
Proceedings of 2004 1EEElR'S.J lnternatlonsl Conference on
Intelligent Robots w a Systems
September 28. Oclober 2,2004, Senaal, Japan

CAUTIOUSBUG : A Competitive Algorithm
Sensory-Based Robot Navigation

Evgeni Magid
Dept. of Mathematics

Technion - Israel Institute of Technology
Haifa, Israel

Email evgenue~tx.technion.ac.il

Abstract-Bug algorithms are a class of popular algo-
rithms for autonomous robot navigation in unknown en-
vironments with local information. Very natural, with low
memory requirements, Bug strategies do not yet allow any
competitive analysis. The bound on the robot's path changes
from xene to scene depending an the obstades, even though a
new obstacle may not alter the length of the shortest path. \Ye
propose a new competilive algorithm, CoutiousBug, whose
competitive factor has an order of O(P- ') , where d is
the length of the optimal path from starting point S to a
(arget point T. m = and #.Win denote the number
of the distance funclion isolated local minima points in the
given enviranment. Simulations were performed to study the
average competitive factor of the algorithm.

I. INTRODUCTION
Autonomous navigation of indoor mobile robots has

received considerable attention in recent years. Work in this
area was motivated by applications such as office cleaning,
cargo delivery etc. In realistic settings, an autonomous
robot cannot base its motion planning on complete a priori
knowledge of the environment. The robot must use its
sensors to perceive the environment and plan accordingly.
The two main sensor-based approaches use either global
planning or local planning.

In the global sensor-based planning approach, the mo-
bile robot builds a global world model based on sensory
information and uses it for path planning. This approach
guarantees that the target will be reached or the robot
will conclude that the goal is unreachable. However, the
construction and maintenance of a global model based
on sensory information imposes a heavy computational
burden on the robot. Local path-planners use the local
sensory information in a purely reactive fashion and do
not guarantee global convergence.

A midway approach, originated by Lumelsky and
Stepanov [IZ], combines local planning with global con-
vergence: essentially reducing the reliance on a global
model to loop detection. Purely reactive navigation deci-
sions guarantee global convergence. Algorithms Bugl and
82192, presented in [12], use only position and contact
sensors. These algorithms consist of two reactive modes
of motion - moving directly towards the target and fnl-
lowing an obstacle boundary - and transition condition for
switching between them. When the robot hits an obstacle
it switches from moving toward a target to following a

for

0-7803-8463-WOU$20.00 WO04 IEEE
2757

Ehud Rivlin
Dept. of Computer Science

Technion - Israel Institute of Technology
Haifa, Israel

Email: ehudr@cs.technion.ac.il

boundary. It moves away from the obstacle boundary when
a leaving condition, which ensures that the distance to the
iarget decreases, holds. Bug algorithms can be divided
into two groups according to their memory requirements.
The first group inherits the main property of the original
Bugl and Bug'? -minimal memory requirements 181,191,
[l l] , [13], 1141, [15]. The second group, originating from
Sankaranarayanan's Algl and Alg2 [19],uses different data
structures to store Hit and Leuving points together with
some useful information about the followed path [4], [16].
Algorithms within one group differ mainly by their leaving
conditions and the way they choose boundary following
directions.

The Bug approach minimizes the computational burden
on the robot while still guaranteeing global convergence
to the target. However, the original Bug algorithms do
not make the best use of the available sensory data to
produce short paths. VisBug I l l] uses range sensors
only to find shoncuts to the path generated by Bug2.
DistBug 191 uses range sensors to define a new leaving
condition and lo choose an initial bounday following
direction with respect to local range data. Tungentb'ug
[8] expands on the existing Bug family algorithms, being
specially designed for using range data and incorporating
the notion of the locally shortest path into the general
Bug paradigm. Tangen,tBug uses a local tangent graph
(ETG) for choosing the locally optimal direction while
moving toward the target, for making local shortcuts and
for testing a leaving condition while moving along an
obstacle tmnndq.

