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One of the strongest cues for retrieval of content information
from images is shape. However, due to the wide range of transfor-
mations that an object might undergo, this is also the most difficult
one to handle. It seems that shape retrieval is one of the major
barriers nowadays to image databases being commonly used. We
present an approach for shape retrieval from pictorial databases
which is based on invariant features of the image. In particular we
use a combination of semi-local multivalued invariant signatures
and global features. Spatial relations and global properties are used
to eliminate nonrelevant images before similarity is computed. The
advantages of the proposed approach are its ability to handle im-
ages distorted by different viewpoint transformations, its ability to
retrieve images even in situations in which part of the shape is miss-
ing (i.e., in case of occlusion or sketch-based queries), and its ability
to support efficient indexing. We have implemented our approach
in a heterogeneous database having a SQL-like user interface aug-
mented with sketch-based queries. The system is built on top of a
commercial database system and can be activated from the Web.
We present experimental results demonstrating the effectiveness of
the proposed approach. © 1998 Academic Press

1. INTRODUCTION

elastic sketch matching [3] are usually stable to scaling and rot
tion in a restricted range, but they do not hold for full similarity
and not for the more general affine transformation. The queri
are usually limited to be example-based, where the input in
age is supposed to be a version of one of the database imag
which may undergo scale, rotation, and translation (i.e., sim
larity transformation). However, sometimes the input image ce
be occluded, which makes global features like moments ina
plicable for retrieval. In addition, the user might want to preser
an input image having only part of the shape information, i.e
having only the coarse image structure, omitting fine details. |
some cases the user does not want to present an input imag
all and wants instead to use a logical description of shape fe
tures, e.g., “Give me all the images having three circles and
rectangle with ellipse inside.”

We developed an approach for shape-based retrieval that ai
to cope with the problems described above, mainly the restrictic
of the viewing transformation to similarity, and a requiremen
for a complete, unoccluded input image. We use features, i
variant for a wide range of viewpoint transformations, including
affine and perspective. Shape similarity is measured using ser
local multivalued invariant signatures that allow one to handl
situations in which part of the shape information is missing (i.e

The area of pictorial databases has recently become a subfis&lusion or sketch-based retrieval). To efficiently handle suc

of extensive research. Large databases of images are use€PffS We introduce a data structure, ¢hatainment treethat
different applications including multimedia systems, medic&Xploits the topological structure of the image. This structur
imaging systems, and documents systems. The most comrgRPOrts indexing mostly in sketch-based retrieval. In this p:
form of retrieval is based on image content. For most of the aper We present a series of experiments done on a heterogene
plications, content is defined in terms of three basic componerfigtabase system which we built to test our approach. The s\
color, shape, and texture. This paper concentrates on shdfg! allows us to query images by logical or shape descriptiol
based retrieval. query by example) or by a combination of both. It has an intel
Traditional approaches to shape retrieval, while providirfgce to the Web, providing a convenient user interface. We gi\
good accuracy and efficiency, still suffer from instability as @ brief description of its data model in Appendix A.
result of viewpoint transformations. This follows from the fact The paper is organized as follows. In Section 2 we give son
that the invariance of the exploited features is limited. GlobRRckground on invariants and cover some related works.
characteristics that are commonly used, like the aspect ratioxictions 3 and 4 we present our approach for invariant-bas
circularity [1], are invariant, for example, only to similarity trans!€trieval. Section 3 presents the machinery needed for inde
formation. Approaches that are based on edge directions [2]"& and retrieval with full and partial Shape information, while
Section 4 describesthe query processingitself. Section 5 prese
avariety of results using our approach for retrieving images frol
four different databases. Section 6 contains the concluding t
* To whom correspondence should be addressed. marks.
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2. BACKGROUND AND RELATED WORK is possible to reconstruct the images on the basis of their featu
_ _ sets. Representative techniques include polygonal approxim
Geometric Invariants tion of the object of interest [15], physics-based modeling, an

