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One of the strongest cues for retrieval of content information
from images is shape. However, due to the wide range of transfor-
mations that an object might undergo, this is also the most difficult
one to handle. It seems that shape retrieval is one of the major
barriers nowadays to image databases being commonly used. We
present an approach for shape retrieval from pictorial databases
which is based on invariant features of the image. In particular we
use a combination of semi-local multivalued invariant signatures
and global features. Spatial relations and global properties are used
to eliminate nonrelevant images before similarity is computed. The
advantages of the proposed approach are its ability to handle im-
ages distorted by different viewpoint transformations, its ability to
retrieve images even in situations in which part of the shape is miss-
ing (i.e., in case of occlusion or sketch-based queries), and its ability
to support efficient indexing. We have implemented our approach
in a heterogeneous database having a SQL-like user interface aug-
mented with sketch-based queries. The system is built on top of a
commercial database system and can be activated from the Web.
We present experimental results demonstrating the effectiveness of
the proposed approach. c© 1998 Academic Press

1. INTRODUCTION

The area of pictorial databases has recently become a subject
of extensive research. Large databases of images are used in
different applications including multimedia systems, medical
imaging systems, and documents systems. The most common
form of retrieval is based on image content. For most of the ap-
plications, content is defined in terms of three basic components:
color, shape, and texture. This paper concentrates on shape-
based retrieval.

Traditional approaches to shape retrieval, while providing
good accuracy and efficiency, still suffer from instability as a
result of viewpoint transformations. This follows from the fact
that the invariance of the exploited features is limited. Global
characteristics that are commonly used, like the aspect ratio or
circularity [1], are invariant, for example, only to similarity trans-
formation. Approaches that are based on edge directions [2] or
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elastic sketch matching [3] are usually stable to scaling and rota-
tion in a restricted range, but they do not hold for full similarity
and not for the more general affine transformation. The queries
are usually limited to be example-based, where the input im-
age is supposed to be a version of one of the database images,
which may undergo scale, rotation, and translation (i.e., simi-
larity transformation). However, sometimes the input image can
be occluded, which makes global features like moments inap-
plicable for retrieval. In addition, the user might want to present
an input image having only part of the shape information, i.e.,
having only the coarse image structure, omitting fine details. In
some cases the user does not want to present an input image at
all and wants instead to use a logical description of shape fea-
tures, e.g., “Give me all the images having three circles and a
rectangle with ellipse inside.”

We developed an approach for shape-based retrieval that aims
to cope with the problems described above, mainly the restriction
of the viewing transformation to similarity, and a requirement
for a complete, unoccluded input image. We use features, in-
variant for a wide range of viewpoint transformations, including
affine and perspective. Shape similarity is measured using semi-
local multivalued invariant signatures that allow one to handle
situations in which part of the shape information is missing (i.e.,
occlusion or sketch-based retrieval). To efficiently handle such
cases we introduce a data structure, thecontainment tree, that
exploits the topological structure of the image. This structure
supports indexing mostly in sketch-based retrieval. In this pa-
per we present a series of experiments done on a heterogeneous
database system which we built to test our approach. The sys-
tem allows us to query images by logical or shape descriptions
(query by example) or by a combination of both. It has an inter-
face to the Web, providing a convenient user interface. We give
a brief description of its data model in Appendix A.

The paper is organized as follows. In Section 2 we give some
background on invariants and cover some related works. In
Sections 3 and 4 we present our approach for invariant-based
retrieval. Section 3 presents the machinery needed for index-
ing and retrieval with full and partial shape information, while
Section 4 describes the query processing itself. Section 5 presents
a variety of results using our approach for retrieving images from
four different databases. Section 6 contains the concluding re-
marks.
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2. BACKGROUND AND RELATED WORK

Geometric Invariants

The subject of viewpoint invariants in vision has developed
rapidly in recent years. A simple projective, or viewpoint, in-
variant, namely the cross ratio of four points on a line, was
introduced in vision by Duda and Hart [4]. However, its domain
of applicability was very limited. More general invariants were
studied in the nineteenth century and were introduced in the
field of computer vision. There are two main types of invari-
ants: algebraic invariants and differential invariants. Algebraic
invariants are based on a global description of the shapes by
algebraic entities such as lines, conics, and polynomials. Differ-
ential invariants are based on describing the shape by arbitrary
differentiable functions. These methods have been applied to
various vision problems. The algebraic approach was used for
example by [5] and [6], while the use of differential invariants
can be found in [7] and [8]. Both methods proved to have ad-
vantages and disadvantages. The algebraic method, while simple
and easy to implement, is quite limited in the kinds of shapes
that it can handle because most shapes are not representable by
simple low-order polynomials. The differential method is more
general because it can handle arbitrary curves, but it relies on
the use of local information such as derivatives (of quite high
orders).

This situation has led to the introduction of various kinds of
intermediate, or hybrid, methods that try to combine the advan-
tages of the algebraic and differential methods. References [9],
[10], and others introduced invariants that contain both deriva-
tives and reference points. Each reference point reduces the num-
ber of derivatives that one needs in order to obtain invariants.
In [11] a “canonical” coordinate system without curve parame-
terization is used to obtain the same goal. This results in fewer
derivatives and in the capability of using feature lines in addi-
tion to points. However, in all these methods, the correspondence
must be established between the reference points of the two im-
ages that are being matched.

