = 1/[(z — 1)7]. Then, in order to

internal stability implies thaf:; (K) < co. have a bounded error for bounded accelerati$fi) should
By linearity, a given controlletk can guarantee that thebe such that3(1) = 0 and lim. ., $(z)/(z — 1) = 0. By
constraint||z[|oc < ~ will not be violated if|[al|; < ¢(K) = defininggy = —51(1)/5,(1) and g, = —lim.; ((Si(2) +

v/1:(K). In order to track the largest possible signals with théa(2)q0) /(7 — 1))/5_”2.(.7:), the set of all transfer functions
norm of the output not exceeding the controller should be resulting from stabilizing controllers, and such thdt) is
selected so that;(K) can be minimized; any such controllebounded for bounded accelerations, may be written as
will be called a “smooth pursuit” controller and denoted S(z) = Sa(2) + Sp(2)du(2) (6)
by K*®. If ||a(t)||.c is assumed to be bounded, then the

computation ofu..(K?) is an ¢;-optimal control problem, where

for which efficient numerical computed technigues exists (see Sa(2) :S‘l( )+ SQ( Yo + S2(2) - 1r
[12] and also below for additional details). As shown in [13], ) s+0.5
if there exists a nonlinear time-varying controller meeting the gb( ) = 52( )<7 - 1)

specification for a given, there also exists an LTI achieving z+1

the same performance, and hence one can assume without éwg#j; () is a stable transfer function. The resulting optimiza-

of generality that’{* is LTI. Although similar facts are true for tion problems are singular because of the existence of a double

a(t) with bounded two-norm (i.e., the generalized problem zero at one. In thé; setting, this type of problem is discussed

considered in [22]), only the previous problem is considered [26].

in the sequel since it simplifies the treatment of saccades.  For a genericfy;(z), the parameted(z) should be selected
In summary, there exists an upper boundver the norm in such a way that thanstablepoles of f5,(z) be canceled by

of the signal which can be tolerated while guaranteeing thaéros of the closed-loop, i.e., for each pelewith |z;| > 1,

the constraint over(t) is not violated. Note that this is aone should haveS(z;) = 0 and corresponding modifications

worst-casecondition: the bounde(t)| < v may hold even if for multiplicities larger than one.

la|l; > e. If for some sample instarit, the constraint or(t,,)

is violated, the controllef&® can no longer function, and a IV. THE SAcCADIC MODE

second control law must be generated; this leads naturally to = . L
g y Motivated by the fact that the resolution in the human eye

the two-mode tracking system proposed in this paper. It also
W g Sy brop I 'S pap a?creases according to the power low outside the fovea [17], it

offers an explanation for its occurrence in the human visu q hat foll that either th It i
system: if the bound on is hard, in the sense that its violation/> @SSume in what follows that either the signal-to-noise ratio
r(t) or the calculations involved in processing it increase

produces a drastic reduction of performance, the tracki o . .
nificantly whenevefe(t)| > ~. For example, in the active

system should tolerate relatively large errors over a transient. ; . . o
¥ y 181 vision system discussed in [24], a foveal window is included

period in order to eventually satisfy(t)|.c < 7. Since K* q at it thi q | tod
is optimal, then this can only be achieved by switching to g speed up computalions. is window is implemente
spatlally down-sampling the signal outside the fovea,

second controller. This is elaborated in the next section; bef(% | di izati hil
that, the parameterization of stabilizing controllers which leadfd®n @ larger discretization error appears while processing
time increases substantially if the fovea is implemented by

to the computation of® is briefly reviewed.
means of a special purpose camera. As a consequence of this
deterioration, the smooth pursuit controller either cannot be
used because the information is not available when required,
Assume that the controller is linear, time-invariant, andr fails to meet the specifications if the signal becomes noisy.
finite-dimensional. Then, introducing the parameterization @he tracking system must then switch to a second mode, which
all stabilizing controllers [30] it is possible to write the transfehas the objective of driving the system back to the smooth