The subject of viewpoint invariants in vision has develope%“”dpal component analysis [16]. The nonspatial informatior
rapidly in recent years. A simple projective, or viewpoint inPreserving methods extract statistical features that are used

variant, namely the cross ratio of four points on a line, wdliscriminate among objects of interest. These include variou

introduced in vision by Duda and Hart [4]. However, its domaiff@ture-vector-based approaches, such as historgramms and
of applicability was very limited. More general invariants werdariantmoments 2, 17]. Both of these categories extract feature

studied in the nineteenth century and were introduced in tR@S€d On cues, such as color and shape, that may be presen
field of computer vision. There are two main types of invari/ages. , _ _ ,
ants: algebraic invariants and differential invariants. Algebraic S€veral works usglobal numerical attributesor indexing
invariants are based on a global description of the shapes3§}fl rétrieval of shapes. Those features are usually invariant or
algebraic entities such as lines, conics, and polynomials. Diff&fder Euclidean or similarity transformations, limiting the sys-
ential invariants are based on describing the shape by arbitr§{- N QBIC (query by image content) [17] the shape feature
differentiable functions. These methods have been appliedd& Pased on a combination of global features: area, circularit
various vision problems. The algebraic approach was used f&CeNtCity, major axis orientation, and a set of algebraic mo
example by [5] and [6], while the use of differential invariantg&nents. The assumption is that the shapes are ur_mccluded. The
can be found in [7] and [8]. Both methods proved to have alWed shape queries are based on an example image. Chang
vantages and disadvantages. The algebraic method, while simpfth [1] focus on automatic extraction of low-level visual fea-
and easy to implement, is quite limited in the kinds of shap&4'€s such as texture, color, and shape, especially in compress
that it can handle because most shapes are not representabl@¥): /N determining the similarity between different shapes
simple low-order polynomials. The differential method is mor'eY Use higher-level attributes, such as area, orientation, ai
general because it can handle arbitrary curves, but it relies #PECt ratio, as well as intermediate-level representations, su
the use of local information such as derivatives (of quite higil‘? Fourier descriptors and chain code. In the work of this grouy
orders). he mpyt image is generall;_/ allpwed to undergo transformation
This situation has led to the introduction of various kinds ¢fP t0 similarity, and occlusion is not handled. ,
intermediate, or hybrid, methods that try to combine the advan-~nother form of shape description is basedeature points
tages of the algebraic and differential methods. References [&ftected from the image. Pentlasdal. [16] present a shape
[10], and others introduced invariants that contain both derivBl0de! that is based on “interconnectedness” of shape feature
tives and reference points. Each reference point reduces the nfirfl- €d9€s, corners, or high-curvature points. Mehrotraand Ga
ber of derivatives that one needs in order to obtain invariant$2] Use for shape representation a collection of few adjacer
In [11] a “canonical” coordinate system without curve paramér_wteres.t points, like maximum local curvature boundary p0|.nts
terization is used to obtain the same goal. This results in fewdr Vertices of the shape boundary’s polygonal approximation

derivatives and in the capability of using feature lines in addrakinset al.[18, 19] use a boundary description that is base

tion to points. However, in all these methods, the corresponde/{€atures such as straight line segments, circular arc segmer

must be established between the reference points of the two gRd discontinuities. Their work can be distinguished from other
ages that are being matched. by the fact that in addition to global features, local boundary
In this paper we reduce the number of derivatives by usind%atures are exploited._ Howgver, th_e retrieval is impqssible whe
scale space approach [12]. The scale space has to be invariafi$Part of the shape is available (i.e., under occlusion), and th
we cannot use simple Gaussian-like smoothing. Instead, we ragndled transformations are limited to similarity.
on some reference points as a function of the given curve and 42N @nd Vailaya[2] use a histogram of the edge directions as
variable scale parameter. These reference points are notass efeature. The methodis limited to similarity transformatior
to be readily available in the image, as in previous metho@g8d unoccluded inputimage. Del Bimbo and Pala [3] use phys
[13, 14], but are determined from the curve in an invariant wa&?al models of deformations for elastic sketch-based retrieval.
Thus, no correspondence is needed. Using low-order derivative&though content-based retrieval ofimages has been a subje

and our variable reference points, we build invariant scale spatéXtensive research in the past few years, only a few comme
representations of the given curves cial systems support such a retrieval. Illustra [20] provides :

library for storing and managing image data. QBIC [17] offers
content-based image query in conjunction with standard searc
In both cases image similarity retrieval is based on similarity

