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Abstract

We present an approach to function-
based object recognition that reasons
about the functionality of an object’s
intuitive parts. We extend the popu-
lar “recognition by parts” shape recog-
nition framework to support “recog-
nition by functional parts”, by com-
bining a set of functional primitives
and their relations with a set of ab-
stract volumetric shape primitives and
their relations. Previous approaches
have relied on more global object fea-
tures, often ignoring the problem of ob-
ject segmentation and thereby restrict-
ing themselves to range images of un-
occluded scenes. We show how these
shape primitives and relations can be
easily recovered from superquadric el-
lipsoids which, in turn, can be recov-
ered from either range or intensity im-
ages of occluded scenes. Furthermore,
the proposed framework supports both
unexpected (bottom-up) object recog-
nition and expected (top-down) object
recognition. We demonstrate the ap-
proach on a simple domain by recog-
nizing a restricted class of hand-tools
from 2-D images.

1 Introduction

The problem of object recognition from sensory
data is defined in the literature as the asso-
ciation of visual input with a name or sym-
bol. In the absence of distinguishing proper-
ties such as color, texture, or motion, object
recognition first requires the visual recovery of
shape, followed by the matching of the recovered
shape to a database of known objects [Marr,

*Permanent address: Department of Computer Sci-

ence, Technion—Israel Institute of Technology, Haifa,
Israel.

"Permanent address: Center for Cognitive Science,
Rutgers University, Piscataway, NJ 08855.

1982]. Although much research on the topic
has been published, the community still lacks
vision systems that can recognize in real time a
large number of objects (natural or man-made).
Full recovery has been difficult to achieve while
matching suffers from combinatorial explosion.

Model-based recognition, on the other hand,
has been suggested as a remedy to these prob-
lems. Many such 3-D object recognition sys-
tems take a single object model and attempt
to locate it in the image, e.g., [Lowe, 1985;
Huttenlocher and Ullman, 1990; Thompson and
Mundy, 1987]. Furthermore, the object mod-
els are commonly CAD-like, capturing the ez-
act geometry of the object. Although very ef-
fective for certain robot vision tasks in con-
strained environments, where a known target
must be accurately localized for manipulation
or inspection, these techniques are inadequate
when addressing less constrained environments
like a robot vision system moving about a fac-
tory or house.

Consider, for example, a robot vision system
whose goal is to move through a handicapped
person’s household, retrieving and manipulat-
ing everyday objects such as books, cups, chairs,
etc. How can we avoid having to provide the
system with detailed CAD specifications of each
object that the system is to recognize? One
way of making object models more flexible is
to parameterize geometric models, as proposed
by Brooks in his ACRONYM system [Brooks,
1983). For example, the legs of a chair model
could have lengths that fall in some specified
range, or the number of chair legs could be
variable. Object recognition systems using pa-
rameterized models have also been proposed by
Huttenlocher [1988] and by Lowe [1991]. How-
ever, all three of the above systems are very
top-down, requiring not only knowledge of what
object is in the image, but in some cases a good
initial guess as to the orientation of the object.

A different approach to the problem is to con-
sider the recognition process in the context of an
agent interacting with its environment [Rivlin




et al., 1991]. The recognition process is sub-
ordinate to the agent’s intentions and behavior
in its environment. Recognition is equivalent
to the process that checks if an object suits a
particular purpose. If an object is perceived to
fulfill a function necessary to carry out a cer-
tain behavior or action, then it is recognized.
Gibson’s theory of affordances {Gibson, 1979],
i.e., properties that are defined with reference
to an observer, was a major step in this di-
rection. Winston et al. [1983] emphasized how
much easier it is to describe what objects are
used for, rather than to describe what objects
look like. They tried to show how recognition
could be performed using functional definitions
and precedents, and how physical descriptions
of objects could be learned by analogy.