A. Parameterization of Linear Tracking Controllers

function betweer? andé as pursuit regime.
) . ) Given an initial timetq, consider the set bounded signals
5(z) = 51(2) + 52(2)4(z) (3) over a finite interval
where A (b0, T) = {a(t) €lost. sup |a(t)| < e} (7)
tE(to,T]
5:1(75) =Cp(2l = Ap)™'B1 - 1 and AS, (to) = Ugs,, AS (to, T); in this notation AL (0)

So(2) =Cp(zl — Ap) 1By + D Blo,. Leta,(t) € £, be such that,. € A< (0, ;) N.AS (t.)
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(1)2

Fig. 2. A signal in A% (0, t,) U A% (t.) and the corresponding erreft).

for ty, < t., a, € A5 (0), and for some, > ty, |e(t,)] > .

The objective of saccadic control is to generate a control

action u®2<(t), for ¢ € [t4, t7], Wwherety > ¢, andt; > ¢,
so that|e(¢)] < ~ can be guaranteed for > ¢;. Since

(1)v

happens, for instance, to the visual system when a fast
moving object is followed and a saccade is triggered by
a positional offset. In this stage one can only use the
information available at,,.

during the intervalt,, t;] the tracking specifications are not 2) Modeling: The behavior of-(t) must be modeled in or-

achieved, the final timey should be made as small as possible.

An illustrative example of a signak,., together with the
corresponding error signal, is shown in Fig. 2.

More generally,a, € (; A%, (8, 8., ), With b; < b4,
and the objective is to design®™°(t), t € [tq;, ty,], with
tq, > t,, SO thatle(t)] < v for ¢t € [ty t,,,,]. Since
ar-(t), or ratherr(¢), are not knowna priori, the sampling

der to predict its value at some future sample time. This
model should be able to produce accurate predictions of
r(t) over a short horizon, but simple enough so that its
parameters can be estimated relatively fast.

3) Saccade:The control signak:*® must be computed at

this stage, based on the value of the state and on the
estimate value for the reference signal.

instantsbj are unknown and heneg&?ac can On|y be Computed 4) Switch Off: After the Correcting control action has been

online. Given a constraint violation at tintg,, one can attempt
to minimize the final time for the saccadg,, hoping that
ar(t) € AL, (ty;, T) for someXT’. This is the solution that

taken, the smooth controller should be switched back
into the loop. It is clear that this switching is critical to
guaranteeing the satisfaction of the constraintfort .

the oculomotor system seems to have achieved and is the &agcadic control can also be formulated in the more general

pursued in the sequel.
The saccadic contral®*“(¢) depends on the value oft) at

frame of hybrid systems, but the present scheme has the ad-
vantage that it can deal effectively with transients by carefully

some future sample timeg; since the function is measured ondesigning the saccadic action. This is discussed next, together
line, a model is required to predict this value. The computatiodith a more detail treatment of the different stages.

of a saccade then involves four distinct stages.

1) Switch On: After the constraint one(¢)| has been vio- A- Switch On
lated and before:*** has been computed, the tracking Suppose that the constraint d&a¢)| is violated at time
system must be operated “open loop” since the smoath Then, according to the standing assumptiéft, cannot
pursuit controller is no longer operational. This is whatontinue its normal operation and a control action should
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be computed to meet the specification at some future tinveith state-space realization
However, this computation takes some time and the tracking

' . . . t+1)=A4 4 B t
system should somehow be driven. A simple solution would pu(t+1) =Ayzn(t) + Bualt)

be to setr,(t) = 0 for eacht > t,, but this can lead to r(t) = Cuzn(t) ©)
poor performance. Instead, one could selgcin such a way \yhere
that the error criterion remains constant; the resulting virtual © 0 1 0 o0
reference signal may be computed as 0 0 1 0
Ay =
ro(t) = Cla(t) — x(te)) + D(u(t) — ulty)) +r(ts).  (8) M
Several other choices are possible, depending on the particular e Trml T -
application and the priori knowledge available on. 8
, By = |-
B. Modeling :
Before the saccadic control action is designed, it is necessary L1
Cy=[1 0 .- 0]

to identify a model that can accurately predi€t) for ¢ > ¢4.