Recently, one of the main requirements of the naviga-
tion strategy has k e n its competitiven.ess [21, 131, [51,
[6], 1181. W e n analyzing its competitiveness, the robot's
performance is measured with respect to the optimal path
between stan point S and target point T . The optimal path
is a subgraph of the connectivity graph [IO], representing
the shortest path a robot would choose given complete
information about the environment. The ratio of the robot's
path length and the optimal path is called the competitive
factor of the strategy. The competitive factor is a charac-
teristic property of the navigation task alone, guaranteeing
a good worst-case behavior. Often, the true competitive
factor is considerably smaller than the upper bound we are
able to prove.

All algorithms of the Bug family produce a worst-
case path length, which is expressed in the notion of
perimeters of the obstacles intersecting the disk of radius
11s - TI/ centered at the target point. Hence, the main
disadvantage of the Bug family algorithms is that they
are not competitive. The boundary-following direction is
chosen based on local information and may be "wrong"
in the sense that it will result in a longer path. The
mechanism of switching the boundary following direction,
presented in (71, can solve this problem in some simple
non-generic cases, hut fails in more complicated scenario.
Thus, by choosing a "wrong" direction, Bug algorithms
will produce a catastrophically long path, while in reality
there exists a much shorter path. This becomes a disaster
in complex environments.

The name of our algorithm, CautiousBug, is used to
show its main feature - it does not make daring decisions.
While Rug algorithms take a risk choosing the boundary-
following direction at the switch point, CautiousBug
executes a conservative spiral search in both directions of
the boundary.

11. SPIRAL SEARCH

Suppose there is a very long wall with a door in it. At
some point along the wall a mobile robot is located. Its
task is to get to the other side of the wall. The robot does
not know whether the door lies to the left or to the right of
its start position S,. The robot could pick one direction,
left or right, and then walk along the wall in this direction
forever. If it happens to guess the correct direction the door
will he reached without having to detour. But if it chooses
the wrong direction, the door will never be reached. To
avoid this situation, the robot should altemate directions,
and explore both the left and the right p a t of the wall in
tum. It moves one step to the right, and retums. 'Then the
length of the step is doubled and the robot steps in the
opposite direction, and again retums to its stan position
Figure 1). Suppose that p , and pb are the two concurrent
paths of the search and the target is at the distance d units
from the origin on p,. If the distance d is slightly bigger
than a power of 2, d > 23 , then the path is of total length

exceeding the distance to the door only by a factor of 9.
Baeza-Yates et al. in [I] showed that no smaller competitive
factor than 9 can be achieved for this problem.

nteorem 2.1: The doubling strategy in [I] for finding
a door in a wall is competitive with factor 9, and this is
optimal.

Lemma 2.1: If a point robot follows the Spiral Search
strategy in [I], the furthest distance walked by the robot
in the wrong direction is 2(d-1) units.

In our strategy, the robot executes this spiral search along
the edges of the LTG in the obstacle boundary following
mode.

d .
2&' 4

83

+ ~ ~ ~ * . . ~. ~ ~~ ~ ~ ~

Pa s w P-

Fig. I. Spiral search

111. CAUTIOUSBUG ALGORITHM
The algorithm navigates a point robot in a planar un-

known configuration space populated by stationary recti-
Linear obstacles'. We assume that all obstacles in the C-
space have a minimal thickness, i.e. we can encapsulate a
unit square into any obstacle or its pan. The robot knows
its precise coordinates at any point and the exact positions
of Ihe Start and Target points. We assume that there are
no errors in the walked path estimation due to odometry
errors, frequency etc. The sensory input consists of the
robot's current position x and the distance from x to the
obstacles within a detection range R. At each moment the
robot can measure the distance d(x, T) from its current
location x to the target T. This distance function d (x , T)
determines the behavior of the CautiousBug.