When we consider recognition from a func-
tional point of view, we leave the concept of
shape-alone based recognition for a more gen-
eral and flexible concept. For example, if we
wish to model four chairs, each having a dif-
ferent configuration of differently shaped parts
but all functioning as chairs, we would require
four different object shape models. Alterna-
tively, recognition based on functionality would
enable our mobile robot to possess knowledge of
the needed function of a chair without explicitly
specifying the possible shapes of a chair. The
seminal work of Stark and Bowyer et al. [Stark
and Bowyer, 1991a; Stark and Bowyer, 1994;
Stark et al., 1994] and [Sutton et al., 1993] has
addressed function-based object recognition, fo-
cusing on domains including chairs and dishes.
In their work, they define a set of functional
primitives specific to each object class. For ex-
ample, in their system that recognizes chairs,
they have functional primitives for support, sit-
ting height, stability, etc. From a CAD repre-
sentation of an object, they can compute these
primitives and categorize the object. Although
their system has been tested mainly with CAD
data, they have applied it to complete range im-
ages of an object acquired through an Odetics
range scanner.

Despite the success of their approach, it has
some limitations. To begin with, the approach
assumes a 3-D representation of the image from
which they can compute their functional prim-
tives. Furthermore, the approach assumes an
image of an isolated object; object occlusion in
the image cannot be supported since there is
no object segmentation performed on the image
data. Finally, a complete polvhedron is required
for input, restricting the approach to domains
where the scanuer can circumnavigate the ob-
ject. It is important to note that they take a
global approach to functional recognition, mak-
ing 1t sensitive to occlusion and partial views.
Due to the nature of their functional reasoning,
it does not extend to function-based recognition

from 2-D imagery containing multiple occluded
objects.

In this paper, we present a theory of function-
based recognition which is a natural extension of
part-based shape recognition. Instead of focus-
ing on global properties such as stability, height,
existence of large horizontal surfaces, etc., we
will reason about the functionality of an ob-
ject’s parts. Moreover, those parts are the same
parts that we recover from the image far shape
recognition. Thus, instead of reasoning about
the functionality of a collection of 3-D points or
planar surfaces, we propose to reason about a
more intuitive notion of an object’s parts (Pent-
land [1986]). Although we will not index using
part shape, we can use knowledge of part shape
to help segment the image into parts. Given a
set of recovered volumetric parts, we can then
reason about the functionality of both the indi-
vidual parts and interactions between the parts.
Such interactions can include relative orienta-
tion, size, shape, or even motion!

Although the idea of reasoning about the
function of an object’s parts has been proposed
by other researchers, there has been little con-
cern in dealing with real image data. In Win-
ston et al. [1983], the vision component was re-
placed by a linguistic interface which provided
English descriptions of scene content. In Vaina
and Jaulent’s compatability model [Vaina and
Jaulent, 1991], shape attributes of an object,
e.g., length, relative part orientation, etc., are
provided as input; neither a shape description
nor a recovery scheme was presented. In Brady
et al.’s Mechanics Mate [Bra,dy et al., 1985], a
mapping from Curvature Primal Sketch (CPS)
and Smoothed Local Symmetries (SLS) features
in a 2-D image to a set of higher-order geometri-
cal structures was proposed. These higher-order
structures were then mapped to a set of func-
tional parts belonging to a set of handtools. The
extension to 3-D shape was proposed but never
implemented.

Our goal in this work is not only to propose an
object representation which integrates function
and shape, but addresses the problem of recov-
ering shape and function from either 2-D or 3-D
image data. We will outline an approach which
first segments an image containing multiple ob-
jects into a set of volumetric parts, supporting
part recovery from incomplete views of the ob-
ject and supporting object occlusion. Following
part grouping by object, the approach will in-
fer the possible functionality of individual parts
and collections of parts. The robot can check
if the needed functionality for a certain actiou
is consistent with the recovered functionality.
Comparing this approach to that of Stark and
Bowyer for the problem of searching the image
for a “chair kind of support”, we would like to
reason about a set of chair legs, a seat, and a
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Figure 1: Representing Object Functionality

back, rather than a set of simple planar surfaces
or 3-D points.

2 Representing Object Functionality

Our theory of function-based object recognition
is a natural extension of part-based shape recog-
nition. That is, we reason about the functional-

ity of an object’s parts and their interrelations.
Figure 1 illustrates the concept. At the shape
level, objects are constructions of coarse volu-
metric primitives with spatial relations between
the primitives. At the function level, the shape
primitives map to a set of functional primitives
and the spatial relations map to a set of func-
tional relations. At the functional level, objects
are not represented in terms of shape, but in
terms of a set of functional primitives and rela-
tions. In the following sections, we describe this
hierarchical representation in more detail. We
begin by describing the coarse shape represen-
tation and follow with the functional represen-
tation. Finally, we illustrate the representation
by means of an example.

