
Using Pattern Recognition for Self-Localization
in Semiconductor Manufacturing Systems

Michael Lifshits, Roman Goldenberg, Ehud Rivlin, and Michael Rudzsky

Technion, Computer Science Department, Haifa, Israel.
{protezhe,romang,ehudr,rudzsky}@cs.technion.ac.il

Abstract. In this paper we present a new method for self-localization
on wafers using geometric hashing. The proposed technique is robust to
image changes induced by process variations, as opposed to the tradi-
tional, correlation based methods. Moreover, it eliminates the need in
training on reference patterns. Two enhancements are introduced to the
basic geometric hashing scheme improving its performance and reliabil-
ity: using quadtree for efficient data access and optimal rehashing for
Bayesian voting. The approach proved to be highly reliable when tested
on real wafer images.

1 Introduction

As computational power has increased over the past decade, machine vision
systems have become far more capable than before. In semiconductor industry,
where highest levels of precision and robustness are required, they evolved to
become a mainstream automation tool enabling computers to replace human
vision and guide robotic handling, assembly, and inspection processes. Various
semiconductor manufacturing equipment require precise self-localization, so that
operations such as lithography, cutting and inspection can be performed to ex-
tremely tight tolerances. That is why self-localization on wafers has emerged as
a very important task.

There is a demand from machine vision tools to become more adaptive to
in-process variations and allow location of reference patterns despite changes
in visual appearance occurring during the manufacturing process. Such changes
may include non-linear contrast variation, color inversion, re-scaling, rotations
and partial pattern obliteration [7].

Traditional tools, found in most commercial packages today, adopt normal-
ized grayscale correlation (NGC) which is adequate for locating patterns under
ideal conditions, but cannot cope with pattern appearance changes at run-time.
Correlation scores are sensitive to degraded images and exhibit low tolerance
to image changes in scale, angle, obliteration and contrast variation. Some ven-
dors are recently proposing different techniques for self-localization to counteract
such negative effects. For example, PatMax software from Cognex applies geo-
metric feature analysis to find patterns on the wafer. Individual key features
are first found, so that attributes such as shape, angles, arcs and shading can

C.E. Rasmussen et al. (Eds.): DAGM 2004, LNCS 3175, pp. 520–527, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Using Pattern Recognition for Self-Localization 521

be used to achieve invariant matching. Stemmer Imaging utilizes different tools,
such as Support Vector Machines (SVM), neural networks, and optimized Hough
transform, besides NGC, to accomplish invariant pattern recognition. All these
approaches somewhat limited, as they build upon training on particular, prede-
fined feature (known as an “acquisition target”) printed at certain position on
a wafer. During online self-localization this feature must appear in the field of
view of the tool (it might be transformed though). Straightforward comparing
current query image with all feasible features is unrealistic.

In this paper we propose a method for self-localization on wafers. It estab-
lishes a correspondence between the pattern currently observed in the field of
view of the imaging tool and the previously constructed wafer map. It is fast
enough for inline microscopy, robust to process variations and does not require
training on the acquisition targets. The method is based on geometric hashing
[2,4,5,6], a well known pattern recognition algorithm. Tests performed on real
wafer images demonstrate the high reliability of the suggested approach.

2 Self-Localization as Pattern Recognition Task

Pattern recognition is a process of identifying objects from perceptual data.
Recognition is achieved by finding the correspondence between a given pattern
and a set of predefined patterns. In the model-based PR approach, the predefined
patterns are described in terms of various properties, such as shape, color, etc.
These descriptions are referred to as “models”. A query pattern is then matched
to one of those models.

Localization on the wafer is defined in the following manner: given an “eye
point” (e.g. partial image of the wafer) estimate its exact position on the wafer
map. Therefore, map-based self-localization can be interpreted as model-based
pattern recognition as follows. First the wafer map is constructed from partial
images captured by a microscope imaging system moving over the wafer sur-
face. A possible alternative is to use wafer layout file specifying its geometric
structure. Wafer map can be divided into many adjacent parts to be identified
during localization. These parts correspond to models in pattern recognition
framework, whereas the eye-point plays a role of a query pattern. Matching the
current eye-point to one of the previously prepared parts of the wafer map dur-
ing localization is essentially the same, as associating a query pattern to one of
the predefined models in pattern recognition. An example of the wafer eye-point
and the corresponding part of the wafer map is shown in Figure 1.