A. The Algorirhm Descriprion
CautiousBug uses two basic motion modes: motion

toward the target (decreases d (x , T)) and following an
obstacle boundary (used to escape from the local minimum
of d(x, T)) . At every step the robot constructs the LTG,
based on its current range readings. It uses the LTG to
plan its next actions as follows. During motion toward tbe

target, the robot moves in the locally optimal direction,
which is the.direction of the shortest path to the target
according to a subgraph of the LTG. The motion toward the
target terminates when the robot detects that moving in the
locally optimal direction will bring it into a local minimum
of the distance function d(x, T). At this point the motion
mode is switched to the obstacle-following behavior. The
initial boundary-following direction is chosen and the robot
stam tbe spiral search along the obstacle boundary,
continuously monitoring the LTG until it finds a suitable
leaving point, which satisfies the leaving condition. The
leaving condition checks that d (x , T) can be decreased
relative to the shortest distance to the target observed along
the path so far. Here is a summary of the algorithm:

1) Move toward T along the locally optimal direction
on the current LTG subgraph, until one of the fol-
lowing events occurs:

The target is reached. Stop.
A local minimum is detected. Go to step 2.

2) Choose a boundary following direction. Move along
the boundary with spiral search strategy using the

'The restriction of the ohslaclss to being rectilinear is ncedcd for thc
competitiveness proof only.

2758

Pig. 2. The robot in a simple convex environment USES only moving-
toward-the-target hehavior. Unlimited senson can change lhc p a l si%-
nificanOy. h a do not guarantee coincidence with thc optimal p l h . (a)
contact snwrs (b) limitcd ~ ~ n s o n with range R (c) unlimited S ~ ~ S O ~ S

LTG for shortcuts while recording d.,,;"(T), until one
of the following events occurs: - The target is reached. Stop.

The leaving condition holds: 3 V E LTG s.t.
d(V,T) 5 d,,,,"(T). Go to step 1.
The robot completes a loop around the obstacle.
The target is unreachable. Stop.

Three kind of motions are considered motion in free
space between obstacles; sliding along an obstacle bound-
ary; following an obstacle boundary in a spiral search.
Moving-toward-the-target motion mode uses the first two
kinds of motion - as long as the distance function d(V: T)
decreases.

B. Moving Towrd rke Target

While moving towards the target, the robot moves in a
greedy locally optimal direction, which is the direction
along the shortest path to the goal according to LTG
(Fig. 2). The candidate motion directions are the directions
toward LTG nodes. A node Oi is considered as a candidate
only if it is closer to the target than the current robot
location d(0 i ;T) < d (z , T) . The expected path length
to the target is calculated for each candidate direction,
assuming that the sensed obstacles are thin walls and that
they are the only obstacles in the environment. If there
is no blocking obstacle between the robot and the target
within the sensor range, the shortest path will be along
the edge toward T,&: otherwise, the endpoints of the
blocking obstacle are the candidates for the shortest path.

The motion-toward-target stops when the robot detects
that moving in the locally optimal direction will drive it
into a local minimum, created by the blocking obstacle. As
the robot moves toward the target, it monitors the closest
point to the target M on the boundary of the blocking
obstacle. If the distance 4.44: T) is less than the distances
d(O1,T) and d(O2,T) to the target from the endpoints
0 1 , 0 2 of the blocking obstacle, the robot concludes that it
is within the basin of the local minimum A4 and switches
to boundary-following behavior (Fig. 3).

C. .%//owing the Obsracle Boundar)

The obstacle-boundary-following behavior is used to
drive the robot away from a local minimum. The robot
conducts the spiral search, moving around the obstacle
until either the leaving condition holds or a loop around
the obstacle is completed. The LTG is used to plan local

Fig. 1. In Lhe concave environmmt the mho1 uses holh moving toward-
tarscl and boundary-following bchavior with TangentBug (dashed line)
and CautiousBug (solid line). (a) c0nU~t s m o m (b) limited senson with
range R (c) unlimited S C ~ S O ~ . In this pmicular S E E ~ C lhc path pmduced
hy both algoi%hm coincides, but this does no1 happcn in all scenes

shortcuts relative to the obstacle boundary and for testing
the leaving condition.