2.1

2.1.1 Shape Primitives

Our shape representation models objects as
constructions of coarse volumetric shape prim-
itives belonging to four classes: sticks, strips,
plates, and blobs. The representation is an ex-
tension to the generalized blob models (sticks,
plates, and blobs) proposed by Mulgaonkar
et al. [1984]. Our four classes are distinguished
by their relative dimensions. Letting ay, a, and
ag represent length, width, and height, respec-
tively, of a volumetric part, we can define the
four classes as follows:

Representing Shape

Stick: a7 ~ars <€ azVa, ~az < ayVas
~ a3 < Ay

Strip: a1 #FazNay # a3 ANay # ag

Plate: a7 ~ay > az3Va ~az3> aVap

12

as > a9

15

Blob:

Intuitively, if all three dimensions are about the
same, we have a blob. If two are about the
same and the third is very different, we have
two cases: if the two are bigger than the third,
we have a plate, while if the two are smaller
than the third, we have a stick. Finally, when
no two dimensions are about the same, we have
a strip. For example, a knife blade is a strip,
because no two of its dimensions are similar.

2.1.2 Spatial Relations

We can qualitatively describe the ways in
which two shape primitives can be combined.
For example, we can attach two shapes end-to-
end, end-to-side, or side-to-side, as proposed by
Biederman when building objects out of geons
[Biederman, 1985). To further specify these at-
tachments, we adopt the convention of labeling
each primitive’s attachment surfaces [Dickinson
et al., 1992b]. For example, a square plate has
six attachment surfaces, while a cylindrical stick
has three attachment surfaces. For simplicity,
we shall require any junction of two primitives
to involve exactly one attachment surface from
each primitive. In addition to specifying the two
attachment surfaces participating in the junc-
tion of two primitives, we can also consider the
angles at which they join, and we can classify
the joints as perpendicular, oblique, tangential,
etc. Another refinement would be to qualita-
tively describe the position of the joint on each
surface.

a; X ap; =as

2.2 Representing Function

2.2.1 Functional Primitives

Functional primitives represent the building
blocks of a functional representation of an ob-
ject. For example, the functional primitives
defining a coffee cup would include a handle
and a container; a chair would include a seat,
a base, and a back [Stark and Bowyer, 1991a;
Stark and Bowyer, 1991b]. For the remain-
der of this paper, we will illustrate our ap-
proach to functional object recognition by fo-
cusing on a class of manipulation tasks. Bear-
ing in mind that a manipulation task involves an
agent grasping an object and using it to perform
some action, we will define a class of objects
that have an end-effector (the part which deliv-
ers the action) and a handle (the part that the
agent grasps). Examples of such objects might
include simple hand tools like a screw driver or a
hammer, or everyday objects like cups, glasses,
or plates.

2.2.2 Functional Relations

A given set of parts might independently sat-
isfy the needs for an end-effector or a handle.
However, they must be joined in a particular
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way so as to satisfy the needs of a particular
task. The set of functional relations linking the
primitives describes the function of the interac-
tion between the primitives. In the hammer ex-
ample, the functional relation linking the handle
and end-effector specifies that the handle is used
to swing the end-effector in a direction which
maximizes the force tangential to the swing arc
while maximizing striking stability.

2.3 Mapping Shape to Function

In general, the mapping between shape primi-
tives (and their relations) and functional prim-
itives is many-to-one. For example, three or
more chair legs may satisfy the functional prim-
itive of chair base. For simplicity, we will re-
strict ourselves to object models with a one-
to-one mapping between shape primitives and
functional primitives. Consider, for example,
the functional model for a hammer specifying
an end-effector and a handle. The end-effector
should be blob-like, ensuring that the dimen-
sions of the striking surface are roughly equal
(rotationally symmetric to allow striking error
in any direction). If the end-effector were stick-
like, the distance between the handle junction
and the striking surface would be large, mak-
ing it more difficult to locate the nail. If the
end-effector were plate-like, it would have in-
sufficient momentum for driving a nail. The
handle, on the other hand, should be stick-like,
small enough that it can be grasped by a hu-
man hand, and long enough to provide a high
moment at its junction with the end-effector.