Jain and Vailaya [2] broadly classified work in the field int@f color and texture between the query image and the databa
two categories on the basis of the approach used for extractingges. However, the results are highly subjective and there
image attributes. Spatial information preserving methods derime intuitive metrics that can be used to decide whether the rest
features that preserve the spatial information in the image andhiiages are in fact those that are most similar to the query imag

Content-Based Retrieval of Images
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Several prototype research image database management gi@ride a measure of distance between two curves, which alloy
tems have been reported in recent years that address the issuto rank images according to their distance from the inpi
of how to index images in which the objects have already begnage. Below we describe the extraction and matching of sut
recognized and tagged with their semantic meaning in orderitwariant signatures.
support retrieval by image similarity [21, 22]. These systems ] . ] ]
are mainly concerned with spatial—relational information angtl- Semi-local Multivalued Invariant Signatures
do not deal with spatial—locational information. The most com- |nyariant signature is a function of a curve, calculated point

mon data structure that is used is the 2-D string. Another d&fgse, and invariant for a given set of transformations. Invariar
structure called the spatial orientation graph is used for Spat@ignatures can be used for recognition of planar curves. T
similarity-based retrieval of symbolic images. In [23] a methoghportant property of invariant signatures is their applicability
that hand|eS quel’les that deal W|th bOth Spat|a|—re|at|0na| ituations Where the input curve iS parna”y Occluded' Hav

spatial-locational data is introduced. The method can deal Wity an invariant signature, curve matching reduces to matchi
the distance between objects. In addition, as part of the pictordgnatures.

specification, the user indicates the degree of desired similar-itjn order to calculate an invariant signature, one should fin

and thus the results are not subjective. The method checks4qpcal invariant for the given set of transformations and app|
contextual similarity by checkingif the symbols in one image agr at each point of the curve. Usually, local invariants are base
pear in the other image, where a symbol is a group of connecigl derivatives of the curve with respect to some parameteriz
pixels that together have some common semantic meaningtjlh. Several approaches try to combine the numerical stabili
contrast, in our work the basic element is a curve. of global invariants with the applicability of local invariants
Our work attempts to overcome three main limitations of thgy cases of occlusion. Our approach follows that presented
existing approaches: a restriction of the allowed viewing trang2, 24, 25]. First, the curve (object boundary), given in arbi
formation to similarity, a requirement for a whole unoccludegtary parameterization, is reparameterized invariantly, using t
inputimage, and a restriction of the queries to be example-baggest possible order of derivatives. Since we want to build th
only. signature reflecting the global invariant geometric features |
the small neighborhood of each point, we have to have the i
3. INDEXING AND INVARIANTS variant measure ofcloseness_ofthe contour points. Itisim_porta

to note that the reparameterization process shoulddzd, in

The purpose of indexing is to support fast retrieval from th@rder to allow us to deal with occluded images.
database. Usually, two requirements are imposed on featuresormally, for a given planar shape transformation Bgt
used for indexing: the features should allow for substantial rB” — R? and for a given curve(t), having an arbitrary param-
duction in the number of candidates from the database, ##igization, the target is to find amvariant reparameterization
a feature-based distance function should exist which suppdr{g) so that ifP(t) andP(f) are related vi®(7) = T, [P(t(D))]
ranking of images according to their distance from the inpthenP(7) =T, [P(r + w)]. In other words, the reparameteriza-
image. tion is invariant if the corresponding points have the correspon
As primitives for shape description we use various geoméfd parameter value, up to some constant cyclic shift.
ric entities. We exploit these entities for filtering the database The equations for invariant reparameterization are obtaine
while searching for a candidate set of images which answeb$ing the differential properties of the viewpoint transforma
query. Features on which the description is based include variéi@§s. Let's define&k™™[x, y |t] £ x™Wy™ — xMy®. The simi-
properties varying from the number of the different geometrl@rity transformation is parameterized using four parameters: ;
entities, their dimensions and positions, to some topological @&19le of rotation, translation vectov (two components), and
lationships. a scale factow > 0. For a given point (vecton), the transfor-
Our approach emphasizes the usegebmetric invariants mationT, : R? —R?is T, (u)=0=aU,u+V, whereU, is a
which provide a good mean for indexing while supporting rankotation matrix
ing. Different features are used for extraction of descriptors that
are invariant under various transformations. U, = [
Note that different applications may allow for different kinds