In this paper we reduce the number of derivatives by using a
scale space approach [12]. The scale space has to be invariant so
we cannot use simple Gaussian-like smoothing. Instead, we rely
on some reference points as a function of the given curve and a
variable scale parameter. These reference points are not assumed
to be readily available in the image, as in previous methods
[13, 14], but are determined from the curve in an invariant way.
Thus, no correspondence is needed. Using low-order derivatives
and our variable reference points, we build invariant scale space
representations of the given curves.

Content-Based Retrieval of Images

Jain and Vailaya [2] broadly classified work in the field into
two categories on the basis of the approach used for extracting
image attributes. Spatial information preserving methods derive
features that preserve the spatial information in the image and it

is possible to reconstruct the images on the basis of their feature
sets. Representative techniques include polygonal approxima-
tion of the object of interest [15], physics-based modeling, and
principal component analysis [16]. The nonspatial information
preserving methods extract statistical features that are used to
discriminate among objects of interest. These include various
feature-vector-based approaches, such as historgramms and in-
variant moments [2, 17]. Both of these categories extract features
based on cues, such as color and shape, that may be present in
images.

Several works useglobal numerical attributesfor indexing
and retrieval of shapes. Those features are usually invariant only
under Euclidean or similarity transformations, limiting the sys-
tem. In QBIC (query by image content) [17] the shape features
are based on a combination of global features: area, circularity,
eccentricity, major axis orientation, and a set of algebraic mo-
ments. The assumption is that the shapes are unoccluded. The al-
lowed shape queries are based on an example image. Chang and
Smith [1] focus on automatic extraction of low-level visual fea-
tures such as texture, color, and shape, especially in compressed
form. In determining the similarity between different shapes,
they use higher-level attributes, such as area, orientation, and
aspect ratio, as well as intermediate-level representations, such
as Fourier descriptors and chain code. In the work of this group,
the input image is generally allowed to undergo transformations
up to similarity, and occlusion is not handled.

Another form of shape description is based onfeature points,
detected from the image. Pentlandet al. [16] present a shape
model that is based on “interconnectedness” of shape features,
e.g., edges, corners, or high-curvature points. Mehrotra and Gary
[15] use for shape representation a collection of few adjacent
interest points, like maximum local curvature boundary points
or vertices of the shape boundary’s polygonal approximation.
Eakinset al. [18, 19] use a boundary description that is based
on features such as straight line segments, circular arc segments,
and discontinuities. Their work can be distinguished from others
by the fact that in addition to global features, local boundary
features are exploited. However, the retrieval is impossible when
only part of the shape is available (i.e., under occlusion), and the
handled transformations are limited to similarity.

Jain and Vailaya [2] use a histogram of the edge directions as a
shape feature. The method is limited to similarity transformation
and unoccluded input image. Del Bimbo and Pala [3] use phys-
ical models of deformations for elastic sketch-based retrieval.

Although content-based retrieval of images has been a subject
of extensive research in the past few years, only a few commer-
cial systems support such a retrieval. Illustra [20] provides a
library for storing and managing image data. QBIC [17] offers
content-based image query in conjunction with standard search.
In both cases image similarity retrieval is based on similarity
of color and texture between the query image and the database
images. However, the results are highly subjective and there is
no intuitive metrics that can be used to decide whether the result
images are in fact those that are most similar to the query image.
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Several prototype research image database management sys-
tems have been reported in recent years that address the issue
of how to index images in which the objects have already been
recognized and tagged with their semantic meaning in order to
support retrieval by image similarity [21, 22]. These systems
are mainly concerned with spatial–relational information and
do not deal with spatial–locational information. The most com-
mon data structure that is used is the 2-D string. Another data
structure called the spatial orientation graph is used for spatial-
similarity-based retrieval of symbolic images. In [23] a method
that handles queries that deal with both spatial–relational and
spatial–locational data is introduced. The method can deal with
the distance between objects. In addition, as part of the pictorial
specification, the user indicates the degree of desired similar-it,
and thus the results are not subjective. The method checks for
contextual similarity by checking if the symbols in one image ap-
pear in the other image, where a symbol is a group of connected
pixels that together have some common semantic meaning. In
contrast, in our work the basic element is a curve.

Our work attempts to overcome three main limitations of the
existing approaches: a restriction of the allowed viewing trans-
formation to similarity, a requirement for a whole unoccluded
input image, and a restriction of the queries to be example-based
only.

3. INDEXING AND INVARIANTS

The purpose of indexing is to support fast retrieval from the
database. Usually, two requirements are imposed on features
used for indexing: the features should allow for substantial re-
duction in the number of candidates from the database, and
a feature-based distance function should exist which supports
ranking of images according to their distance from the input
image.

As primitives for shape description we use various geomet-
ric entities. We exploit these entities for filtering the database
while searching for a candidate set of images which answer a
query. Features on which the description is based include various
properties varying from the number of the different geometric
entities, their dimensions and positions, to some topological re-
lationships.

Our approach emphasizes the use ofgeometric invariants
which provide a good mean for indexing while supporting rank-
ing. Different features are used for extraction of descriptors that
are invariant under various transformations.

Note that different applications may allow for different kinds
of invariants. In applications that use images of trademarks,
for example, similarity invariants are usually enough. For some
other applications, however, a wider set of transformations, affine
or projective, may be required. The applicability of a certain
feature for indexing can be adjusted as well to the class of trans-
formations derived from the application at hand.

