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Abstract-Bug algorithms are a class of popular algo- 
rithms for autonomous robot navigation in unknown en- 
vironments with local information. Very natural, with low 
memory requirements, Bug strategies do not yet allow any 
competitive analysis. The bound on the robot's path changes 
from xene to scene depending an the obstades, even though a 
new obstacle may not alter the length of the shortest path. \Ye 
propose a new competilive algorithm, CoutiousBug, whose 
competitive factor has an order of O(P- ' ) ,  where d is 
the length of the optimal path from starting point S to a 
(arget point T. m = and #.Win denote the number 
of the distance funclion isolated local minima points in the 
given enviranment. Simulations were performed to study the 
average competitive factor of the algorithm. 

I. INTRODUCTION 
Autonomous navigation of indoor mobile robots has 

received considerable attention in recent years. Work in this 
area was motivated by applications such as office cleaning, 
cargo delivery etc. In realistic settings, an autonomous 
robot cannot base its motion planning on complete a priori 
knowledge of the environment. The robot must use its 
sensors to perceive the environment and plan accordingly. 
The two main sensor-based approaches use either global 
planning or local planning. 

In the global sensor-based planning approach, the mo- 
bile robot builds a global world model based on sensory 
information and uses it for path planning. This approach 
guarantees that the target will be reached or the robot 
will conclude that the goal is unreachable. However, the 
construction and maintenance of a global model based 
on sensory information imposes a heavy computational 
burden on the robot. Local path-planners use the local 
sensory information in a purely reactive fashion and do 
not guarantee global convergence. 

A midway approach, originated by Lumelsky and 
Stepanov [IZ], combines local planning with global con- 
vergence: essentially reducing the reliance on a global 
model to loop detection. Purely reactive navigation deci- 
sions guarantee global convergence. Algorithms Bugl and 
82192, presented in [12], use only position and contact 
sensors. These algorithms consist of two reactive modes 
of motion - moving directly towards the target and fnl- 
lowing an obstacle boundary - and transition condition for 
switching between them. When the robot hits an obstacle 
it switches from moving toward a target to following a 
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boundary. It moves away from the obstacle boundary when 
a leaving condition, which ensures that the distance to the 
iarget decreases, holds. Bug algorithms can be divided 
into two groups according to their memory requirements. 
The first group inherits the main property of the original 
Bugl and Bug'? -minimal memory requirements 181,191, 
[ l l ] ,  [13], 1141, [15]. The second group, originating from 
Sankaranarayanan's Algl and Alg2 [19],uses different data 
structures to store Hit  and Leuving points together with 
some useful information about the followed path [4], [16]. 
Algorithms within one group differ mainly by their leaving 
conditions and the way they choose boundary following 
directions. 

The Bug approach minimizes the computational burden 
on the robot while still guaranteeing global convergence 
to the target. However, the original Bug algorithms do 
not make the best use of the available sensory data to 
produce short paths. VisBug I l l ]  uses range sensors 
only to find shoncuts to the path generated by Bug2. 
DistBug 191 uses range sensors to define a new leaving 
condition and lo choose an initial bounday following 
direction with respect to local range data. Tungentb'ug 
[8] expands on the existing Bug family algorithms, being 
specially designed for using range data and incorporating 
the notion of the locally shortest path into the general 
Bug paradigm. Tangen,tBug uses a local tangent graph 
(ETG) for choosing the locally optimal direction while 
moving toward the target, for making local shortcuts and 
for testing a leaving condition while moving along an 
obstacle tmnndq.  

Recently, one of the main requirements of the naviga- 
tion strategy has k e n  its competitiven.ess [21, 131, [51, 
[6], 1181. W e n  analyzing its competitiveness, the robot's 
performance is measured with respect to the optimal path 
between stan point S and target point T .  The optimal path 
is a subgraph of the connectivity graph [IO], representing 
the shortest path a robot would choose given complete 
information about the environment. The ratio of the robot's 
path length and the optimal path is called the competitive 
factor of the strategy. The competitive factor is a charac- 
teristic property of the navigation task alone, guaranteeing 
a good worst-case behavior. Often, the true competitive 
factor is considerably smaller than the upper bound we are 
able to prove. 