of invariants. In applications that use images of trademarksy, ine similarity transformation we obtain that
for example, similarity invariants are usually enough. For some

cosw —Sinw
Sinw cosw |’

otherapplications, however, awider set of transformations, affine KL2[x, y|t]

or projective, may be required. The applicability of a certain dr = Tdt

feature for indexing can be adjusted as well to the class of trans-

formations derived from the application at hand. is an invariant, generalized arc length, reparameterization.

Our invariant representation of objects is based mainly onAffine transformation is parameterized in the following
semi-local multivalued invariant signatureShese signatures form: Ty (u) =0 =Au+ v, whereA is a general nonsingular
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(detA| # 0) 2 x 2 matrix. For the affine transformation we ob- TABLE 1
tain that fordr* = |K12[x, y | t]|¥/3dt, d7* = |[K12[X, § | T]|1/3 Local Invariants—Summary
df we haver™ = |detA|Y3r* + . This gives us linear scaled

invariant reparameterization. In the particular ciisA| =1, Desired Locality per
. . . . invariance Local measure sample
the reparameterization is absolutely invariant. Exploring further

the properties of affine transformation, we obtain that Euclidean length 2

Similarity angle, lengths ratio 3

d K2'4[X y ] Affine areas ratio 5

dr= |— IV R —ty * Projective cross-ratio 8

dr*| K23[x, y|t*]%

is a nonscaled affine invariant reparameterization.

Theimplementation of the reparameterization process intendgnder affine transformation, areas are uniformly scaled b
to reduce the influence of the noise. First, the contour is tranfstA. This fact implies that the ratio of areas is affine invariant.
ferred to a parametric form by B-spline approximation. Since Wessuming that an invariant parameterization was already ok
want the spline value at a certain point to depend on the coorgfimed for the curve, we can choose four values fag, , tg,, tr,,

nates of the contour points in a sufficiently large region, so th@,ﬁdfFZ, and calculate at each poiR(r) the ratio of areas,
the influence of a small error in the edge detection is diminished,

we adopted the technique used in [26]. The solution subsamples Area, (Pg,, P(t), Pg,)
the contour, computes the spline values, and averages the results Area, (Ps,, P(7), Pr,)’
for different positions of samples on the contour. So, the first
sampling set consists of eakth point on the contour, the pointswherePg,, Pg,, Pg,, andPg, are defined using locality parame-
next to the chosen ones form the second set, etc. Thus, no infers as for similarity case. This quantity is an invariant signatur
mation is lost, because each point participates in some samplea function of the invariant “arc length”(see Fig. 1(right)).
After the B-spline representation of the curve is obtained, theTable 1 summarizes the various invariant signatures we us
reparameterization is straightforward. The table describes for each transformation the local geometr
The computation of the semi-local signature is based on géavariant that is used for building the signature and the numbe
metric features that stay invariant under the viewpoint transfast localities needed per sample. One can see that as the desi
mation. Under similarity transformation, ratios of lengths, ratidgvariance becomes more general, the number of points involve
of areas, and angles stay invariant. Thus, we can use those invarthe invariant calculation grows.
ants locally to generate signature functions of various types. Af-If the locality parameter set is allowed to be free parameter
ter the invariant reparameterization is completed, the two curvegher than setting them in advance, we obtain a whole ranc
P(z) andP(7) are related by(7) = T [P(T + %o)]. This equa- of invariants at each point rather than a single value (Bruckstei
tion shows that one can compute the ratio of lengths, or teeal.[12]). The signature functions for curves become signatur
angle between, the segments definedRfy (- sg), P(r)) and vectors or even continuum of values, i.e., surfaces or hypersu
(P(z), P(z + sr)) for a priori chosen valuesg andsr (locality  faces. Matching them is less sensitive to peculiarities that ma