To cope with the enormous amount of geometric structures contained in wafer
images, we choose to address the problem of self-localization using geometric
hashing. Matching between query eye-point and wafer map is achieved by spatial
correspondence of geometric features extracted from the images. These features
are used to compose invariant model representations, stored in a database during
the offline preprocessing stage of the algorithm. When analyzing the eye-point
during localization, the same invariant representation is used as an indexing key
to access the hash table and vote for the possible model matches. The model

522 M. Lifshits et al.

Part of wafer "map" eye−point

Fig. 1. Example of the eye-point within a wafer map

Winning model

eye−point

Fig. 2. Outline of the localization process. A wafer map that is constructed from 40
model images is shown on the top. Voting results for the eye-point shown in the middle
are plotted on the left. The enlarged image of the winning model (25) with its feature
points marked with black dots is presented on the right.

accumulating a significant number of votes indicates the correspondence of cur-
rent eye-point with that model. An example of a typical localization process is
presented in Fig. 2. This scheme provides low online complexity which deter-
mines the actual localization time. It linearly depends on the number of features
contained in the eye-point and independent of the number of models stored in
the system. This allows to perform a fast localization even on very large scale
maps.

The localization algorithm is completed by verification. Given a set of candi-
date models that accumulated the highest number of votes, one has to determine
which is the best match to the query eye-point. The eye-point is characterized in
terms of a feature points set {x′

i} in P
2, and each of the candidate matching mod-

els likewise described by its feature points {xi}. First, it is essential to find all
xi ↔ x′

i point correspondences to compute a similarity transformation H which
transforms a model to the eye-point: Hxi = x′

i for each i. Two correspondences
are enough to compute H, however, since the points in the query eye-point are
measured inexactly (due to noise), all of the correspondences should be used to
determine the “best” transformation given the data. Every true correspondence
gives rise to two independent equations in the entries of H, while the outliers are

Using Pattern Recognition for Self-Localization 523

(a) Eye-point feature points (b) Voronoi tessellation (c) Voronoi diagram

Fig. 3. The process of constructing the Voronoi tessellation of the eye-point for verifi-
cation acceleration.

robustly eliminated by the RANSAC algorithm. Then H is calculated by finding
the least-squares solution of the over-determined linear system.

An important issue is how to efficiently find all of the correspondences. The
voting stage of the algorithm provides one corresponding basis (two point-to-
point correspondences) between the candidate model and the eye-point. This
allows us to approximate the desired transformation HS by ĤS and then, after
applying ĤS on the candidate model, every model point ĤSxi will correspond to
the closest eye-point feature x′

i.
Thus, to compute all of the point correspondences it is possible to check the

distance of each point x′
i to every transformed model point Ĥxi. If the model

contains m points and the eye-point contains n points, those inter-set distances
are computed in O(m n) time. This computation can be accelerated by employ-
ing a Voronoi tessellation [3] for segmentation of the eye-point image. Voronoi
tessellation is partitioning of a plane with n points into n convex polygons such
that each polygon contains exactly one point and every point in a given polygon
is closer to its central point than to any other. We start the verification by con-
structing the Voronoi tessellation from the points in the query eye-point, which
is done in O(n log(n)) time [3] (see Fig. 3). This allows us to find the corre-
sponding point of xi in O(log(n)) by checking what polygon within the Voronoi
tessellation contains the transformed point Ĥxi and choosing its center point.
It follows that the time needed for point correspondences calculation is reduced
from O(m n) to O(m log(n)).

3 Algorithm Performance Enhancements

In this section we suggest two enhancements to the basic method improving its
performance and reliability. They address the most problematic issues of the pro-
posed localization method (as well as the general geometric hashing technique),
which are the performance degradation in presence of noise and non-uniform
occupancy of hash bins.

524 M. Lifshits et al.

WAFER MAP QUADTREE

Whole Image

Quadrants

Fig. 4. Decomposition of the wafer map with quadtree.