All algorithms of the Bug family produce a worst- 
case path length, which is expressed in the notion of 
perimeters of the obstacles intersecting the disk of radius 
11s - TI/ centered at the target point. Hence, the main 
disadvantage of the Bug family algorithms is that they 
are not competitive. The boundary-following direction is 
chosen based on local information and may be "wrong" 
in the sense that it will result in a longer path. The 
mechanism of switching the boundary following direction, 
presented in (71, can solve this problem in some simple 
non-generic cases, hut fails in more complicated scenario. 
Thus, by choosing a "wrong" direction, Bug algorithms 
will produce a catastrophically long path, while in reality 
there exists a much shorter path. This becomes a disaster 
in complex environments. 

The name of our algorithm, CautiousBug, is used to 
show its main feature - it does not make daring decisions. 
While Rug algorithms take a risk choosing the boundary- 
following direction at the switch point, CautiousBug 
executes a conservative spiral search in both directions of 
the boundary. 

11. SPIRAL SEARCH 

Suppose there is a very long wall with a door in it. At 
some point along the wall a mobile robot is located. Its 
task is to get to the other side of the wall. The robot does 
not know whether the door lies to the left or to the right of 
its start position S,. The robot could pick one direction, 
left or right, and then walk along the wall in this direction 
forever. If it happens to guess the correct direction the door 
will he reached without having to detour. But if it chooses 
the wrong direction, the door will never be reached. To 
avoid this situation, the robot should altemate directions, 
and explore both the left and the right p a t  of the wall in 
tum. It moves one step to the right, and retums. 'Then the 
length of the step is doubled and the robot steps in the 
opposite direction, and again retums to its stan position 
Figure 1). Suppose that p ,  and pb are the two concurrent 
paths of the search and the target is at the distance d units 
from the origin on p,. If the distance d is slightly bigger 
than a power of 2, d > 23 , then the path is of total length 

exceeding the distance to the door only by a factor of 9. 
Baeza-Yates et al. in [I]  showed that no smaller competitive 
factor than 9 can be achieved for this problem. 

nteorem 2.1: The doubling strategy in [I]  for finding 
a door in a wall is competitive with factor 9, and this is 
optimal. 

Lemma 2.1: If a point robot follows the Spiral Search 
strategy in [I], the furthest distance walked by the robot 
in the wrong direction is 2(d-1) units. 

In our strategy, the robot executes this spiral search along 
the edges of the LTG in the obstacle boundary following 
mode. 
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Fig. I.  Spiral search 

111. CAUTIOUSBUG ALGORITHM 
The algorithm navigates a point robot in a planar un- 

known configuration space populated by stationary recti- 
Linear obstacles'. We assume that all obstacles in the C- 
space have a minimal thickness, i.e. we can encapsulate a 
unit square into any obstacle or its pan. The robot knows 
its precise coordinates at any point and the exact positions 
of Ihe Start and Target points. We assume that there are 
no errors in the walked path estimation due to odometry 
errors, frequency etc. The sensory input consists of the 
robot's current position x and the distance from x to the 
obstacles within a detection range R. At each moment the 
robot can measure the distance d(x,  T) from its current 
location x to the target T. This distance function d ( x , T )  
determines the behavior of the CautiousBug. 