Our invariant representation of objects is based mainly on
semi-local multivalued invariant signatures.These signatures

provide a measure of distance between two curves, which allows
us to rank images according to their distance from the input
image. Below we describe the extraction and matching of such
invariant signatures.

3.1. Semi-local Multivalued Invariant Signatures

Invariant signature is a function of a curve, calculated point-
wise, and invariant for a given set of transformations. Invariant
signatures can be used for recognition of planar curves. The
important property of invariant signatures is their applicability
in situations where the input curve is partially occluded. Hav-
ing an invariant signature, curve matching reduces to matching
signatures.

In order to calculate an invariant signature, one should find
a local invariant for the given set of transformations and apply
it at each point of the curve. Usually, local invariants are based
on derivatives of the curve with respect to some parameteriza-
tion. Several approaches try to combine the numerical stability
of global invariants with the applicability of local invariants
for cases of occlusion. Our approach follows that presented in
[12, 24, 25]. First, the curve (object boundary), given in arbi-
trary parameterization, is reparameterized invariantly, using the
lowest possible order of derivatives. Since we want to build the
signature reflecting the global invariant geometric features in
the small neighborhood of each point, we have to have the in-
variant measure of closeness of the contour points. It is important
to note that the reparameterization process should belocal, in
order to allow us to deal with occluded images.

Formally, for a given planar shape transformation setTψ :
R2 → R2, and for a given curveP(t), having an arbitrary param-
eterization, the target is to find aninvariant reparameterization
P(τ ) so that ifP(t) andP̃(t̃) are related viãP(τ̃ ) = Tψ [P(t(t̃))]
thenP̃(τ̃ ) = Tψ [P(τ + τ0)]. In other words, the reparameteriza-
tion is invariant if the corresponding points have the correspond-
ing parameter value, up to some constant cyclic shift.

The equations for invariant reparameterization are obtained
using the differential properties of the viewpoint transforma-
tions. Let’s defineK n,m[x, y | t ] 4= x(n)y(m) − x(m)y(n). The simi-
larity transformation is parameterized using four parameters: an
angle of rotationω, translation vectorv (two components), and
a scale factorα > 0. For a given point (vector)u, the transfor-
mationTψ : R2 → R2 is Tψ (u) = ũ = αUωu + v, whereUω is a
rotation matrix

Uω =
[

cosω −sinω

sinω cosω

]
.

For the similarity transformation we obtain that

dτ = K 1,2[x, y | t ]

|P|2 dt

is an invariant, generalized arc length, reparameterization.
Affine transformation is parameterized in the following

form: Tψ (u) = ũ = Au + v, whereA is a general nonsingular
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(det|A| 6= 0) 2× 2 matrix. For the affine transformation we ob-
tain that fordτ ∗ = |K 1,2[x, y | t ]|1/3dt, dτ̃ ∗ = |K 1,2[ x̃, ỹ | t̃ ]|1/3

dt̃ we have ˜τ ∗ = |detA|1/3τ ∗ + τ ∗
0 . This gives us linear scaled

invariant reparameterization. In the particular case|detA| = 1,
the reparameterization is absolutely invariant. Exploring further
the properties of affine transformation, we obtain that

dτ =
∣∣∣∣ d

dτ ∗

∣∣∣∣ K 2,4[x, y | τ ∗]

K 2,3[x, y | τ ∗]3/2

∥∥∥∥ dτ ∗

is a nonscaled affine invariant reparameterization.
The implementation of the reparameterization process intends

to reduce the influence of the noise. First, the contour is trans-
ferred to a parametric form by B-spline approximation. Since we
want the spline value at a certain point to depend on the coordi-
nates of the contour points in a sufficiently large region, so that
the influence of a small error in the edge detection is diminished,
we adopted the technique used in [26]. The solution subsamples
the contour, computes the spline values, and averages the results
for different positions of samples on the contour. So, the first
sampling set consists of eachl th point on the contour, the points
next to the chosen ones form the second set, etc. Thus, no infor-
mation is lost, because each point participates in some sample.
After the B-spline representation of the curve is obtained, the
reparameterization is straightforward.

The computation of the semi-local signature is based on geo-
metric features that stay invariant under the viewpoint transfor-
mation. Under similarity transformation, ratios of lengths, ratios
of areas, and angles stay invariant. Thus, we can use those invari-
ants locally to generate signature functions of various types. Af-
ter the invariant reparameterization is completed, the two curves
P(τ ) andP̃(τ̃ ) are related bỹP(τ̃ ) = Tψ [P(τ̃ + τ̃0)]. This equa-
tion shows that one can compute the ratio of lengths, or the
angle between, the segments defined by (P(τ − sB), P(τ )) and
(P(τ ), P(τ + sF )) for a priori chosen valuessB andsF (locality
parameters). Thus

δ[P(τ ), P(τ + sF )]

δ[P(τ ), P(τ − sB)]

and the angle formed by the points as functions ofτ are invariant
signature functions (see Fig. 1(left)).

FIG. 1. Semi-local invariants. On the left, invariants for similarity transformation. On the right, invariants for the affine transformation.