2.4 Mapping Function Relations to
Spatial Relations

The specification as to how the functional com-
ponents defining an object are combined is cap-
tured by a set of functional relations. These
functional relations are then mapped to a set
ol spatial relations linking the shape primitives.
In the hammer example, the functional relation
maps to an attachment between the stick (han-
dle) and the blob (end-effector) such that the
axis of the stick is orthogonal to the (principal)
axis of the blob and is attached to the centroid
of the blob. The complete model for the ham-
mer, including functional and shape primitives,
functional and shape relations, and the mapping
from functional shapes and relations to spatial
shapes and relations is outlined in Figure 2.

It is important to note that in choosing a sim-
ple domain which affords a one-to-one mapping
between shape and function, we do not demon-
strate the potential complexity of the mapping
between shape and function. For example, a
configuration of many different volumetric parts
could serve as a hammer end-effector (head).
Or, conversely, a given volumetric part, or col-
lection of parts, could serve as either a hammer

2 1) at end:
2) stability ot head during
strike
3) downward force at
horizontal arm

functional
level

shape
level

surface: end of stick to
side of blob

position: centroid of blob

angle:  orthogonal

Figure 2: Functional Model for a Hammer

handle or a hammer head. In future work, we
hope to explore this mapping beyond the sim-
ple one-to-one mapping that we have chosen to
illustrate the approach.

3 Recovering Shape

In the last section, we described a set of func-
tional primitives defined on a set of shapes con-
sisting of sticks, strips, plates, and blobs. Since
these four shape classes are defined according
to their relative dimensions, we need to not
only segment an input image into parts, but re-
cover 3-D (dimensional) information from those
parts. In this section, we describe an approach
to recovering sticks, strips, plates, and blobs
from an image. The approach consists of re-
covering a superquadric from the image, pro-
viding explicit dimensions which we can then
use to classify our shape. Superquadrics offer
a compact, coarse, volumetric description of an
object’s parts [Pentland, 1986]. If finer shape
modeling is required, deformable superquadrics
can be used to capture both global part shape
(using a superquadric) and local shape (using
a deformable mesh) [Terzopoulos and Metaxas,
1991]. Since superquadrics capture more shape
attributes than just the z, y, and z dimensions
of a part, they provide us with a foundation
from which to recover a richer vocabulary of
qualitative shapes with which to reason about
function. For example, we may decide to dis-
tinguish among curved-axis vs. straight-axis
shapes or tapering vs. constant cross-sectional
sweep rules [Biederman, 1985].

The approach we take, due to Dickinson
and Metaxas [Dickinson and Metaxas, 1992;
Metaxas and Dickinson, 1993}, is to use a qual-
itative segmentation of the image to provide
strong constraints on the deformable model fit-
ting procedure described in [Terzopoulos and
Metaxas, 1991].  The result is a technique
which allows us to recover certain classes
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of superquadrics from image data, under or-
thographic, perspective, and stereo projection
[Metaxas and Dickinson, 1993]). Furthermore,
the technique supports the recovery of occluded
parts, allowing us, unlike the work of Stark
and Bowyer, to reason about the functionality
of objects that are only partially visible. We
will not describe the above recovery methods
in this paper; details can be found in [Dick-
inson and Metaxas, 1992; Metaxas and Dick-
inson, 1993]. We will, however, proceed now
to describe the geometry of a deformable su-
perquadric and show how we classify a su-
perquadric as a stick, strip, plate, or blob.

3.1 Geometry of a Deformable
Superquadric

(Geometrically, the models that we can recover
from either range or image data are closed sur-
faces in space whose intrinsic (material) coor-
dinates are u = (u,v), defined on a domain €.
The positions of points on the model relative
to an inertial frame of reference ® in space are
given by a vector-valued, time varying function
of u:

x{u,t) = (.’L‘l(ll,t),l’Q(u,t),il?g(u,t))T, (1)

where T is the transpose operator. We set up a
noninertial, model-centered reference frame ¢,
and express these positions as

x = c + Rp, (2)

where c(t) is the origin of ¢ at the center of
the model and the orientation of ¢ is given by
the rotation matrix R(¢). Thus, p(u,t) denotes
the canonical positions of points on the model
relative to the model frame. We further express
p as the sum of a reference shape s(u,t) and a
displacement function d(u,?):

p=s+d. (3)