A. The Algorirhm Descriprion 
CautiousBug uses two basic motion modes: motion 

toward the target (decreases d ( x , T ) )  and following an 
obstacle boundary (used to escape from the local minimum 
of d(x,  T ) ) .  At every step the robot constructs the LTG, 
based on its current range readings. It uses the LTG to 
plan its next actions as follows. During motion toward tbe 

target, the robot moves in the locally optimal direction, 
which is the.direction of the shortest path to the target 
according to a subgraph of the LTG. The motion toward the 
target terminates when the robot detects that moving in the 
locally optimal direction will bring it into a local minimum 
of the distance function d(x, T). At this point the motion 
mode is switched to the obstacle-following behavior. The 
initial boundary-following direction is chosen and the robot 
stam tbe spiral search along the obstacle boundary, 
continuously monitoring the LTG until it finds a suitable 
leaving point, which satisfies the leaving condition. The 
leaving condition checks that d ( x , T )  can be decreased 
relative to the shortest distance to the target observed along 
the path so far. Here is a summary of the algorithm: 

1) Move toward T along the locally optimal direction 
on the current LTG subgraph, until one of the fol- 
lowing events occurs: 

The target is reached. Stop. 
A local minimum is detected. Go to step 2. 

2) Choose a boundary following direction. Move along 
the boundary with spiral search strategy using the 

'The restriction of the ohslaclss to being rectilinear is ncedcd for thc 
competitiveness proof only. 
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Pig. 2. The robot in a simple convex environment USES only moving- 
toward-the-target hehavior. Unlimited senson can change lhc p a l  si%- 
nificanOy. h a  do not guarantee coincidence with thc optimal p l h .  (a) 
contact snwrs (b) limitcd ~ ~ n s o n  with range R (c) unlimited S ~ ~ S O ~ S  

LTG for shortcuts while recording d.,,;"(T), until one 
of the following events occurs: - The target is reached. Stop. 

The leaving condition holds: 3 V E LTG s.t. 
d(V,T) 5 d,,,,"(T). Go to step 1. 
The robot completes a loop around the obstacle. 
The target is unreachable. Stop. 

Three kind of motions are considered motion in free 
space between obstacles; sliding along an obstacle bound- 
ary; following an obstacle boundary in a spiral search. 
Moving-toward-the-target motion mode uses the first two 
kinds of motion - as long as the distance function d(V:  T) 
decreases. 

B. Moving Towrd rke Target 

While moving towards the target, the robot moves in a 
greedy locally optimal direction, which is the direction 
along the shortest path to the goal according to LTG 
(Fig. 2). The candidate motion directions are the directions 
toward LTG nodes. A node Oi is considered as a candidate 
only if it is closer to the target than the current robot 
location d(0 i ;T )  < d ( z , T ) .  The expected path length 
to the target is calculated for each candidate direction, 
assuming that the sensed obstacles are thin walls and that 
they are the only obstacles in the environment. If there 
is no blocking obstacle between the robot and the target 
within the sensor range, the shortest path will be along 
the edge toward T,&: otherwise, the endpoints of the 
blocking obstacle are the candidates for the shortest path. 

The motion-toward-target stops when the robot detects 
that moving in the locally optimal direction will drive it 
into a local minimum, created by the blocking obstacle. As 
the robot moves toward the target, it monitors the closest 
point to the target M on the boundary of the blocking 
obstacle. If the distance 4.44: T) is less than the distances 
d(O1,T) and d(O2,T) to the target from the endpoints 
0 1 , 0 2  of the blocking obstacle, the robot concludes that it 
is within the basin of the local minimum A4 and switches 
to boundary-following behavior (Fig. 3). 

C. .%//owing the Obsracle Boundar) 

The obstacle-boundary-following behavior is used to 
drive the robot away from a local minimum. The robot 
conducts the spiral search, moving around the obstacle 
until either the leaving condition holds or a loop around 
the obstacle is completed. The LTG is used to plan local 

Fig. 1. In Lhe concave environmmt the mho1 uses holh moving toward- 
tarscl and boundary-following bchavior with TangentBug (dashed line) 
and CautiousBug (solid line). (a) c0nU~t  s m o m  (b) limited senson with 
range R (c) unlimited S C ~ S O ~ .  In this pmicular S E E ~ C  lhc path pmduced 
hy both algoi%hm coincides, but this does no1 happcn in all scenes 

shortcuts relative to the obstacle boundary and for testing 
the leaving condition. 