TABLE 1
Local Invariants—Summary

Desired Locality per
invariance Local measure sample

Euclidean length 2
Similarity angle, lengths ratio 3
Affine areas ratio 5
Projective cross-ratio 8

Under affine transformation, areas are uniformly scaled by
detA. This fact implies that the ratio of areas is affine invariant.
Assuming that an invariant parameterization was already ob-
tained for the curve, we can choose four values forτ, τB1, τB2, τF1,
andτF2, and calculate at each pointP(τ ) the ratio of areas,

Area1

(
PB1, P(τ ), PF1

)
Area1

(
PB2, P(τ ), PF2

) ,

wherePB1, PF1, PB2, andPF2 are defined using locality parame-
ters as for similarity case. This quantity is an invariant signature
as a function of the invariant “arc length”τ (see Fig. 1(right)).

Table 1 summarizes the various invariant signatures we use.
The table describes for each transformation the local geometric
invariant that is used for building the signature and the number
of localities needed per sample. One can see that as the desired
invariance becomes more general, the number of points involved
in the invariant calculation grows.

If the locality parameter set is allowed to be free parameters
rather than setting them in advance, we obtain a whole range
of invariants at each point rather than a single value (Bruckstein
et al.[12]). The signature functions for curves become signature
vectors or even continuum of values, i.e., surfaces or hypersur-
faces. Matching them is less sensitive to peculiarities that may
exist at some fixed pre-set value of the locality parameters.

It is important to note that since, in the general case, there
is no correspondence between the initial points of the curves,
the corresponding points on the curves have, after the invariant
reparameterization, the same parameter value up to unknown
constant cyclic shift value. This fact adds to the complexity of
the matching process.
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FIG. 2. Reparameterization inaccuracy. (b) and (d) Present graphs of invariant signature value versus invariant arclength. (a) and (b) Library image and its
invariant signature. (c) and (d) The transformed library image and its invariant signature. Note the difference of the domains of (b) and (d)..

We designed an effective automatic matching procedure,
which can handle images distorted by affine and similarity trans-
formations, and situations in which image is partially occluded.
To match two signatures, we map them to the matrices with the
number of rows equal to the number of signatures in the multival-
ued signature, and the number of columns equal to the number of
the samples. In order to estimate the unknown value of relative
cyclic shift, we exploit reference points. As a reference point we
use the signature extrema. Minimizing the difference between
the matrices over all checked shift values provides a measure for
the distance between the signatures.

Values of the invariant perimeters of the same curves, up to
transformation, may differ due to possible error in the edge de-
tection process (see Fig. 2). We map the signatures having dif-
ferent invariant perimeters to matrices with the same number of
columns and calculate the difference, while taking the difference
between the invariant perimeters into account. The differences
between two multivalued signatures is given by

Diff( Sinp0..Num−1, Slib0..Num−1)

= min
sh∈Sh

∑Lev−1
i =0

∑Num−1
j =0 (Minp[i ][ j̃ ] − Mlib [i ][ j ])2

Lev × Num

×
(

max(p1, p2)

min(p1, p2)

)p

,

whereNum is the number of signatures in the multivalued sig-
nature,Lev is the number of samples,s1ands2are the compared
signatures,̃j = ( j +sh)mod Lev,Sh is the set of all the checked

FIG. 3. (a) The input image. (b) The source library image. (c) The contours of the input image (numbered). (d) The fitted contours.

shift values,p1 andp2 are invariant perimeters, andp is a posi-
tive constant.

In order to speed up the matching process, we exploit the
signature histogram. This feature is independent on the start-
ing point. The low-dimensional histogram allows for using of
efficient data structures, like R-trees, for the database organiza-
tion. First, signature histograms are compared. Only items close
enough to the input curve are matched using the whole signature.

The total difference between the images is taken to be the
average of the distances between the corresponding curves,

d(im1, im2) =
∑

{Maximal curves}
√

diff
(
c1i , c2i

)
N

,

whereN is the number of compared curves andc1i andc2i are
corresponding curves ofim1 and im2, respectively. In order to
find pairs of corresponding curves we sort the curves of each im-
age with respect to some invariant criterion. In case of similarity
transformation, the curve’s area serves as an ordering criterion.
Curves that cannot be sorted by area are ordered by their perime-
ters. Under affine transformation, perimeters cannot be used any
longer; however, the ratio of areas is still invariant and areas can
be used for ordering.

The following example illustrates extraction and matching of
invariant signatures. The input image (Fig. 3a) is an affine trans-
formed version of the library image (Fig. 3b). The extracted
contours are presented on Fig. 3c. The contours were extracted
by a tracing and collection process which runs on the results
of Difference Recursive Filter [27–29]. The contours were
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FIG. 4. Numerical instability of an affine invariant signature. (a) Multivalued affine invariant signaturef (t) for curve No. 5 from Fig. 3. The signature is based
on the areas ratio. (b)f (t) after putting a threshold. (c) The signature 1/ f (t).

ordered (by area) and invariant signatures were extracted. We
use the invariant signature described above—the ratio of areas,
with four parameters, each having five sample points. While for
similarity invariants we used the angle, which is relatively sta-
ble characteristic, the ratio of areas can suffer from numerical
instability. If the pointsP(τ − τB2), P(τ ), andP(τ + τF2) (see
Fig. 1(right)) become near collinear, the signature becomes un-
stable. Figure 4 presents the affine invariant signature for curve
No. 5 from Fig. 3. The instability points force us to put a thresh-
old on the signature values. While the resulting signature (see
Fig. 4b) can still be used for the matching process, some of
the information apparently is lost. Another possibility is to ex-
change the values ofτB1 with τB2, andτF1 with τF2, respectively,
and use the signature1f (t) instead off (t) (Fig. 4c). The matching
results for the trademarks presented in Fig. 3 are presented in
Fig. 5. Each grey-level map, consisting of five strips, corresponds
to the multivalued signature, while each strip corresponds to the
singular signature. Each pair of the grey-level maps presents
the signatures of the input (above) and library (below) contours
at the shift position giving the best match (the numbering of
the contours is as in Fig. 3c). Good match is achieved for all
the curves. Note, that the signatures of curves No. 4 and 5 are
very similar as the curves are almost identical when going under
affine transformation.