This model is referred to in the sequel as the “saccadic modeije filter fu(z) is assumed to banti-stable so that Ay,

and is not to be confused with the reference model introducggs all its eigenvalues outside the unit disk (i.e.\ifis an

in the previous section. eigenvalue ofAy, then |\;| > 1); this is without loss of
This stage is the one called “tracking” (e.g., in [2]), whictyenerality since all stable dynamics may be absorbed into the

contains an array of different algorithms to achieve the go@jescription of the plant above. Let-;, = [2T 375 T ]7

The specific algorithm should be selected depending on tfenote the closed-loop state vector. The closed-loop equations

available a priori knowledge on the reference signal; this,gve the form

selection is important since it will determine the number of

sample instants required for having an accurate prediction of zer(t+1) = Acpeer(t) + Bera(t)

7(t). In the active vision fieldy— 3 or a— 3— filters are used z(t) =Cerzer(t)

because of their simplicity, with their coefficients selected %here

using the steady-state solution of a Kalman filtering problem

[2]. [Ap ByCqo (Bi+ B:Dg)Cu
ACL = 0 AQ BQCJW
C. Saccade L 0 0 Anm
This is the main step. It is assumed in what follows that the B — 8
smooth controllerX® has been implemented as cL = B
| B
w=K°* [ﬂ =Fz+Q°r Cor =[Cr DCq (DDq-1)Cy]

. . . , . Assumingzcr(0) = 0, let 7 denote the LTI operator that
yvhereF is a matrix such thatiy as in (4) is stab[e and) mapsa € A, (0, T) into closed-loop state vector
is a stable transfer function. From the parameterization of all

stabilizing controllers [30], it is always possible to implement zer(T) = (Ta)(T). (10)
K in such a way. Moreover, it is assumed tfifit (and hence i qe s stapilizes the closed loop, the system frarto c is

K?) is real-rational, i.e., it has a state-space representatiogtable and hence the modeg; are all unobservable. Taking
Consider then the following minimal state-space realizatioln = o+ Xyza, @ = @ + Xazy, where the matrices
a b) - 1

for Q°: X1, X, solve the Sylvester equation
2q(t +1) = Aguq(t) + Bor(t) (B1 + BaDq)Cuyr " (X1 Ay |AF B2Co | | X1) _
U1 (t) = CQJZQ(t) + DQT(t) BoCuy _XQ M 0 AQ X

with A, stable (i.e., all the eigenvalues g, are in the open €xposes the unobservable states, and the systemdrame
unit disk). The system from to ¢ may be represented as May be written as

z(t+1) ] [Ap ByCg z(t) xo(t+1) [Ar ByCq 0 Zo(t)

$Q(t + 1) |0 AQ a:Q(t) xb(t + 1) =0 AQ 0 xb(t)

By + BiD s+ ] [0 0 Ay | |em()

+ [ Bog Q}T(t) X1Bum
e(t) = Cra(t) + DCquo(t) + (DDg — Vr(t). | alf) (11)
M
Consider now the smooth pursuit filter Zo(t)

1 e(t)=[Cr DCqg O] | x(t) (12)

faur(z) =

a2 a2+t xa(t)
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or, after eliminating the unobservable states

-ty
Eﬁjﬂa(t) (13)
) =cr Dol |72 ] (14)

with z4(0) = 2(0) + X12(0), 24(0) = 2o(0) + Xoxs(0);
z, = [zL z}]7 is referred to as theeduced state vectoiThe

a
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available. By the state-space model in (3)

T(ty)
_ Tty +1)

Ta(ty)

Flty+v—1)

The state vector for the reference model at tifpecan then

be reconstructed based only on the measurement fjoto
ty+v—1,i.e., independently of the input over the same period.
This is possible due to the special structure assumed for the

new representation is internally stable and will be assumerhooth pursuit filter, which plays the role of the full state
to be minimal for simplicity. Let7, denote the linear time measurability assumed for the plant. Indeed, since the filter

invariant operator that maps signaise .A<_ (0, T') into the
reduced state-vector at timg

| =@

and letX be the set ofeachablestates

Xi{ﬁi

where X is closed, bounded, and is said to Bwsitive
Invariant [3], since [z,(T)T z,(1)T]Y € X atT implies
[i:((:))] € X forallt> T, ifaec A (T). Sinced is
associated with a smooth controll&r®, =z € X implies that
le(t)] < ~ for the corresponding:(¢). This fact has far-

} = (7,.a)(T), for someT, a € AT} (15)

reaching consequences, as illustrated by the work of Blanch

and Sznaier [4] on static-state feedback#&poptimal control.