When obstacle-boundary-following behavior is initiated, 
in a switch point Sw, the algorithm defines the followed 
obstacle a5 the current blocking obstacle, that is, the 
one which caused the local minimum. During boundary- 
following, the followed obstacle may differ from the block- 
ing obstacle, when the followed obstacle is not the one that 
blocks the target direction. Initially, a minimum point M 
is chosen to be a local minimum point that will cause the 
switch to the boundary-following mode. Initial boundary- 
following direction dirl is chosen using the local properties 
of the boundary of the followed obstacle [71 . At each 
step the robot constructs the LTG, locates the followed 
obstacle in it, and focuses on those nodes of the LTG that 
lie on the followed obstacle. The motion direction during 
the boundary-following is toward the left/right endpoint 
of the followed obstacle. The robot executes the spiral 
search, using the switch point Sw as an origin of the 
search rays, which are the edges of the LTG. The length 
of the path walked by the robot from the origin of the 
search rays SUI to the current point x is registered in d,,,. 
Variable dP,.. stores the length of the previous step of the 
spiral search, performed in the opposite direction. After the 
initial boundary-following direction dirl is chosen, dpTe. 
is initialized with the distance to the farthest point on 
the obstacle boundary seen within the sensor range in the 
opposite direction dir2. In the case of a contact sensor, 
dprev is initialized with some very small value e .  When 
d,,, exceeds 2dp,,,, the boundary-following direction is 
switched to the opposite direction and dpveu + d,,,. 

As the robot moves around the followed obstacle it 
updates two variables, which register the minimal distance 
observed along the path: the shortest distance from the 
target on the followed obstacle's boundary d foL lowed(T) ,  
initialized with d ( M ,  T ) ,  and the shortest distance from 
target within the visible environment d,,,,h(T). To 
ensure that the robot stays on the locally optimal paths, 
d,,,,h(T) is updated by the shortest distance from the 
target of the blocking obstacle's boundary or, when there 
is no blocking obstacle, by d(TnOd.,T). The robot leaves 
the obstacle boundary when it can reach, via free space, 
a point that is closer to the target than the distance 
dfol lowed(T) .  The test guarantees that the robot will not he 
trapped again in the local minima, which it passed during 
the boundary-following motion. At each step the leaving 
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condition d,,,,h(T) < d,olloved(T) is tested; when it is 
satisfied, the robot leaves the obstacle boundary. 

IV. ANALYSIS 
We denote the L2 distance from the start point S to 

the target point T with ST and the shortest path from S 
to T in the given environment with D. Suppose that the 
length of the path D, which is a part of a connectivity 
graph, is d. Being interested in the competitiveness of the 
algorithm, we analyze the produced path length in terms of 
d. The distance along the obstacle boundary walked by the 
robot from point A to point B, both lying on the boundary 
of the same obstacle, we denote with db(A, B). We hrst 
explain some geometric properties, which will be useful in 
the competitive analysis of the strategy. 

Lemma 4.1: The maximum possible perimeter of a rec- 
tilinear polygon inscribed in an m x n grid is mn. 

Lemrna 4.2: Among figures with the same boundary 
perimeter, the figure with a maximal square is a disk. 
Lemma 4.3: The number of isolated local minima points 

of d(x,T) over the free configuration space is finite. [71 
In our analysis we use a technique similar to one in D a m  

and Soundaralakshmi [3]. We assume an adversary who 
knows our strategy and designs an environment in such a 
way that the robot will be forced to cover ar much distance 
as possible following the strategy, that is, with the minimal 
presence of motion toward target, but maximal boundary- 

Lernmo 4.4: The adversary will design the obstacles in 
the environment in a way such that the robot reaches the 
maximum number of Hit and Leaving points in the scene. 