3.2. Indexing while Some Shape Information Is Missing

One of the main advantages of the proposed approach is its
ability to handle situations in which part of shape information

FIG. 5. The best match for each curve presented in Fig. 3. Grey-level maps are used for signatures. The curves are numbered as in Fig. 3. Good match is achieved
for all the curves.

is missing. We handle separately two different cases: partial
occlusion and user-generated sketch-based queries. In both cases
the indexing is based on the same geometric features which are
used regularly. However, the indexing algorithms will be used
in accordance with the appropriate context.

3.2.1. Partial occlusion. Partially occluded images are
treated in the same way as regular images. Since both the repa-
rameterization and signature extraction stages are absolutely lo-
cal, the signature values for the part of the contour should match
the values computed for the whole curve. The only difference
is the need forpartial matching, i.e., matching of the occluded
contour to the part of the library curve. If the input curve is
occluded, we map it to a matrix with the number of columns
proportional to the width of the signature domain. The domain
of the multivalued signature is the minimal domain of its com-
ponents (for open curve, the larger the locality parameter, the
smaller the signature domain). Thus, the number of columns in
the matrix is

L̃ev = Lev ∗
Num−1
min
i =0

{‖domain(Si )‖}/Perlib ,

wherePerlib is the invariant perimeter of the library signature
andLev is the number of columns of the library matrix. The
matrix of the occluded signature is then matched to a part of the
library matrix.

Figure 6a is a rotated, scaled, and occluded version of the li-
brary image presented in Fig. 6b. We use the angleφ(τ ), formed
by the pointsP(τ − sB), P(τ ) andP(τ + sF ), as an invariant
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signature (as in Fig. 1(left)). Figure 7 presents the beast match-
ings between the input and the library curves. The signature
domain is reduced as a result of the occlusion.

In the next example we took a real image, photographed under
partial occlusion. The extracted trademark part of the image
served as an input to the query against the trademarks database.
The input image and the retrieval results are presented on Fig. 8.

3.2.2. Sketch-Based Queries.We consider sketch-based re-
trieval as retrieval that uses the gross shape structure, while the
fine details can be omitted. For sketch-based retrieval we exploit
a topological invariant which we define here that is based on the
following simple and effective invariant property:

Given the same contour decomposition for an image P and
a transformed imageTψ (P), the contour C1 of P resides inside
the contour C2 if and only if the same relation holds for the
corresponding contours in the transformed image. This holds
for any projective transformationTψ .

In other words, the property that one contour is an inner con-
tour of another is a projective invariant given the same con-
tour representation. This property allows us to represent images
exploiting the relations of internal–external between contours.
Each image is represented as a tree which we term thecontain-
ment tree(This definition is similar to the adjacency graph [33]).
The vertices of the tree are curves. For two curves,C1 andC2,
the edge (C1 → C2) exists ifC2 is insideC1, and there is noC3

such thatC2 is insideC3 andC3 is insideC1. The root of the
tree is a “dummy” contour which includes all the contours. This
representation can easily be obtained after curves extraction (see
Fig. 9). The representation is unique up to the order between the
vertices on the same level. Thus tree-matching algorithms can
be used to compare the representation of the input image with
the library images. This problem of tree matching has a polyno-
mial solution [34]. The discrimination power of the containment
tree is illustrated on Fig. 10.

We exploit the containment tree for sketch-based retrieval.
The matching algorithm is presented as Algorithm 1. The algo-
rithm requires that for each contour of the specified sketch all its
sub-contours should be either omitted or specified. In this way

we allow for queries that uses gross structure while omitting
details (from some level of the tree).

A flexible version of this algorithm which allows us to omit
small sub-contours of the specified sketch is presented as
Algorithm 2. Changing a thresholdR allows us to control the
retrieval flexibility. As the flexibility thresholdR gets larger,
more candidates will pass the threshold and will match the in-
put sketch, giving higher retrieval time. SettingR, therefore,
presents a tradeoff between false alarms and misses. If the con-
tainment trees of the sketch and the image match according to the
appropriate algorithm, the final verification is performed using
multivalued signatures.

Figure 11 presents an example of sketch-based query. The
lower row presents the distance values for the database items.
One can see that the values confirm the intuitive measure of the
similarity between the sketch and the images.

4. SHAPE RETRIEVAL

Our shape retrieval scheme consists of two main phases: fil-
tering the database in order to drop the irrelevant images, and
ranking thecandidates subsetaccording to the distance from
the input image. For indexing we use geometric entities, such as
circles and ellipses. In our system we detect geometric entities
from image contours. Circle detection is based on the fact that
the characteristic ratio, which equals the quotient of the area of
the curve to the square of its perimeter, is known to be minimal

FIG. 6. (a) The input image (occluded). (b) The source library image. (c) The
contours of the input image.
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FIG. 7. Best matches for the curves presented in Fig. 6a. In (1) and (2) best matches for the signatures of the inner contours of the8 letter are presented. In (3)
the best match for the external contour of the8 letter is presented. (4) The best match for the inner circle. (5) The best match for the external circle.