The key observation that will allow the construction o

a target set for saccades is that if the plant is driven
that for some timets, the reduced state;,, € &', then
the corresponding control action satisfies the specificati
of saccadic control. This is because the state vector of
controller, stored in the computer used for control, can

initialized arbitrarily; hence only, is constrained. As it turns
out, this can also be used for solving a more general sta(t:ic

feedback?; problem [23].
Using the saccadic model for the sign4lt) constructed

0]

is an artifice for formulating the smooth control problem, its
(fictitious) state vector cannot be measured, but the structure
of the filter is such that the state vector can be determined in
a unique way from the signal¢), which can be measured or,
in the current case, estimated.

Given a vectorr),, consider the sef(z9,, 7) of all signals
that drive the state vector of the saccadic filter from zero to

z9, at some timer > 0

E(aly, ) = {av € A% (0,7) such that9,

}. (16)

E}iuivalently, a, € E(@Y,, 7) if we have (17), as shown at
*he bottom of the page. It is easy to see tﬁ@c%, T) -

d afy, 7+ 1); take E(af,) = U, 5 E(ahy, 7). Since Ay is
assumed to have its eigenvalues outside the open unitdisk,
%%nnot be taken large due to the numerical problems associated
ith taking powers of the matrix and verifying the equality
%). From a computational point of view, one should then
consider an upper bourd for 7.

Given a state vector for the smooth pursuit filtef,,

= Z Aé\}lBMav('r - L)

=1

t

onsider the set

0 - 0
in the modeling stage, computét ), 7(ts + 1), -- -, 7(ty + Olzy) =110 01T @y) (18)
v — 1), wheret; is some future time and the notationis ={zsuchthatr =[I 0 0](Ta,)(7),
used to denote that not the true values but some estimates are a, € E(z%;, 7) for somer > 0}
a,(0)
a,(1)
379\4 = [A‘]rw_lB]w A‘er—QB]w e A]wB]w B]w] CL,U(2)
a,(T —1)
la, ()| <e,  0<i<T—1 17)
a,,(0)
x(ts) ay(1)
x| =[AF'Ber AGBor -+ AcrBer Bell a,(2)
xp(ty) :
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where7 is as defined in (10). Equivalently,; € O(z%,) if  a..(t), t > t;, it follows from basic state-space theory that

for somer > 0 (Ta,)(t) = (Tay)(t) for t > t; and the proof follows. O
The statex(ty) results from driving the plant from = ¢,
[Jg } = {I 0 0} to ¢ = ¢4 with the input signal+¥(¢), and hence can be
Ty 00 I computed for anyt € [t,, t4]. The lapse between, and
[AG'Ber  AF’Ber -+ ActBer Berl ¢, s used to identify a saccadic filter and then compute the
a,(0) saccadic control law based on the predictions of this filter for
ay(1) the signalr(¢). This computation may be formulated as the
ay(2) optimization problem as shown in (20) at the bottom of the
: page. In order to get the optimal solution, the limit— oo
av(T'_ 1) should be taken; by the previous numerical considerations,

it is convenient to replace- by a finite upper boundr.
Notice that for each fixed,, the problem reduces to finding
By the same numerical considerations as before, it @Sfegsible solution for allinear problem_, which can be done
preferable to work with the smaller se©(z,) = efficiently so 'Fhat an 0pt|m_al (oT-subo_p_tlmaI) soluﬂo_n may
[I 0 0]7€(Y, 7). which can be described by a finitePe computed |terat|V(_aIy asin [14]. Add|t|onal_ constraints (e_.g.,
number of equalities and inequalities. The main result of thfd the control authority) may also be added in the formulation.
section can now be stated. The sample instant; is requireda priori for computingu®©
Theorem 1: Assume thata, € A< (0, t,) N A, (t.) for and is _boynded below by the time it takes to iden;ify t_he
ty < te ar ¢ A (0), and for somet, > #, |e(t)] > 7 saccadic filter, plus an upper bound on the computation time
(refer again to Fig. 2). Let:(t4) be the state vector of theor u™-