parameters). Thus exist at some fixed pre-set value of the locality parameters.
It is important to note that since, in the general case, ther
8[P(z), P(r + s¢)] is no correspondence between the initial points of the curve:
3[P(z), P(r — sB)] the corresponding points on the curves have, after the invaria

reparameterization, the same parameter value up to unknov
and the angle formed by the points as functions affe invariant constant cyclic shift value. This fact adds to the complexity of
signature functions (see Fig. 1(left)). the matching process.

PPl oal 8P (7), Plr+ 1)

P(r — g, (r+sr)
#(7)

P(r)

FIG. 1. Semi-local invariants. On the left, invariants for similarity transformation. On the right, invariants for the affine transformation.
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FIG. 2. Reparameterization inaccuracy. (b) and (d) Present graphs of invariant signature value versus invariant arclength. (a) and (b) Library image
invariant signature. (c) and (d) The transformed library image and its invariant signature. Note the difference of the domains of (b) and (d).
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We designed an effective automatic matching procedushift valuespl andp2 are invariant perimeters, apds a posi-

which can handle images distorted by affine and similarity trantése constant.

formations, and situations in which image is partially occluded. In order to speed up the matching process, we exploit tt
To match two signatures, we map them to the matrices with thiginature histogram. This feature is independent on the sta
number of rows equal to the number of signatures in the multivahg point. The low-dimensional histogram allows for using o
ued signature, and the number of columns equal to the numbeeficient data structures, like R-trees, for the database organi:
the samples. In order to estimate the unknown value of relatitien. First, signature histograms are compared. Only items clo
cyclic shift, we exploit reference points. As a reference point wenough to the input curve are matched using the whole signatu
use the signature extrema. Minimizing the difference betweenThe total difference between the images is taken to be tl
the matrices over all checked shift values provides a measureduerage of the distances between the corresponding curves,
the distance between the signatures.

Values of the invariant perimeters of the same curves, up to 3" vasimal curves / diff (€1, C2)
transformation, may differ due to possible error in the edge de- d(imy, im,) = — i 7
tection process (see Fig. 2). We map the signatures having dif- N

ferent invariant perimeters to matrices with the same number\mf]ereN is the number of compared curves andandc, are

columns and calculate the difference, while taking the diﬁere”ESrresponding curves @, andim,, respectivelly. In orlder to
between the invariant perimeters into account. The differenqgsy pairs of corresponding curves we sort the curves of each i
between two multivalued signatures is given by age with respect to some invariant criterion. In case of similarit
transformation, the curve’s area serves as an ordering criteric
Curves that cannot be sorted by area are ordered by their perir
_ Lev-1 Z’;‘ign_l(l\/linp[i 107 = Min[i1[j])? ters. Under affine transformation, perimeters cannot be used
= min longer; however, the ratio of areas is still invariant and areas c:

shesh Lev > Num be used for ordering.

<max(01, pZ))p The following example illustrates extraction and matching o
min(pl,p2) ) ° invariant signatures. The inputimage (Fig. 3a) is an affine tran
formed version of the library image (Fig. 3b). The extracte
whereNum is the number of signatures in the multivalued sigsontours are presented on Fig. 3c. The contours were extrac
natureLev is the number of sampleslands2are the compared by a tracing and collection process which runs on the resul
signaturesj, = (j +sh)mod Lev,Shis the set of all the checked of Difference Recursive Filter [27-29]. The contours were

(a)

Diff( Sinpo..Num—L Sibo..Num—l)

(b) (c) (d)