FIG. 8. Example of real occluded scene. (Above) The photographed scene, the
region containing the trademark, and the extracted contours. (Below) Retrieval
results.

FIG. 9. The input image after curves extraction is presented on the left. The
containment tree, representing the containment relationships between the curves,
is presented on the right. For each subtree, the corresponding curve and all its
internal curves are presented.

FIG. 10. The discrimination power of a containment tree. (a) and (b) Two
images having the same containment tree. (c) The containment tree of (a).
(d) The image has the same number of curves as in (a), but a different con-
tainment tree. (e) The containment tree of (d).

FIG. 11. Sketch query example. The input sketch is on the left.

(1/4π ) for a circle. The curve is detected as a circle if its charac-
teristic ratio is close to 1/4π up to a predefined threshold. The
detection of ellipses is based on the fact that any ellipse can be
transformed to a circle by appropriate affine transformation. So,
if we calculate affine invariant signature for an ellipse, it should
be equal to that of a circle, which should be constant since a
circle is a fully symmetrical image. Thus, we can calculate the
affine-invariant signature described in Section 3.1, setting its
parameters to some predefined values, and check the difference
between the obtained signature and thea priori known constant
value. The curve is detected as an ellipse if the difference value is
close to zero. The number of these entities can serve for efficient
filtering of the image collection. Final ranking within the set is
based mainly on the semi-local multivalued invariant signatures.
The number of geometric entities in the image instances provides
an accurate filtering. In order to avoid miss-matches, we allow
the database image to have more entities (circles, ellipses) than
the input image. In addition, the threshold used for entity detec-
tion in the input image is tighter than those used for database
images. Thus, correct database images are not pruned out.

The general scheme of query processing is presented on
Fig. 12. After edge detection and curve extraction from the in-
put image, geometric entities are detected. This global feature
extraction is used as a basis for the filtering process. Relational
database (see Appendix A) is used in this stage in order to re-
trieve the candidates subset. Features used for indexing to the
relational database and eventually for pruning the candidate set
vary from the number of the curves and the geometric entities,
their relative dimensions, etc. The relational database includes
alphanumerical data as well. The query may contain this kind
of information, like the organization name (for the trademarks
database), and this part of the query will be processed as a reg-
ular query (further pruning the set). The candidates obtained at
this stage go to a matching with the input image. The final set, or-
dered according to the similarity measure, is given as an answer.

4.1. Computational Considerations

In this section we discuss the computational complexity of
feature extraction and present typical processing times. Table 2
presents average reparameterization time, average time spent
for computing signatures, average depth of a containment tree,
and average fan out. The quantities are averaged over groups
of images having a certain number of curves. The number of
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FIG. 12. Query processing.

TABLE 2
Computational Considerations

Average Average signature
reparameterization computation Average Average

No. curves time time depth fan out

1 2.60 0.12 1.00 0.00
2 2.74 0.14 1.38 1.00
3 2.90 0.19 1.60 1.50
4 5.74 0.24 1.50 2.00
5 3.43 0.27 2.25 1.93
6 4.76 0.32 2.43 1.50
7 6.10 0.39 2.17 2.67
8 5.71 0.39 2.57 2.75
9 4.89 0.43 2.40 2.56

10 5.25 0.46 2.33 2.23
11 10.98 0.49 2.17 3.33
12 8.40 0.59 4.00 2.62
13 8.07 0.64 1.50 2.67
14 6.09 0.52 2.33 3.00
15 7.05 0.65 2.75 4.67
16 6.20 0.55 2.67 3.67
18 6.28 0.53 3.00 2.50
19 7.76 0.75 3.00 2.50
20 9.72 0.88 2.46 4.16

Overall 5.89 0.44 2.26 2.86

Note. For the trademark database sorted by the number of curves, average
reparameterization time, average time spent for computing signatures (both in
seconds), average containment tree depth, and average fan out are presented. The
quantities are averaged over all the images having the same number of curves.
The last row presents the results averaged over the whole database.

nodes in the containment tree is equal to the number of curves
in the image. Note that both the average depth and fan out are
low, providing efficient containment-tree-based retrieval. Most
of the computing time in the feature extraction process is spent
on the reparameterization, which involves B-spline calculation.
However, for the database images, the computation is done off-
line (see Fig. 26, Appendix A). The only reparameterization
that is done on-line is of the input image, and this is done only
once.

The computational complexities for various stages in the pro-
cess are as follows. The reparameterization complexity isO(N×
ord2), whereN is the number of points over the curve andord
is the spline order (typically 6). The signature calculation com-
plexity is O(N ∗ Num), whereNumis the number of signatures
in the multivalued signature. The containment tree matching al-
gorithms (Algorithms 1 and 2) haveO(C) complexity, whereC
is the number of curves in the image.