The ensuing formulation can be carried out
for any reference shape given as a parameter-
ized function of u. Based on the shapes we want
to recover (sticks, strips, plates, and blobs with
possible tapering and bending global deforma-
tions), we first consider the case of superquadric
ellipsoids [Barr, 1981], which are given by the
following formula:

alcuﬁcvvq
e =aq ( (LQCuEl SUCQ ) y (4)
a35u51

and where §,,° = sgn(sin w)|sin w|¢, and C,° =
sgn(cos w)| cos w|®, respectively. Here, a > 0 is
a scale parameter, 0 < ay,az,a3 < 1 are aspect
ratio parameters, and €;,e; > 0 are “square-
ness” parameters.

where —7/2 < v < 7/2 and -7 < v < 7,

We then combine linear tapering along prin-
cipal axes 1 and 2, and bending along princi-
pal axis 3 of the superquadric e! into a single
parameterized deformation T, and express the
reference shape as

5 = T(evtlat2ab17b27b3) = (5)
(% + 1) ex + by cos(%t2rby)
B 11, -
€3

where —1 < ty,¢; < | are the tapering parame-
ters in principal axes 1 and 2, respectively, and
where by defines the magnitude of the bending
and can be positive or negative, —1 < by < 1
defines the location on axis 3 where bending is
applied and 0 < b3 < 1 defines the region of in-
fluence of bending. Our method for incorporat-
ing global deformations is not restricted to only
tapering and bending deformations. Any other
deformation that can be expressed as a continu-
ous parameterized function can be incorporated
as our global deformation in a similar way.

We collect the parameters in s into the pa-
rameter vector:

qs = (a,[L],ag,ag,€1,€2,t1,t2,b1,b2,bg)T. (7)

Once we have recovered a superquadric from
an image (range or intensity), it is a very sim-
ple matter to extract the dimensions of the su-
perquadric. The width (z dimension) of the su-
perquadric is given by

width = aay, (8)
its height {y dimension) by

height = aa, (9)
and its length (z dimension) by

length = aas. (10)

Given the dimensions of the part, we can classify
the part as either a stick, strip, plate, or blob
according to the rules described in Section 2.

4 Recovering Object Function

Our function-based object recognition strat-
egy supports bottom-up (or unexpected) object
recognition, whereby an object is presented to
the system and the system identifies the object
based on the functionality of its parts. In ad-
dition, our strategy supports top-down (or ex-
pected) object recognition, whereby the system
looks for a particular object in the image by
mapping its functional parts to image feature
predictions. In this section, we will describe
both these strategies.

!These coincide with the model frame axes z,y and
z respectively.
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Unexpected Object Recognition

In an unexpected object recognition task, we
first segment an input image into a set of ho-

mogeneous regions from which we recover a

set of qualitative 3-D parts using local part-
based aspect matching techniques [Dickinson
et al., 1992a; Dickinson et al., 1992b; Dickinson,
1993]. Next, using the techniques of Dickin-
son and Metaxas [Dickinson and Metaxas, 1992;
Metaxas and Dickinson, 1993], we use the recov-
ered qualitative shape to constrain the fitting of
a set of deformable superquadrics to the qual-
itative parts. Irom the resulting quantitative
parts, we compare the dimensions of the parts
to abstract a set of sticks, strips, plates, and
blobs. Furthermore, we can recover the spatial
relations spanning the recovered parts.

If there is no a priori knowledge of what ob-
ject is in the image, then groups of spatial prim-
itives and their spatial relations can be used
to infer a set of functional primitives and rela-
tions. The recovered functional primitives and
relations are then compared to a set of func-
tional object models. In our simple domain of
hand tools, we can map shape primitives to pos-
sible functional primitives and map shape rela-
tions to possible functional relations, providing
a number of functional object hypotheses that
are then compared to the object database. As
an example, suppose we place a hammer in front
of the camera and ask the system to identify
the object. The recovery process would recover
a stick and a blob in some spatial configura-
tion. The blob then maps to end-effector as
well as to all other functions a blob could serve.
Similarly, the stick maps to a handle as well as
all other functions that it could serve. Finally,
the spatial relation between the stick and blob
would map to all functional relations joining a
stick and a blob in that configuration. Com-
bining the various interpretations for the stick,
the handle, and their relationship would yield a
number of object hypotheses which satisfy the
recovered functionality.