When obstacle-boundary-following behavior is initiated,
in a switch point Sw, the algorithm defines the followed
obstacle a5 the current blocking obstacle, that is, the
one which caused the local minimum. During boundary-
following, the followed obstacle may differ from the block-
ing obstacle, when the followed obstacle is not the one that
blocks the target direction. Initially, a minimum point M
is chosen to be a local minimum point that will cause the
switch to the boundary-following mode. Initial boundary-
following direction dirl is chosen using the local properties
of the boundary of the followed obstacle [71 . At each
step the robot constructs the LTG, locates the followed
obstacle in it, and focuses on those nodes of the LTG that
lie on the followed obstacle. The motion direction during
the boundary-following is toward the left/right endpoint
of the followed obstacle. The robot executes the spiral
search, using the switch point Sw as an origin of the
search rays, which are the edges of the LTG. The length
of the path walked by the robot from the origin of the
search rays SUI to the current point x is registered in d,,,.
Variable dP,.. stores the length of the previous step of the
spiral search, performed in the opposite direction. After the
initial boundary-following direction dirl is chosen, dpTe.
is initialized with the distance to the farthest point on
the obstacle boundary seen within the sensor range in the
opposite direction dir2. In the case of a contact sensor,
dprev is initialized with some very small value e . When
d,,, exceeds 2dp,,,, the boundary-following direction is
switched to the opposite direction and dpveu + d,,,.

As the robot moves around the followed obstacle it
updates two variables, which register the minimal distance
observed along the path: the shortest distance from the
target on the followed obstacle's boundary d foL lowed(T) ,
initialized with d (M , T) , and the shortest distance from
target within the visible environment d,,,,h(T). To
ensure that the robot stays on the locally optimal paths,
d,,,,h(T) is updated by the shortest distance from the
target of the blocking obstacle's boundary or, when there
is no blocking obstacle, by d(TnOd.,T). The robot leaves
the obstacle boundary when it can reach, via free space,
a point that is closer to the target than the distance
dfol lowed(T) . The test guarantees that the robot will not he
trapped again in the local minima, which it passed during
the boundary-following motion. At each step the leaving

2759

condition d,,,,h(T) < d,olloved(T) is tested; when it is
satisfied, the robot leaves the obstacle boundary.

IV. ANALYSIS
We denote the L2 distance from the start point S to

the target point T with ST and the shortest path from S
to T in the given environment with D. Suppose that the
length of the path D, which is a part of a connectivity
graph, is d. Being interested in the competitiveness of the
algorithm, we analyze the produced path length in terms of
d. The distance along the obstacle boundary walked by the
robot from point A to point B, both lying on the boundary
of the same obstacle, we denote with db(A, B). We hrst
explain some geometric properties, which will be useful in
the competitive analysis of the strategy.

Lemma 4.1: The maximum possible perimeter of a rec-
tilinear polygon inscribed in an m x n grid is mn.

Lemrna 4.2: Among figures with the same boundary
perimeter, the figure with a maximal square is a disk.
Lemma 4.3: The number of isolated local minima points

of d(x,T) over the free configuration space is finite. [71
In our analysis we use a technique similar to one in D a m

and Soundaralakshmi [3]. We assume an adversary who
knows our strategy and designs an environment in such a
way that the robot will be forced to cover ar much distance
as possible following the strategy, that is, with the minimal
presence of motion toward target, but maximal boundary-

Lernmo 4.4: The adversary will design the obstacles in
the environment in a way such that the robot reaches the
maximum number of Hit and Leaving points in the scene.