5. EXPERIMENTS

To show the applicability of our approach we tested it first
on a database of 500 constrained 3D objects, namely surfaces
of revolution. Using the KBS bottles collection [32] we present
queries showing good retrieving ability for a specific, and sim-
ilar, objects. The effectiveness of the filtering process and the
ability to handle different transformations are demonstrated in
the second part in which a UMD [33] database of 100 trade-
marks is tested. We give results for sketch-based queries on a
UMD [33] database of more than 300 “road signs.” To show
the scalability of our approach, as well as retrieval results for a
combination of various databases, we added a database of about
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1100 contours of images of marine creatures used by SQUID
system [34], and tested the system on combination of the four
databases together. The section is concluded with performance
evaluation. For all four databases we used the same system.
One may note that our system performs best with structured do-
mains such as trademarks and road signs images. The system is
implemented using the ORACLE/SQL environment and has a
WWW interface. The user is allowed to query images by exam-
ple, logical description, or the combination of both. The example
image can be the database image or the image provided by the
user.

5.1. Invariant Signatures for Surfaces of Revolution

An interesting practical application field for multivalued sig-
natures is recognition in a database of 3D objects which are
surfaces of revolution (see also Mundyet al.[35]). We can treat
such objects as planar under a controlled change of the view-
point (which is common in industrial settings, e.g., in assembly
lines). In this case, we can approximately describe the view-
point change by affine transformation and apply our algorithms.
In our experiment, the database contains more than 500 items
some of which are photographed objects that are surfaces of rev-
olution and the rest are bottles from the KBS bottles collection
[32]. Given an input image (one of the database objects under
rotation and zoom), we compared it with the database by using
multivalued signatures. Figure 13 presents an input image, its
external contour, and its multivalued invariant signature. This
input image was checked against all the images in the database.
A good match was achieved retrieving the right database image
in the first place. Figure 14a presents the grey-level maps of the
input (above) and the database (below) contours at the shift po-
sition giving the best match. Retrieval results are presented next
(first four of the set). Figure 15 presents a number of queries
performed using the surfaces of revolution database.

Figure 16a presents our HTML interface. The input scene and
the processing results are presented in Fig. 16b.

5.2. Filtering the Candidates Set

Next we illustrate the effective filtering obtained by using in-
variant features. We run our queries on a database which contains

FIG. 13. (a) The input image. (b) The external contour of the input image.
(c) The invariant signature for the input image.

FIG. 14. (a) The best match for the input image. (b)–(e) Retrieval results.

more than 100 trademarks. In the first example (Fig. 17(1)), the
input image is a rotated and scaled version of one of the database
trademarks. The user operated with the query

select title ordered by dist(logo30-trans.tiff)

where (context = text).

The query looks for images having textual strings in them. Both
alphanumerical information and geometric features are used for
filtering the database. Exploiting geometric features is especially
effective for images with a large number of curves, because
of their complicated structure. One can see that the number of
candidates is rather small. In the following example (Fig. 17(2)),
the user operated with

select title where (Ncircles= 1 and N curves

≥ N curves (logo55.tiff)),

directly specifying the number of geometric entities (circles).
The input image is one of the database trademarks. One can see
that the candidates comply with the given condition. The user
has the freedom to limit the transformation which the images
are allowed to undergo by stating the transformation explicitly
in the query. In the next example (Fig. 17(3)), the user limited
the transformations to the affine case, operating with the query

select title ordered by dist(logo50-transf.tiff) under affine.

Both the filtering and the ranking are based on features that are
invariant under the affine transformation. The input image is an
occluded version of one of the database trademarks.

The next example presents sketch-based retrieval (Fig. 17(4)).
The sketch was drawn using curves-drawing software (Xfig).
Here we allow the omission of some small objects within the
image, while preserving its general structure. In this case we
used Algorithm 2 for filtering the database. The various stages
for creating the sketch are presented in Fig. 18.

Note that in all the examples the number of the images in
the candidates set is sufficiently smaller than the number of the
items in the database. The filtering is still effective even where
occlusion is present (see, for example, Fig. 17(3)). When the fil-
tering is based on the containment tree we expect it to be more ef-
fective (see, for example, Fig. 17(4), where only four candidates
passed the filtering).
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FIG. 15. Results of queries on the bottle database.

FIG. 16. (a) Querying the database using HTML interface. (b) The input image and processing results. (c) The grey-level maps, presenting multivalued signatures:
above, the map corresponding to the input image; below, the map, corresponding to the image which took the first place.
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FIG. 17. Query results.

5.3. Sketch-Based Queries

Figure 19 presents a number of sketch-based queries and re-
trieval results. In addition, we present the queries in SQL-like
notation (see Appendix A). The queries are performed on the
database of “road signs,” containing about 300 images. After
filtering based on Algorithm 1 or 2, the candidates passed match-
ing with the input sketch, based on invariant signatures. For each
query, the resulting candidates set contains no more than 15 im-
ages. One can see that the distance measure reflects the similarity
between the sketch and the candidate image.

In the next experiment we checked sensitivity of the sketch-
based queries to deformations. Figure 20 (left) shows the be-
havior of the retrieval process when the input sketch (the same
as in Fig. 17(4)) passes graduate deformation. One can see that
the results are quite stable, and the first two places don’t change.
Figure 20 (right) shows how the error behaves as the input sketch
deforms.

FIG. 18. Creating an input sketch for the query in Fig. 17(4) using Xfig. (a) Basic elements, including a control polygon for the central element. (b) Intermediate
stage. (c) The final sketch.