Consider hit point H j .  When the robot executes the 
spiral search for the next leaving point Lj,  with Hj as 
the origin, there are two paths along the boundary: p,- and 
p j b .  We assume w.1.o.g. that path pi,, if chosen, will finally 
bring the robot to T or to a better alternative of a leaving 
point A L j ,  satisfying the relation d ( A L j l T )  S d(L; ,T) ,  
while pja leads to Lj? For each pair of points [ L j - l , H j ] ,  

we funher define the j-th bounding box, which will help 
to bound the path length db(Hj, Lj- l )  along the boundary 
hack from H j  to Lj+l.  The adversary will force the robot 
to walk outside the bounding boxes as much as possible, 
since any distance walked inside each bounding box can be 
bounded with Lemma 4.1. In our strategy one of the two 
paths @ j b )  is maintained inside the j-th bounding box. 

Lernma 4.5: At least one of the two paths p;, and p;. 
ties inside the j-th bounding box until the robot reaches 
the next leaving point L j  that is closer to the target T or 
it reaches T.  

Lemma 4.6: The robot walks a maximum distance in 
the scene from S to T if for every pair [Hi, Ljl the path 
pja connecting Hi and L j  along the obstacle boundary lies 
completely outside the j-th local boundirtg box. Moreover, 
the other path pj, from Hi passes through all previously 
defined leaving and hit points before ALj can be reached. 

2Thlhe scene i s  designed by the adversary in a such way that Ihc robot, 
conducting a spiral search. will switch to the opposilc direction just before 
rcaching ALj or T and will always choose L j  as a Icaving poinL 

following. 

Pig. 4. Illustration for the definitions of thc Cau~iousBug Algorithm 

Thus, in the worst-case scenario the robot will travel 
along the single obstacle boundary, traversing the same 
parts of the boundary many times. Now we inductively 
define the bounding boxes and find the upper hound on the 
paths from hit point H j  to the next leaving point Lj along 
the boundary. Starling at point S (Lo), the robot walks 
on the straight segment [S,T] toward T until point H I  
is reached and the mode switches to boundary-following, 
starting the spiral search for L1. 

Lemrm 4.7: Path p l ,  lies entirely inside the figure with 
the boundary formed by optimal path D and the straight 
segment [S,Tl. The maximal path length of p l ,  is less than 
d2.  

We call this figure the 1-st bounding box. Lemma 4.1 
and 4.2 determine an upper bound d2 on the path length 
pl,. As soon as the robot comes closer to T than the 
current minimal distance to the target d(H1,T). d,;, will 
be updated or even a'better leaving point A L 1  will he 
defined. Since our advisory will try to escape this situation 
as long as possible, the actual bound on the maximal path 
length of pi, is even less then d2. Consider hit point H I  
and leaving point L1. The proof of the following lemma 
follows from Theorem 2.1 and Lemma 2.1. 

Lermm 4.8: The adversary can place L1 at a traveling 
distance pla 5 2p1, from H I  such that the robot reaches 
L1 just before it reaches AL1 or T. The robot traverses a 
distance W, 5 9pl, along the obstacle boundary before it 
reaches L1 from H I .  Here, p l ,  is a part of the followed 
obstacle boundary completely inside the 1-st bounding 
box. 

Consider hit point Hj  and leaving point Lj .  Then, the 
j-th boun.ding box is defined as following: 

Lemma 4.9: Path p j ,  ties entirely inside the figure with 
boundary, formed by .optimal path D, parts of obstacle 
boundary IL1, H I ] ,  [Lz,Hzl ,  ... LLj-1, Hj - I] ,  straight 
segments [LO,HII. [Ll;H21. ... [ L j - ~ , H j l  and [Hj,TI. 
Both the maximal path length of p j ,  and the maximal path 
length of the spiral search, Wj, have an order O ( 8 ' ) .  