Consider hit point H j . When the robot executes the
spiral search for the next leaving point Lj, with Hj as
the origin, there are two paths along the boundary: p,- and
p j b . We assume w.1.o.g. that path pi,, if chosen, will finally
bring the robot to T or to a better alternative of a leaving
point A L j , satisfying the relation d (A L j l T) S d(L; ,T) ,
while pja leads to Lj? For each pair of points [L j - l , H j] ,

we funher define the j-th bounding box, which will help
to bound the path length db(Hj, Lj- l) along the boundary
hack from H j to Lj+l. The adversary will force the robot
to walk outside the bounding boxes as much as possible,
since any distance walked inside each bounding box can be
bounded with Lemma 4.1. In our strategy one of the two
paths @ j b) is maintained inside the j-th bounding box.

Lernma 4.5: At least one of the two paths p;, and p;.
ties inside the j-th bounding box until the robot reaches
the next leaving point L j that is closer to the target T or
it reaches T.

Lemma 4.6: The robot walks a maximum distance in
the scene from S to T if for every pair [Hi, Ljl the path
pja connecting Hi and L j along the obstacle boundary lies
completely outside the j-th local boundirtg box. Moreover,
the other path pj, from Hi passes through all previously
defined leaving and hit points before ALj can be reached.

2Thlhe scene i s designed by the adversary in a such way that Ihc robot,
conducting a spiral search. will switch to the opposilc direction just before
rcaching ALj or T and will always choose L j as a Icaving poinL

following.

Pig. 4. Illustration for the definitions of thc Cau~iousBug Algorithm

Thus, in the worst-case scenario the robot will travel
along the single obstacle boundary, traversing the same
parts of the boundary many times. Now we inductively
define the bounding boxes and find the upper hound on the
paths from hit point H j to the next leaving point Lj along
the boundary. Starling at point S (Lo), the robot walks
on the straight segment [S,T] toward T until point H I
is reached and the mode switches to boundary-following,
starting the spiral search for L1.

Lemrm 4.7: Path p l , lies entirely inside the figure with
the boundary formed by optimal path D and the straight
segment [S,Tl. The maximal path length of p l , is less than
d2.

We call this figure the 1-st bounding box. Lemma 4.1
and 4.2 determine an upper bound d2 on the path length
pl,. As soon as the robot comes closer to T than the
current minimal distance to the target d(H1,T). d,;, will
be updated or even a'better leaving point A L 1 will he
defined. Since our advisory will try to escape this situation
as long as possible, the actual bound on the maximal path
length of pi, is even less then d2. Consider hit point H I
and leaving point L1. The proof of the following lemma
follows from Theorem 2.1 and Lemma 2.1.

Lermm 4.8: The adversary can place L1 at a traveling
distance pla 5 2p1, from H I such that the robot reaches
L1 just before it reaches AL1 or T. The robot traverses a
distance W, 5 9pl, along the obstacle boundary before it
reaches L1 from H I . Here, p l , is a part of the followed
obstacle boundary completely inside the 1-st bounding
box.

Consider hit point Hj and leaving point Lj . Then, the
j-th boun.ding box is defined as following:

Lemma 4.9: Path p j , ties entirely inside the figure with
boundary, formed by .optimal path D, parts of obstacle
boundary IL1, H I] , [Lz,Hzl , ... LLj-1, Hj - I] , straight
segments [LO,HII. [Ll;H21. ... [L j - ~ , H j l and [Hj,TI.
Both the maximal path length of p j , and the maximal path
length of the spiral search, Wj, have an order O (8 ') .

We give a sketch of the inductive proof. From Lemmas
4.7 and 4.8, pi, = O(dz) and WI = O(dZ). Note that,
while executing the spiral search at H z , pz , is restricted
to stay inside the figure with boundary d + d(S ,HI) +
d b (H i , L i) + d (L i , H 2) + d (H 2 , T) < d + S T + d 2 =
O(dZ). Thus, p P a = O (8) and lV2 = O(d4). We
assume that the lemma holds for ~ (j - 1) ~ and WJ-1.