Expected Object Recognition

In an expected object recognition task, we
use knowledge of the target object’s functional
model to constrain our search in the image both
in terms of what we look for and where we
look for it. Given a functional object model,
we first choose some functional primitive whose
presence in the image would provide the least
ambiguous mapping to the target object. For
example, in looking for a cup on a table con-
taining glasses and cups, we should look for a
cup handle and not a container since the han-
dle i1s unique to the cup. Next, the functional
primitive is mapped to one of the four abstract
shape primitives, i.e., sticks, strips, plates, and
blobs. Finally, the shape primitive is mapped

into an image region shape prediction in terms
of extent or elongation. Like the unexpected
object recognition algorithm, the image is first
processed to extract a region topology graph.
By examining the extent (or elongation) of an
image region, along with that of its immedi-
ate neighbors, we can derive a simple heuris-
tic for drawing attention to a particular im-
age region. We can thus focus the recovery of
the shape primitive and constrain the search for
other primitives belonging to the object.

For example, if we are searching for blobs or
plates, we can rank-order the image regions by
increasing extent. Furthermore, regions whose
immediate neighbors include a region with simi-
lar extent can be favored as being part of a blob,
while regions whose neighbors do not include a
region with similar extent can be favored as be-
ing part of a plate. Similarly, if searching for
sticks or strips, we can rank-order the image re-
gions by decreasing extent. Regions whose im-
mediate neighbors include a region with similar
extent can be favored as being part of a stick,
while regions whose neighbors do not include
a region with similar extent can be favored as
being part of a strip. These rules can provide
a useful ordering on the positions from which
shape recovery is attempted.

From a candidate search position, the next
step is to recover a superquadric from which
the 3-D part dimensions and orientation can be
recovered. This consists of first recovering the
qualitative shape of the part [Dickinson et al.,
1992b: Dickinson et al., 1992a), which is then
used to constrain the fitting of a superquadric
to the image data. Once the part is verified as a
stick, strip, plate, or blob, the search for other
parts of the object can be constrained to those
image regions adjacent to or in the vicinity of
any previously recovered volumes.

5 Results

In this section, we apply the function-based ex-
pected object recognition algorithm to the im-
age of the mallet shown in Figure 3(a). In Fig-
ure 3(b), we show the segmented region image.
Without any a priori knowledge of scene con-
tent, each of the functional primitives, namely
the end-effector and handle, are deemed equally
likely to appear in the image. The algorithm ar-
bitrarily chooses the end-effector (mallet head)
and maps that choice to a search in the image
for a blob. The algorithm rank-orders regions in
the image according to their ratio of area to ex-
tent (computed from bounding box). The large
region is chosen first and the bottom-up algo-
rithm is used to recover the most likely interpre-
tation of the region and its neighbors. The two
most likely recovered volumes are found, corre-
sponding to the head and handle of the mallet,
respectively.
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Figure 3: Hammer Recovery: original image, segmented region image, recovered head, and recov-

ered handle.

In Figures 3(c) and (d), we show the results
of using the recovered qualitative shape to con-
strain the fitting of a superquad to each part;
the parameters of the two superquads are given
in Table 1. Since only a monocular image was
used, the same arbitrary depth was chosen for
both objects during the fitting stage. Without
recovering true depth of the two parts, we can-
not ensure that they intersect.? However, in this
case, since the two parts intersect in the image,
we will assume that they intersect in 3-D.

Table 1: Recovered Superquad Parameters for
Mallet

Superquad Part
Parameter || Head | Handle
a 37.19 37.19
a; 0.45 0.22
ay 0.45 0.22
as 0.69 1.14
1r -4.40 4.97
I, 051 | -3.88
i, -50.0 -50.0
T11 0.49 0.54
T12 -0.22 0.07
T13 -0.84 0.84
T21 -0.14 0.78
T22 0.93 0.27
T3 -0.33 -0.53
T31 0.86 *026
732 0.28 0.96
T33 0.42 0.09
€1 0.0 0.0
() 1.0 1.0
bend, 0.0 0.0
taper, 0.0 0.0

From the recovered superquad parameters in
f[jable 1, we can proceed to classify each part as
either a stick, a strip, a plate, or a blob accord-
Ing to the shape primitive definitions in Sec-
tion 2.1.1; the results are shown in Table 2. If

’See [Metaxas and Dickinson, 1993] for an approach
to deformable model recovery from stereo pairs.

we define two dimensions as similar if the ra-
tio of the biggest to the smallest is within 4:1
(width:height:length ratios for the two parts are
1:1:1.53 for the head and 1:1:5.18 for the han-
dle), the mallet head is classified as a blob, while
the mallet handle is classified as a stick.