We give a sketch of the inductive proof. From Lemmas 
4.7 and 4.8, pi, = O(dz)  and WI = O(dZ). Note that, 
while executing the spiral search at H z ,  pz ,  is restricted 
to stay inside the figure with boundary d + d(S ,HI )  + 
d b ( H i , L i ) + d ( L i , H 2 ) + d ( H 2 , T )  < d + S T + d 2  = 
O(dZ).  Thus, p P a  = O ( 8 )  and lV2 = O(d4). We 
assume that the lemma holds for ~ ( j - 1 ) ~  and WJ-1. 

The boundary of the j-th bounding box is formed by 
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d+d(S,Hi)+db(Hi,Li)+d(L1,H*)+db(H1,Lz)+ ...+ 
db(Hj-iILj-i)  + d(Lj-1,Hj) +d(Hj,T) 5 d +  ST + 
pia + p z .  +...+ p0-1). = O(d)+O(d')+ ...+ O(d"-') = 
O(d*'-'). By Lemma 4.1 and 4.2, the maximal path length 
of p i p  inside the j-th bounding box has the order of 
O(d';). Applying Theorem 2.1 and Lemma 2.1, Pi: = 
O(d")). 

Lernrnn 4-10: StarIing from S, the total distance walked 
by the robot before T is reached bas an order of O ( d Z k ) ,  
where k = #Min - 1. #Min is the total number of 
isolated local minima points of the distance function in the 
scene. 

l:i.+ 5.  Thc orf id ike  simulaled environment 

Proof: We distinguish three components of the 
path: straight-to-target motion on the straight segments 
(Lj+ll Hj], sliding along the obstacle boundary from Hi 
to Dj and boundayfollowing from Hj  to Lj. 
Moving in the free space between obstacles: The sum- 
marized path leneth over all straight segments is at most 
ST ,  i.e. O(d). I 
Sliding on the obstacle houndaris:  The distance to the 
target d(x,T) decreases along sliding segment njl with 
regard to dUfj, T). Dj represents a departure point -the 
point where the robot leaves the obstacles, switchine from 

Fig. 6. Thc simuladon d l h e  TangentBug algotiihm (dashed line) and 
Ihe CautiousBug altonthm (solid line) in scene 5. The circle around 
Slan shows the range ofthe s~nsor. (a) m n W a  scnson: Compctitive ralio 
of TangentBug is 17.55 vis. 3.41 for CautiousBug (b) senson ranee 
R = 25: 16.16 "is. 1.53. carrespondinply (c )  scns~n  ranee R = 50: 12.33 
vis. 1.51, c o ~ e ~ ~ o n d i n s l y  

I 

sliding along the blocking obstacles' boundary to moving 
in the free space between obstacles[S]. The endpoint of 
each segment Hj+l is closer to T than the starting point V. SIMULATION RESULTS 

of the same seiment Dj ,  which is closer to T than Simulations were performed Study the average compe- 
the previous hit point Hj .  In the scene with maximal titive ratio o f ~ a u t i o u s ~ u g  and T ~ ~ ~ ~ ~ ~ B ~ ~  
sliding the robot has to move by a spiral s t d n g  from and their dependence on the sensor range R. an alga- 
S and ending at T. Considering our restrictions on the f i t b  against which to our c ~ ~ ~ ~ ~ ~ B ~ ~ ,  we chose 
environment, the spiral can be approximated with ST/2 T ~ ~ ~ ~ ~ ~ , B ~ ~ ,  the best bown algorithm within the Same 
distorted circles with a small perforation in each. The outer minimal memory requirements group, T~ compare the effi. 

length is bounded with 2a ' ST. The ciency of different algorithms, Nogami et al. in [I71 chose 
shortest path goes through the perforations in the circles: all staR and target points in the Scene and used 

the average path lengths. Unfortunately, this reasonable and SlidingPath 5 2 ~ .  ST. STj2 5 T . dZ = O(d2) 
Boundary following: The distance walked along the ob- fair is by the IeSOUICeS in 

#Min is the total number of the isolated local minimum big, ~n this paper we propose 
points of the distance function in the scene. The last algorithm . the 
minimum point of the distance funftion is the target. Thus, 
E:=, IU, = E:=, O(d*') = O(dZ ). 