The boundary of the j-th bounding box is formed by

2760

d+d(S,Hi)+db(Hi,Li)+d(L1,H*)+db(H1,Lz)+ ...+
db(Hj-iILj-i) + d(Lj-1,Hj) +d(Hj,T) 5 d + ST +
pia + p z . +...+ p0-1). = O(d)+O(d')+ ...+ O(d"-') =
O(d*'-'). By Lemma 4.1 and 4.2, the maximal path length
of p i p inside the j-th bounding box has the order of
O(d';). Applying Theorem 2.1 and Lemma 2.1, Pi: =
O(d")).

Lernrnn 4-10: StarIing from S, the total distance walked
by the robot before T is reached bas an order of O (d Z k) ,
where k = #Min - 1. #Min is the total number of
isolated local minima points of the distance function in the
scene.

l:i.+ 5. Thc orf id ike simulaled environment

Proof: We distinguish three components of the
path: straight-to-target motion on the straight segments
(Lj+ll Hj], sliding along the obstacle boundary from Hi
to Dj and boundayfollowing from Hj to Lj.
Moving in the free space between obstacles: The sum-
marized path leneth over all straight segments is at most
ST , i.e. O(d). I
Sliding on the obstacle houndaris: The distance to the
target d(x,T) decreases along sliding segment njl with
regard to dUfj, T). Dj represents a departure point -the
point where the robot leaves the obstacles, switchine from

Fig. 6. Thc simuladon d l h e TangentBug algotiihm (dashed line) and
Ihe CautiousBug altonthm (solid line) in scene 5. The circle around
Slan shows the range ofthe s~nsor. (a) m n W a scnson: Compctitive ralio
of TangentBug is 17.55 vis. 3.41 for CautiousBug (b) senson ranee
R = 25: 16.16 "is. 1.53. carrespondinply (c) scns~n ranee R = 50: 12.33
vis. 1.51, c o ~ e ~ ~ o n d i n s l y

I

sliding along the blocking obstacles' boundary to moving
in the free space between obstacles[S]. The endpoint of
each segment Hj+l is closer to T than the starting point V. SIMULATION RESULTS

of the same seiment Dj , which is closer to T than Simulations were performed Study the average compe-
the previous hit point Hj . In the scene with maximal titive ratio o f ~ a u t i o u s ~ u g and T ~ ~ ~ ~ ~ ~ B ~ ~
sliding the robot has to move by a spiral s t d n g from and their dependence on the sensor range R. an alga-
S and ending at T. Considering our restrictions on the f i t b against which to our c ~ ~ ~ ~ ~ ~ B ~ ~ , we chose
environment, the spiral can be approximated with ST/2 T ~ ~ ~ ~ ~ ~ , B ~ ~ , the best bown algorithm within the Same
distorted circles with a small perforation in each. The outer minimal memory requirements group, T~ compare the effi.

length is bounded with 2a ' ST. The ciency of different algorithms, Nogami et al. in [I71 chose
shortest path goes through the perforations in the circles: all staR and target points in the Scene and used

the average path lengths. Unfortunately, this reasonable and SlidingPath 5 2 ~ . ST. STj2 5 T . dZ = O(d2)
Boundary following: The distance walked along the ob- fair is by the IeSOUICeS in

#Min is the total number of the isolated local minimum big, ~n this paper we propose
points of the distance function in the scene. The last algorithm . the
minimum point of the distance funftion is the target. Thus,
E:=, IU, = E:=, O(d*') = O(dZ).

Hence, the total distance waped by the robot to reach
the target has an order of O (8).

Lemma 4.11: The competitive ratio of CautiousBug
has an order of O(dm), where m = 2#"""-' - 1.