plant at timety, za(t;) € Olza(t,)] be the state vector of | Th(_a.fact that the dr_iving signal is constrai.ned to liedin
the smooth pursuit filter at timg., and letu>e(), t4 < t < ¢ simplifies both the derivations and interpretations of the results
1 b) — —

la, (D) <e, 0<i<T—1.

be such that discussed above. However, it is also possible to consider other
norms, in particular thes one, along the lines discussed in
K [23].
z(ty) = AV THa(ty) + Z AT Bous ™ (ty + i — 1)
=1
€ Oz (ty))]. (19) V. CONNECTIONS WITH OTHER WORKS

The two-mode tracking paradigm presented in this paper
has been motivated by the way the human visual system
organizes the different components of the oculomotor system.
The approach has connections with other works on active
vision tracking and linear control theory, which are briefly
revised next.

The need for better control for active vision systems con-

L falt) 0<t<ty stitutes the original motivation for the current work. Until
Qur {ar(t) tp <t g recently, tracking in computer vision was done mostly with
a static camera and hence was more related to tracking as
From the choice ofi(®, it follows that|(7 a,,.)(¢)] < ~ for understood in [2], both in two-dimensional (2-D), i.e., tracking
eacht > 0. of an image, and in three-dimensional (3-D). In this context,

Assume now that the plant is driven by usiag* to z(¢;) it is very common to find the usage of Kalman filtering as
at timety, and setrq(ty) = xg,. Since the resulting closed-an off-the-shelf estimator. A survey of these methods and
loop state vector coincides witfi7 a...)(¢;) and a,.(t) = algorithms for the case of a fixed camera can be found in

It is then possible to find a state vectay(t;) for Q°, so that
if the smooth pursuit controller is used foe> ¢;, |e(t)] < v

Proof: By the assumption that(t;) € O(z(ty)), there
existsT > 0 and a signak,, € A% (0, 7) such as that shown
in the at the bottom of the previous page, for some vectar
Define the signal

min ¢, such that:

tr—tq
x(ty) = A tag(ty) + Z AT Bou™(ty +14 — 1)
=1
a,(0
f(tf) a'vglg
B (tr) 7 0 0 ay(2)
Tty 1) | = [0 0 I} [A77'Ber, -+ AciBer B .
B : 7(t +.1/ -1
m(ty+v—1) (ai(T -1) )

|a,(9)] <e, 0<i<rT-1 (20)
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[1]. When cameras become mobile, and motors are includé@ simple model also considered in [24], visual tracking
in the loop, then the problem becomes one of tracking is based upon two distinct control laws, which appear to
the sense described in this paper. In [6] and [7] tracking bfve evolved as a tradeoff between computational delays
the Rochester Robot head is described. Tracking was darel tightness of the control specifications. More generally,
by using a proportional-integral—derivative (PID) controllea two-mode mechanism seems to be beneficial whenever the
for the camera, driven by the retinal positional error of theesources available for control are in some sense constrained
image of the target in the dominant camera. In [5] and [1Tor instance, if there are limitations on the computational
tracking of the Oxford head was described. The tracking makesources or times) or hard specifications need to be met
use of image motion and position rather than position alorfenost” of the time.
Using this head to track corner clusters was described in [20].The tracking objective considered is to keep the value of
Corners are tracked from frame to frame using a constghe controlled variable below some prespecified bound. In
image velocity Kalman filter. order to achieve this objective, a smooth controller is designed,
The research in active vision tracking borrows heavily frorassuming that the reference signéll) is generated by a signal
the work of Bar-Shalom and coworkers [2], where tracking i&(¢) passing through a filter. If the driving signal belongs to
understood in a sense closely related to estimation or filterirspme normed space and, moreover, is within a ball of radius
Some connections may be recognized between the preserthen a controller can be chosen optimally by maximizing
work and the problem of maneuvering target presented theitee tolerancee. In the event that the error signal violates
in which case the target is modeled by the discrete-tintlee constraint, the smooth controller has to be replaced by
dynamics a control strategy which attempts to drive the system back to
specifications in the shortest possible time. This control action
T+t = Fhy + Grup + vp (21) s chosen so as to provide an adequate switching between
the two modes of operation. Following the anthropomorphic