5.4. Experiments with a Combination of Different Databases

In these experiments we illustrate the scalability of our ap-
proach. For this purpose we added a database of about 1100
contours of images of marine creatures used by the SQUID sys-
tem [33]. Figure 21 presents the results of a simple query on
this database. Next we present an experiment of retrieval using
all the images from our four different databases (a combination
that includes more than 2000 images). Figure 22a presents the
input image. Figures 22b–22e present retrieval results obtained
against the union of the four databases.

Figure 23 presents an example of retrieval using two data-
bases, namely the trademark and sign databases.

5.5. Efficiency Analysis

In this section we used the combined database which in-
cluded both the database of the trademarks and the “road signs.”
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FIG. 19. Results of queries on the “road signs” database.

FIG. 20. Sensitivity of the matching to shape deformation. (Left) Retrieval results. (Right) The error plot. The lowest graph represents the error for the first place,
the second graph represents the error for the second place, etc.

FIG. 21. Results of a query on the marine creature database. (a) The input image. (b)–(e) Retrieval results.
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FIG. 22. Experiment with four databases. (a) Input image. (b)–(e) Retrieval
results.

Figure 24a presents the average processing time (averaging on
100 queries) for a query as a function of the number of the curves
in the input image. The upper curve corresponds to a sequential
matching, i.e., a full signatures matching against the entries in
the database. The middle presents average processing time for
a query using the number of geometric entities for pruning the
database. The lower curve corresponds to retrieval using the con-
tainment tree. The middle and lower curves are nonmonotonic,
a direct consequence of a tradeoff between a shorter query exe-
cution time as a result of the pruning and the extra time needed
for matching more signatures. The graphs demonstrate that geo-
metric entities and especially the containment tree are effective
means for database pruning and their efficiency grows with the
number of contours.

Figure 24b demonstrates the scalability of our approach.
Queries have been run to retrieve an image from a subset of
the database. The queries used the number of geometric entities
for pruning the subset. When the subset grows, processing time
increases approximately as a linear function.

Table 3 illustrates the influence of the flexibility thresholdR
(see Algorithm 2) on the number of retrieved images for sketch-
based retrieval. The number of the answers depends on the com-
plexity of the input sketch.

6. CONCLUSIONS

In this paper we have addressed the problem of shape-based
retrieval from image databases. Our approach emphasizes the
use of invariants as shape descriptors. Specifically, we have used
geometric invariant features for efficient indexing, while local

FIG. 23. Experiment with trademark and sign databases. (a) Input image.
(b)–(e) Retrieval results.

TABLE 3
The Number of Retrieved Images as a Function

of the Flexibility Threshold R

R

0.01 2 4 10
0.02 3 6 12
0.04 6 15 18
0.08 10 16 18
0.16 14 25 20

Note. For the presented input sketch, the number of
retrieved images is given for different values ofR.

multivalued invariant signatures have been used for ranking the
answers. The substantial reduction of the candidates set due to
the filtering stage guarantees the efficient retrieval. The approach
supports image retrieval while part of the shape is missing, can
handle images distorted by different viewpoint transformations,
and can flexibly answers queries based on logical descriptions,
shape (query by example), or combination of both.

We have implemented our approach in a heterogeneous data-
base system having a SQL-like user interface augmented with
sketch-based queries. The system is built on top of a commercial
database system (Oracle) and can be activated from the Web. We
have presented experimental results demonstrating the effective-
ness of the proposed approach under various conditions using
three different databases.

APPENDIX A: THE DATABASE

We implemented the database as anobject-oriented, in ac-
cordance with the definition in [36]. A database entry has a
complex structure, a direct result of the image features we use.
An imagedata type is a complex object, which includes, in a
nested structure, different data types. Some of these objects are
themselves complex, like acontainment treeor a curve. Each
database entry includes, in addition to the geometric features,

FIG. 24. (a) Average evaluation time versus a number of curves. (b) Scalabil-
ity: Processing time versus the number of database items.
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FIG. 25. The image data model.

some alphanumerical information. This information allows for
textual-based querying, in addition to, or in combination with,
content-based retrieval. The alphanumerical data and the low-
dimensional geometric descriptors reside in a relational database
(RDB, in our system Oracle). The RDB covers part of the object-
oriented database (OODB) and gives efficient performance and
convenient user interface.

The data model is presented in Fig. 25. The model contains
three types of fields:

1. Low-dimensional geometric descriptors and alphanumer-
ical fields:

—Descriptorsfields store alphanumerical descriptors of
the image that the user assigns when the image is inserted (i.e.,
data on a company, etc.).

—Contextcan include a verbal description of the image or
its parts (“bird,” “apple” etc.), characters appearing in the image
(“Kodak” in Fig. 9) etc.

—Global geometric invariant descriptors.
2. High-dimensional geometric and nonshape features:

—Image features: color, texture, etc.
—Bitmapfield: pointer to a file.
—Containment tree.

3. Curves:

FIG. 26. The curve data model.

Each curve is a complex object represented according to the
curve data model. For each curve the data model includes (see
Fig. 26):

—an ordered set of points,
—whether the curve is closed or not,
—the points of the B-spline which was fitted to the curve,
—the information about the invariant reparameterization

(i.e., the values of the invariant parameter for each point),
—the invariant signature values—for each point,Numval-

ues are stored, whereNumis a number of signatures (usually 1,
higher for the multivalued case),

—auxiliary information, i.e., signature maxima, global
curve features, etc.
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