Since our search procedure is looking for the
mallet head (end-effector), it chooses the blob,
and proceeds to search for the handle in the
vicinity of the recovered blob. Due to region
undersegmentation, the regions corresponding
to the body surfaces of the head and handle of
the mallet were joined. However, those contours
not used to recover the head but still belonging
to the large region are free to be part of other
recovered volumes. Since we have already re-
covered a stick and its defining contours were
not used to infer the blob, we can instantiate
the handle in the image. The last step in rec-
ognizing the object is to satisfy the functional
relation between the two parts which is mapped
into a spatial constraint on the part junction.
Since the computed relative orientation of the
two parts is such that their z axes are orthogo-
nal (> 60deg in our qualitative partitioning of
angle), and since the junction occurs at the end
of the handle and at the middle of the head,
the algorithm successfully verifies the hammer
in the image.

Table 2: Recovered Dimensions for Mallet

Dimension Part
Head | Handle
width 16.74 8.18
height 16.74 8.18
length 25.66 42.40

In the second example, we apply our function-
based unexpected object recognition approach
to a scene containing a short cylinder attached
to the side of a block; the image is shown in
Figure 4(a), while the segmented region image
is shown in Figure 4(b). Figures 4(c) and (d),
show the recovered superquadrics for the block
and cylinder, respectively.
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Figure 4: Object Recovery: original image, segmented region image, recovered block, and recovered

cylinder.

From the recovered superquad parameters, we
can proceed to classify each part as either a
stick, a strip, a plate, or a blob using the def-
initions in Section 2.1.1; the results are shown
in Table 3. The width:height:length ratios are
1:1:2.51 for the block and 1:1:0.89 for the cylin-
der; both the block and the cylinder are classi-
fled as blobs. Although their connection posi-
tion and orientation is consistent with the ham-
mer model, the hammer model requires that its
handle be a stick. The unknown object cannot,
therefore, be classified as a hammer.

Table 3: Recovered Dimensions for Unknown
Object

Dimension Part
Block T Cylinder
width 20.08 16.74
height 20.08 16.74
length 50.58 14.88

6 Limitations

The domain of hand tools defines a simple, one-
to-one mapping between an object’s functional
primitives and relations and their correspond-
ing shape primitives and relations. In the more
general case, the mapping from shape primitives
to functional primitives is many-to-one, and a
much more elaborate reasoning strategy is re-
quired to support the inference of a functional
primitive from a collection of interacting shape
primitives. Nevertheless, we strongly believe
that such a reasoning mechanism must oper-
ate at the level of an object’s coarse volumetric
parts.

The object representation described in this
paper is appropriate for objects composed of
simple volumetric parts. Furthermore, we sup-
port only functionality that is defined in terms
of an object’s shape. Functions that are based
on color, texture, or more importantly, motion,
are not currently supported, although in car-
rent work we are enhancing our representation

to include motions of an object’s parts.

7 Conclusions

We have presented an approach to function-
based object recognition that reasons about the
functionality of an object’s parts. Previous ap-
proaches have relied on more global object fea-
tures, often ignoring the problem of object seg-
mentation and thereby restricting themselves
to range maps of unoccluded scenes. We ex-
tend the popular “recognition by parts” shape
recognition framework to support “recognition
by functional parts”, by combining a set of func-
tional primitives and their relations with a set of
abstract volumetric shape primitives and their
relations. We show how these shape primitives
and relations can easily be recovered from su-
perquadric ellipsoids which, in turn, can be re-
covered from either range or intensity images
of occluded scenes. Furthermore, the proposed
framework supports both unexpected (bottom-
up) and expected (top-down) object recogni-
t1on.
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