Hence, the total distance waped by the robot to reach 
the target has an order of O ( 8  ). 

Lemma 4.11: The competitive ratio of CautiousBug 
has an order of O(dm), where m = 2#"""-' - 1. 

The wont-case construction of an environment by an 
adversary is shown in Fig. 4. For example, after a short 
walk along the straight segment [S, H I ] ,  the robot executes 
the spiral search with HI as the origin. 7he adversary 
adjusts the length p i -  such that the robot reaches L1 
just before it reaches obstacle boundary point Q, where 
d(Q,T) 5 d(H1 ,T) .  The adversary designs the other 
parts of the obstacle in a similar way. Our proof does 
not consider the sensors' range, since our oduersary can 
rebuild the environment so that there will be no significant 
benefit from the range sensor. However, in a real-world 
scenario, range Sensor will only decrease the path length. 

stacles' boundaries is E:=, 1*7*, where = #llIin - 1. the large and relati,.ely complicated scenario the number 
of (s, becomes 
to use the pure efieiency criterion of 
competitive ratio, 
the efficiency of even a non-competitive algorithm. 

The algorithms were tested in office-like environments, 
consisting of one large concave obstacle, simulating the 
outer walls, and small concave and convex obstacles, 
simulating inner walls and office furniture space(Fig.5). In 
five scenes of size 800 x 700 pixels, all pairs of start and 
target p in t s  were chosen on the 5-pixel grid in the free 
space. Then a random number generator, initialized with 
the current PC-time, chose, from among these 620,000- 
760,000 combinations, 0.03-0.05 % of (S,T)-pairs, which 
were used for the simulations. Only small realistic range 
sensors were used, which covered at most 1.4 % of the 
scene. 

The results are summarizeded in Table I. The average 
competitive ratio of CautiousBug was smaller than that 
of non-competitive TangentBug with all sensor ranges 
in all scenes. Increasing the maximal range of the sensors 

can be reasonably used to 
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Fig. 7. 
CoutiousBug algorithms 

7he average compctiiivc facton of the TangentBug and 

improved the performance of both algorithms. In almost 
all scenes CautiousBug's average competitive ratio with 
a contact sensor is even less than the competitive ratio of 
TangentBug with the 50-pixel range sensors! 

TABLE I 
CautiousBvg vs. TangentBvg - AVERAGE C O M P F ~ I T I Y E  PACTOR 

As the sensor range increases, the edges of the global 
tangent graph become the edges of the LTG, and the robot 
has a higher probability to move along the globally shortest 
path. However, the incomplete knowledge of the robot 
leads to local decisions under the TangentBug algorithm, 
which may be different from the globally optimal ones. 
At the same time CautiousBug does not risk choosing 
a "wrong" boundary-following direction, but checks both 
directions. In some cases this cautious behavior incurs a 
lot of additional path being walked, but in other cases it 
saves the robot from traveling along the entire boundary of 
the followed obstacle. This behavior is more efficient on 
average (Fig.7). 

VI. DISCUSSION 

We presented CautiousBug, a new range-sensor-based 
competitive algorithm for mobile robots. We united the 
idea of the locally shortest path, using the LTG, and 
the best strategy for the search of the goal in alternate 
directions. The LTG is utilized for planning the most opti- 
mal path with the local information available. The Spiral 
Search fixes the problem of choosing a wrong houndary- 
following direction when switching to houndaqfollowing 
mode. Thus, CaatiousBug, combining the properties of 

TangentBug and Spiral Search, becomes a competitive 
algorithm. In the worst-case scene, the competitive factor 
of CautiousBug has an order of O(dm - 1). where d is 
the length of the optimal path from the starting point S to 
the target point T, m = 2#A""n-' and #,Win denote the 
number of the distance function local minimum points in 
the environment The simulations showed that the average 
competitive factor of CautioasBug is significantly less 
than the one we succeeded in proving. 
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