FIG.3. (a) The inputimage. (b) The source library image. (c) The contours of the input image (numbered). (d) The fitted contours.
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FIG. 4. Numerical instability of an affine invariant signature. (a) Multivalued affine invariant signdtfjdor curve No. 5 from Fig. 3. The signature is based
on the areas ratio. (bf(t) after putting a threshold. (c) The signaturé {t).

ordered (by area) and invariant signatures were extracted. Wanissing. We handle separately two different cases: partic
use the invariant signature described above—the ratio of areas;lusion and user-generated sketch-based queries. Inboth ca
with four parameters, each having five sample points. While ftite indexing is based on the same geometric features which &
similarity invariants we used the angle, which is relatively statsed regularly. However, the indexing algorithms will be usec
ble characteristic, the ratio of areas can suffer from numeridalaccordance with the appropriate context.

instability. I the pointsP(r — 7g,), P(r), andP(r + ;) (Se€ 55 1 porial occlusion. Partially occluded images are

Fig. 1(right)) become near collinear, the signature becomes L{n-

stable. Figure 4 presents the affine invariant signature for cur\r/((?:ated In the same way as regular images. Since both the ref

No. 5 from Fig. 3. The instability points force us to put a thres rameterization and signature extraction stages are absolutely |

old on the signature values. While the resulting signature (scael’ the signature values for the part of the contour should matc

Fig. 4b) can still be used for the matching process, some FO]B values computed for the whole curve. The only differenc

the information apparently is lost. Another possibility is to exs the need fopartial matching i.e., matching of the occluded

. . ; contour to the part of the library curve. If the input curve is
change the values @f, with tg,, andztg, with tg,, respectively, : L
. . . .7 occluded, we map it to a matrix with the number of columns
and use the signaturg; instead off (t) (Fig. 4c). The matching

results for the trademarks presented in Fig. 3 are presente&)mpomonal to the width of the signature domain. The domair

: . : . {the multivalued signature is the minimal domain of its com-
Fig. 5. Each grey-level map, consisting of five strips, corresponds

to the multivalued signature, while each strip corresponds to tggnents (for open curve, the larger the locality parameter, th

. . ; smaller the signature domain). Thus, the number of columns i
singular signature. Each pair of the grey-level maps preseqs

the signatures of the input (above) and library (below) contours” matrix is
at the shift position giving the best match (the numbering of
the contours is as in Fig. 3c). Good match is achieved for all
the curves. Note, that the signatures of curves No. 4 and 5 are . : . . . .
L . . . herePer;, is the invariant perimeter of the library signature
very similar as the curves are almost identical when going unc%r : ) ?
affine transformation andLev is the number of columns of the library matrix. The
' matrix of the occluded signature is then matched to a part of th
library matrix.
Figure 6a is a rotated, scaled, and occluded version of the |
One of the main advantages of the proposed approach ishtary image presented in Fig. 6b. We use the angt¢, formed

ability to handle situations in which part of shape informatiohy the pointsP(r — sg), P(r) andP(r + sg), as an invariant

—~ Num-—1 .
Lev = Lev % m|51 {|ldomain®)||}/Petip,
=l

3.2. Indexing while Some Shape Information Is Missing

-l e il ™
- o e el ™

(1) (2) (3)

M
[ — |

e ————— . . e i T
T e it s . ", ™

S — |
E— T

(4) (5)

FIG.5. The best match for each curve presented in Fig. 3. Grey-level maps are used for signatures. The curves are numbered as in Fig. 3. Good match is
for all the curves.
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signature (as in Fig. 1(left)). Figure 7 presents the beast matere allow for queries that uses gross structure while omittin
ings between the input and the library curves. The signatutetails (from some level of the tree).
domain is reduced as a result of the occlusion.

In the next example we took a real image, photographed und Algorithm 2
partial occlusion. The extracted trademark part of the imag Flexible sketch matching.
served as an input to the query against the trademarks databg Given: An input sketch S, and a database image /.

The inputimage and the retrieval results are presented on Fig| - Build Ty and 5 as in Alg. 1.
2. Check if T, flexibly matches 7.