3.1 Quadtree

Unlike the absolute localization on the wafer, in the incremental localization
discussed here, the initial position is assumed to be known approximately at
the beginning of the localization session. The goal is then to refine the eye-
point position estimation. Thus, it is possible to search for the eye-point only
in relatively small “expectation region” on the wafer map, based on the known
initial location. One can observe that in the case of localization on the wafer
the set of models is actually formed from the neighboring wafer image tiles.
This allows us to refine the basic algorithm using the quadtree - a technique for
encoding an image as a tree structure (Figure 4).

The root node represents the entire image; its children represent the four
quadrants of the entire image; their children represent the sixteen sub-quadrants,
and so on.

Basic algorithm uses 2D hash table, while its bins are accessed according
to the computed invariant coordinates. Multiple entries within single bin are
organized in a linked list and retrieved altogether when the corresponding bin is
accessed. The proposed enhancement replaces the linked list with a quadtree at
each bin in the hash table. These trees correspond to the space partitioning of the
global wafer map. This way it is possible to access only the relevant part of each
tree during voting and thus, exclusively count for models from the “expectation
region”. To put it differently, the quadtree allows to select any partial wafer
area to be searched for the query eye-point. Practically, the quadtree approach
reduces the number of irrelevant entries accessed in a hash table, without actually
removing any contained data.

3.2 Rehashing for Bayesian Voting

Ideally, for every feature point of the query eye-point image there is a single
model point in the corresponding hash table bin. In practice, features generated
by other models can fall into the same bin or even coincide. To deal with this
problem one may suggest to reduce the bin size. Unfortunately, the feature points
are non-uniformly distributed over the hash table. Therefore, for any bin size
there will be either overpopulated or empty bins. It is generally proposed to use
rehashing to deal with the problem of non-uniform occupancy of hash bins [8].

Another problem is that the uncertainty in feature point position caused by
image noise, shifts it away from the corresponding model feature. This can be

Using Pattern Recognition for Self-Localization 525

Fig. 5. Examples of the real wafer images used as models in the algorithm.

solved by looking for the matching model feature in a certain, error dependent,
neighborhood of the eye-point feature - voting region (see for example Bayesian
approach in [9]).

To combine and take the best from both approaches we propose to use a
scheme that equalizes voting regions rather then feature density, as suggested
before. This is achieved by re-mapping the hash entries using the mapping T :
(u, v) → (u′, v′), such that

{

u′ = π2√
r+e2 ln(1 + r)

v′ = arctan(v
u)

,

where r =
√

u2 + v2. The detailed derivation and the theoretical basis of the
scheme is reported elsewhere [1]. This allows to improve localization (as well as
general geometric hashing) computational performance by minimizing the hash
table size and the number of bins accessed, while maintaining optimal recognition
rate. Alternatively, the proposed scheme can be used in classical single bin voting
to improve recognition rate.

4 Experimental Results

In this section we demonstrate the capabilities of the proposed localization algo-
rithm and provide a systematic evaluation of its performance and effectiveness.
We performed tests on real wafer images obtained on KLA-Tencor 5200XP over-
lay metrology tool using 750 micron field of view. These images were used to
construct a map covering an area of 2.25x12.75 millimeters on the wafer surface.
Examples with enlarged partial images after preprocessing and corner detection
are shown in Figure 5. There are two sequential stages involved in the localiza-
tion algorithm: indexing based voting and candidates verification. During voting,
eye-point invariant description is calculated and used to index into the hash ta-
ble and vote for all the accessed entries. This description is based on a pair of
features, a basis, see [6]. In many practical situations, there is a good chance
that one of the points used to form a basis was reported by mistake and does
not match any model point. Therefore, one should make multiple attempts us-
ing different bases (e.g. different descriptions), to ensure with sufficiently high
probability that at least one of them is free of outliers. We evaluate the localiza-
tion algorithm performance by varying the number of different eye-point feature
bases being used in voting.

526 M. Lifshits et al.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of bases

Lo
ca

liz
at

io
n

re
su

lts

hit rate
false alarm rate
miss rate

Fig. 6. System behavior with different number of bases being used in voting.