The wont-case construction of an environment by an
adversary is shown in Fig. 4. For example, after a short
walk along the straight segment [S, H I] , the robot executes
the spiral search with HI as the origin. 7he adversary
adjusts the length p i - such that the robot reaches L1
just before it reaches obstacle boundary point Q, where
d(Q,T) 5 d(H1 ,T) . The adversary designs the other
parts of the obstacle in a similar way. Our proof does
not consider the sensors' range, since our oduersary can
rebuild the environment so that there will be no significant
benefit from the range sensor. However, in a real-world
scenario, range Sensor will only decrease the path length.

stacles' boundaries is E:=, 1*7*, where = #llIin - 1. the large and relati,.ely complicated scenario the number
of (s, becomes
to use the pure efieiency criterion of
competitive ratio,
the efficiency of even a non-competitive algorithm.

The algorithms were tested in office-like environments,
consisting of one large concave obstacle, simulating the
outer walls, and small concave and convex obstacles,
simulating inner walls and office furniture space(Fig.5). In
five scenes of size 800 x 700 pixels, all pairs of start and
target p in t s were chosen on the 5-pixel grid in the free
space. Then a random number generator, initialized with
the current PC-time, chose, from among these 620,000-
760,000 combinations, 0.03-0.05 % of (S,T)-pairs, which
were used for the simulations. Only small realistic range
sensors were used, which covered at most 1.4 % of the
scene.

The results are summarizeded in Table I. The average
competitive ratio of CautiousBug was smaller than that
of non-competitive TangentBug with all sensor ranges
in all scenes. Increasing the maximal range of the sensors

can be reasonably used to

2761

..:-;
Y

. I

Fig. 7.
CoutiousBug algorithms

7he average compctiiivc facton of the TangentBug and

improved the performance of both algorithms. In almost
all scenes CautiousBug's average competitive ratio with
a contact sensor is even less than the competitive ratio of
TangentBug with the 50-pixel range sensors!

TABLE I
CautiousBvg vs. TangentBvg - AVERAGE C O M P F ~ I T I Y E PACTOR

As the sensor range increases, the edges of the global
tangent graph become the edges of the LTG, and the robot
has a higher probability to move along the globally shortest
path. However, the incomplete knowledge of the robot
leads to local decisions under the TangentBug algorithm,
which may be different from the globally optimal ones.
At the same time CautiousBug does not risk choosing
a "wrong" boundary-following direction, but checks both
directions. In some cases this cautious behavior incurs a
lot of additional path being walked, but in other cases it
saves the robot from traveling along the entire boundary of
the followed obstacle. This behavior is more efficient on
average (Fig.7).

VI. DISCUSSION

We presented CautiousBug, a new range-sensor-based
competitive algorithm for mobile robots. We united the
idea of the locally shortest path, using the LTG, and
the best strategy for the search of the goal in alternate
directions. The LTG is utilized for planning the most opti-
mal path with the local information available. The Spiral
Search fixes the problem of choosing a wrong houndary-
following direction when switching to houndaqfollowing
mode. Thus, CaatiousBug, combining the properties of

TangentBug and Spiral Search, becomes a competitive
algorithm. In the worst-case scene, the competitive factor
of CautiousBug has an order of O(dm - 1). where d is
the length of the optimal path from the starting point S to
the target point T, m = 2#A""n-' and #,Win denote the
number of the distance function local minimum points in
the environment The simulations showed that the average
competitive factor of CautioasBug is significantly less
than the one we succeeded in proving.

ACKNOWLEDGMENT
The authors would like to thank Professor Shin'ichi Yuta

and all members of the Roboken Laboratory, University
of Tsukuba, Japan, where a pm of this research was
conducted under the support of A m . The authors want
to express special thanks to Professor Elon Rimon for his
encouragement and helpful comments.

REFERENCES
111 R. BBCW-Y~ICS, J. Culherson. G. Rawlins. Searching in the Plane.