3.2.2. Sketch-Based QueriesWe consider sketch-based re-| we define a flexible match in the following manner:
trieval as retrieval that uses the gross Shape structure, while { The containment tree T} for the sketch S flexibly matches the containment tree
fine details can be omitted. For sketch-based retrieval we expl( 7 for the image 1 if:
atopological invariant which we define here that is based on thf 1. 71 is a leaf or
fO”OWing simple and effective invariant property: 2. The number of subtrees of T equals that of 7> and the corresponding

sons of T} and T» flexibly match or

Given the same contour decomposition for an image P ar| 3. The number of subtrees of T, n, is less than that of Ty, but the (n + 1)**
a transformed Imag§¢(P), the contour G of P resides inside son of T, corresponds to a contour which is much smaller than the contour
the contour G if and only if the same relation holds for the | corresponding to the n** son of T, (that is, the ratio of their areas is less
COI’reSponding contours in the transformed image_ This hold than some predefined threshold R), and the first n corresponding sons of T;
for any projective transformatioi, . and T, flexibly match.

In other words, the property that one contour is an inner con-

) A . . A flexible version of this algorithm which allows us to omit
tour of another is a projective invariant given the same con- o :

. . - ~““small sub-contours of the specified sketch is presented
tour representation. This property allows us to represent images

o . . gorithm 2. Changing a threshol& allows us to control the
exploiting the relations of internal—-external between contours,’”. - S
: : . . retrieval flexibility. As the flexibility thresholdR gets larger,
Each image is represented as a tree which we terrodhtain- : . . .
: AR . more candidates will pass the threshold and will match the i
ment tregThis definition is similar to the adjacency graph [33])

The verlices of the tree are curves. For two cur@sandCy, — ©1c S0 B8 H 0 PR VR B8RS (EE00
the edge €, — C,) exists ifC, is insideCy, and there is n€; P )

such thaiC, is insideCs andCs is insideCy. The root of the tainmenttrees of the sketch and the image match according to

tree is a “"dummy” contour which includes all the contours. Th%ppr_oprlate a_lgorlthm, the final verification is performed usin
ultivalued signatures.

representation can easily be obtained after curves extraction (@elx_a

Fig. 9). The representation is unique up to the orderbetween}he lgure 11 presents an_example of sketch-based query. T
. : : ower row presents the distance values for the database iter
vertices on the same level. Thus tree-matching algorithms can

. ; . e can see that the values confirm the intuitive measure of t
be used to compare the representation of the input image with :, . .
. . X . similarity between the sketch and the images.
the library images. This problem of tree matching has a polyno-

mial solution [34]. The discrimination power of the containment

tree is illustrated on Fig. 10. 4. SHAPE RETRIEVAL

Our shape retrieval scheme consists of two main phases:
tering the database in order to drop the irrelevant images, a
ranking thecandidates subsetccording to the distance from
the inputimage. For indexing we use geometric entities, such
circles and ellipses. In our system we detect geometric entiti
from image contours. Circle detection is based on the fact th
the characteristic ratio, which equals the quotient of the area
the curve to the square of its perimeter, is known to be minim:

Algorithm 1

Sketch matching.

Given: An input sketch S, and a database image I,
1. Build a containment tree T, for .S, and a containment tree 75 for I. In each
containment tree the contours on the same level are ordered in descending
order using the area — affine invariant geometric criterion.
2. Check if Ty matches T5.

The match is defined in the following manner:

The containment tree T, for the sketch .S matches the containment tree T, for

the image 7 if:
1. T} is a leaf or e
2. The number of subtrees of T; equals that of 75 and the corresponding /‘SH:,\}
sons of T and T, match. \'\\Sjv@)
; >
We exploit the containment tree for sketch-based retrieval. ( EL) (b) (C)
The matching algorithm is presented as Algorithm 1. The algo-

rithm requires that for each contour of the specified sketch all i 6. (a) The inputimage (occluded). (b) The source library image. (c) Th
sub-contours should be either omitted or specified. In this wayhtours of the input image.
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FIG. 7. Best matches for the curves presented in Fig. 6a. In (1) and (2) best matches for the signatures of the inner contdubsttefrthee presented. In (3)
the best match for the external contour of théetter is presented. (4) The best match for the inner circle. (5) The best match for the external circle.