We tested the algorithm on a total of 104 different localization tasks to obtain
a statistically meaningful measure of its performance. Each time we select a
random eye-point and then, if correct location on the wafer “map” is reported
by the algorithm (ground truth was available due to the nature of data set
formation), the result is considered to be true positive (TP). In case of incorrect
or no location (simply because none of the database models got enough votes),
the result is regarded as a false positive (FP) or miss accordingly.

The summary of the obtained results is presented in Figure 6. Hit rate
HR = �TP

�Tests reaches 95% with 4% false alarm rate and 1% miss rate when 4
bases are being used. The inaccuracy of the localization result may be formu-
lated as follows. Assuming the eye-point features are measured with Gaussian
error of standard deviation σ, it can be shown that the RMS distance of the
estimated point location from its true value is σ(d/2n)1/2, where n is number of
correspondences used and d is the number of transformation parameters. Thus
substituting d = 4 for similarity, and taking 50 sample points, results in the
estimation error of 0.2 pixels. If the eye-point image of size 200x200 pixels is
taken at resolution of 50 micron we come up with the localization accuracy of
50 nanometer.

HR of 100% is not achieved as the constructed map contains areas difficult
for localization: having no distinguishable features or filled with repetitive ge-
ometric structures. Note that even a human would have serious difficulties in
solving the task of self-localization for “degenerate” eye-points selected from
these unfavorable areas. Generally, we found that the algorithm performed well
for eye-points from most of the wafer areas.

5 Summary

We presented a new method for self-localization on wafers, based on the geomet-
ric hashing technique. The method is invariant to changes in visual appearance,
such as non-linear contrast variation, scale, rotation and partial obliteration.

Using Pattern Recognition for Self-Localization 527

Two enhancements were proposed to the basic geometric hashing algorithm, im-
proving its computational performance by optimally distributing the entries over
the hash table and allowing an efficient access to the table entries. We showed
how a verification can be significantly accelerated by applying a voronoi tessel-
lation of the eye-point. Extensive experimental analysis demonstrate the high
reliability of the proposed method.

Acknowledgement. This work was conducted as part of the Wafer Fab Cluster
Management (WFCM) Consortium supported by the ”MAGNET” program of
the Chief Scientist Office at the Israeli Ministry of Industry and Trade.

References

1. I. Blayvas, R. Goldenberg, M. Lifshits, E. Rivlin, and M. Rudzsky, Geometric
hashing: Rehashing for bayesian voting, Accepted to International Conference of
Pattern Recognition, 2004.

2. A. Kalvin, E. Schonberg, J. T. Schwartz, M. Sharir, Two-dimensional, model-based,
boundary matching using footprints, International Journal of Robotics Research,
vol. 5, no. 4, pp. 38–55, 1986.

3. M. V. Kreveld, M. Overmars, O. Schwarzkopf, and M. V. K. Mark de Berg, Com-
putational Geometry, 2nd ed. Berlin: Springer Verlag, 2000, ch. Voronoi Diagrams:
The Post Office Problem, pp. 147–163.

4. Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, Object recognition by affine invari-
ant matching, Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion, USA, pp. 335–44, June 1988.

5. Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, Affine invariant model-based object
recognition, IEEE Transactions on Robotics and Automation, vol. 6, no. 5, pp. 578–
589, 1990.

6. Y. Lamdan, and H. J. Wolfson, Geometric hashing: A general and efficient model-
based recognition scheme, Proc. 2nd International Conference on Computer Vi-
sion, USA, pp. 238–49, June 1988.

7. S. Melikian, Geometric searching improves machine vision, Lasers and Optronics,
vol. 18, no. 7, pp. 13, 1999.

8. I. Rigoutsos, and R. Hummel, Several results on affine invariant geometric hashing,
Proc. 8th Israeli Conference on Artificial Intelligence and Computer Vision, Israel,
December 1991.

9. I. Rigoutsos, and R. Hummel, A bayesian approach to model matching with ge-
ometric hashing, Computer Vision and Image Understanding, vol. 62, no. 1, pp.
11–26, 1995.

	Introduction
	Self-Localization as Pattern Recognition Task
	Algorithm Performance Enhancements
	Quadtree
	Rehashing for Bayesian Voting

	Experimental Results
	Summary