I n f m t i o n and Compumion. 106(2):234-252. 1993
I21 A. Blum, P. Raghavan, B. Schieher. Navigating in Unramillar Geo-

metric Terrain. SIAM Joumal on Comnutins. 2611):l 10-137. 1997. . - . ,
131 A. Data S. Soundaraldahmi. Motion Planning in an Unknown

Polygonal Environment with Rounded Performance Guarantcc. In

141 Y. Horiuchi and H. Nohorio. Evaluation o i Path Length Made in
Sensor-had Path-planning with the Altemativc Following. In Proc.

IS1 C. Ickine. R. Klein. Comnetilive Stratesics for Aulonomous Svstcms.

ROC. IEEE ICRA'W. pp. 1032.1037,

IEEE ICRA'OI. pp. 909.916.
, . .

Modclling and Planning far Sensor k e d Intelligent Rohot Systcms.
pp. 23-40, 199.5.

161 C. Icking. T Kamphans. R. Klein. E. Langctepc. On thc Competitive
Complcrity of Navigation Tasks. Sensor Bascd Intelligent Robots,
pp. 24s-258, 2002.

171 1. Kaman. Locally Optimal Sensor Based Robot Navigation. Ph.D.
7heris. Technion. 1997.

181 1. Kamon, E. Riviin, E. Rimon. A New Ranpsenror RaYd GlohaUy
Convemenl Nmigation Algorithm for Mohile Rohots. In Roe. E E E
li-Rn-46 .. . , -.

191 1. Kamon, E. Rivlin. Sensory Bascd Motion Planning with Glahal

[IO] 1. C. Latomhe. Robot hlotion Planning. Kluwer Academic Publish-
proors. IROS~S, pp. 43.5440.

CR. USA. 1991
[I l l V. 1. Lumelsky, T. Skrwis. Incotprating Range Sensing in the

Robot Navigation Function. In IEEE Trans. Sys. Man. Cyhemer..
20(S): 1058.1 068. 1990.

(121 V. 1. Lumekky A. A. S l e p o r Path Planning Strategies for a Point
Mobile Aulomamn Moving Amidst Unknown Ohsracles of Arhilrary
Shape. Algorithmica, 2403-430, 1987.

1131 V. 1. Lumelsky, S. liwari. An Algorilhm lor M a c Searching with
Azimuth Input. In Prae. IEFE ICRA'94, pp. 11 1-116.

1141 H. Nobrio. A Path-planning Algorithm for Gcncmtion of an
lntuilively Reasonable P i h in an Unscnain 2D Workspace. I'roc.
of the Japan-USA Symposium on Flexible Automation. 2411-480,
1990.

izamiiy of
Scnsar Based Deadlock Free Path Planning Algorithms. Advanced
Rohotics, 7(5):413433, 1993.

[I61 H. Nohario, T. Ywhiak, S. Tominga On the Sensor-hased Navi~
gatian by Changing a Direction to Follow an Encomicred O~SL~CIC.
In IROS'97, pp. 510-517.

1171 R. Noganti, S. Hirao. H. Nobrio. On thc Avcrape Path Lcngths
of Typical Sensor-based Path-planning Algorithms by Uncertain
Random M m s . CIRA'03. pp.471478.

1181 C. H. Papadimitriou, M. Yamakakis. Shonesi Path Without a Map.
Thcorelieal Computw Science. 84(1):127-150, 1991.

1191 A. Sankaranarayanan, M. Wdyaragar. Path Planning Algorithm for
a Moving Point Ohjeet Amidst Unknown Ohstades in a Plane:
the Universal Lower Bound on Worst Case Path Lcngthcs and a
Classification of Algorilhms In Pmc. IEEE ICRA'91. pp. 1734.1741,

[IS] H. NOMO. A sunicicnt condition for ~ ~ ~ i ~ ~ i ~ ~

2762