unknown input to the system; a maneuver then corresporﬁlasrad'gm’ the first mode is called “smooth pursuit” and the

to a relatively large excursion of the input signal. Two broaﬁeio_nd sat%ca(illc ct_)ntr(?{lr.] t K should be d o
approaches to the problem are offered according to Whethell IS worth stressing that more work: shou € done
uy, is assumed to be: 1) a random process or 2) nonrand lement the two-mode tracking in practical applications. If

and estimated in real-time. These approachesrartimode only the smooth controller is taken into account, then this

either several noise levels are tried, several models are It(@qsmont can Pe (;jor:je W'th relakl)t'vi eatge, lsmcet tr:eltp_r ott)rl]em
in parallel, and compared, or filters with different degree@ uces 10 a standard one in robust optimal control. 1t 1S then

are used for the “normal” and “maneuvering’ operations. Rossmle to modify the formulation so that a more realistic

statistic criterion, like maximum likelihood, is used to decigg'tuation in Wh'Ch: 1) some oulputs _and not all the state
vector are available for feedback; 2) signals are corrupted by

which output should be selected. g S .
The tracking notions discussed are also related to recﬁ%se’ and 3) norm bounded plant uncertainty is considered.

results in linear control. In particular, the optimal smoot noise and uncertainty are approp_riately chgracterized,_ then
controller is constructed as dn or a generalizedt»-optimal a controller can be computed by using established techniques.

control [4], [22], while the mechanism for switching is inspired Qn the other hand, sevgral issues should be_clar|f|ed m_order
by [4]. The fact that a switching control law is designed alsf) mPlement the saccadic control strategy, since even in the

suggests connections with adaptive control, in particular, WiMeaI|zed situation conS|der.ed in this paper, the computational

adaptive stabilization with relaxed assumptions and switching?St @Ppears to be very high. The current approach depends
based control laws [16], [18]. The setting there, though, is quif® the fact that all states are available for feedback, and

different: a number of controllers are assumed to be known'jn S Nt clear at this point how this condition may be

advance and are switched on and off the loop according rﬁ.Jaxed if the smooth controller is designed following An
griterion. Moreover, the behavior of the time-optimal control

some high-level logic. The motivation for this problem come o
from robust control: it is assumed that the “true” plant on@nd subsequent switching to the smooth controller deserves

wants to control lies on a relatively large set, which cann8tore Study if noise and plant uncertainty are to be incorporated
be properly controlled by a single LTI controller. The critical M the picture. These observations pose some interesting and

problem of initializing the controller after each switching waghallenging control problems, some of which are currently

solved in [18] by assuming that all the controllers share ypder study (see, e.g., [4]). )
state space and differ only on the output matrix. Such aCurrentIy, the research advances along the following three

solution is not possible in the approach introduced in this pagafénues. First, a tracking system designed according to the

since the controllers are not known in advanced but rathe@BProach described in this paper is being implemented on the
control action is computed based on the reference signal afigenion Robot Head. Second, some of the claims regarding

is nonlinear. the oculomotor system, like the optimality of smooth pursuit,
are planned to be contrasted with actual experimental data.
Third, the theoretical control problems are pursued; prelim-
inary results suggest that the computational effort may be
In this paper, a two-mode approach to tracking motivated bywered if the optimality criterion is replaced by a suboptimal
the human oculomotor system has been presented. Followorge. It is expected that results that will emerge from this

wherewy, is a zero-mean, white random noise, andis the

VI. CONCLUSIONS AND FURTHER WORK
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