(1/4x) for acircle. The curve is detected as a circle if its charac
W teristic ratio is close to Mz up to a predefined threshold. The
284 @ 2 detection of ellipses is based on the fact that any ellipse can t
;4 transformed to a circle by appropriate affine transformation. Sc

if we calculate affine invariant signature for an ellipse, it shoulc
be equal to that of a circle, which should be constant since
IPP@ circle is a fully symmetrical image. Thus, we can calculate the

affine-invariant signature described in Section 3.1, setting it
Place | ) s Place o parameters to some prgdefined values, gnq check the differen
0.315 7 i 6213.80 between the obtained signature anddhiori known constant
value. The curve is detected as an ellipse if the difference value
FIG.8. Example of real occluded scene. (Above) The photographed scene, f)gse to zero. The number of these entities can serve for efficie
region containing the trademark, and the extracted contours. (Below) Retrieﬁﬁlering of the image collection. Final ranking within the set is
results. . X . i X i
based mainly on the semi-local multivalued invariant signatures
The number of geometric entities in the image instances provide
an accurate filtering. In order to avoid miss-matches, we allov
the database image to have more entities (circles, ellipses) th
the input image. In addition, the threshold used for entity detec
tion in the input image is tighter than those used for databas
images. Thus, correct database images are not pruned out.
The general scheme of query processing is presented ¢
Fig. 12. After edge detection and curve extraction from the in:
FIG.9. The inputimage after curves extraction is presented on the left. TR&It image, geometric entities are detected. This global featul
containment tree, representing the containment relationships between the cu@xtraction is used as a basis for the filtering process. Relation
is presented on the right. For each subtree, the corresponding curve and aliiigabase (see Appendix A) is used in this stage in order to re
internal curves are presented. trieve the candidates subset. Features used for indexing to t
relational database and eventually for pruning the candidate s

vary from the number of the curves and the geometric entitie:

their relative dimensions, etc. The relational database include

@ @ alphanumerical data as well. The query may contain this kin
‘ of information, like the organization name (for the trademarks

(@) Ll () ) (e) database), and this part of the query will be processed as a re
FIG. 10. The discrimination power of a containment tree. (a) and (b) Twljlar query (further pruning the set). The candidates obtained

images having the same containment tree. (c) The containment tree of ?E}J.S stage 901:0 amatchipg_wit_h the input im_ag_e- Thefinal set, o
(d) The image has the same number of curves as in (a), but a different céi¢red according to the similarity measure, is given as an answe

tainment tree. (e) The containment tree of (d).
@ @ feature extraction and present typical processing times. Table
: ' presents average reparameterization time, average time sp
0.598 0.604 11.00 15.386 for computing signatures, average depth of a containment tre
and average fan out. The quantities are averaged over grou
FIG.11. Sketch query example. The input sketch is on the left. of images having a certain number of curves. The number c

Kodalk [

4.1. Computational Considerations

In this section we discuss the computational complexity o
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Input image

( 3

Fragmentation Contours

Preprocessing and ]

Edge detection extraction
- J
YN

Global features
extraction

|

—
Indexing and

matching via

global features
and alphanumerical
descriptors

Recognition via

Output

signature

matching

Invanant
reparametrization
and signatures

extraction

Candidates
subset

Reparametriza-
tion

TABLE 2
Computational Considerations

and
recognition

FIG. 12. Query processing.

nodes in the containment tree is equal to the number of curv
in the image. Note that both the average depth and fan out ¢
low, providing efficient containment-tree-based retrieval. Mos
of the computing time in the feature extraction process is spe
on the reparameterization, which involves B-spline calculatior
However, for the database images, the computation is done c
line (see Fig. 26, Appendix A). The only reparameterizatiol

Averagdhat is done on-line is of the input image, and this is done onl
fan out once.

Average Average signature
reparameterization computation Average
No. curves time time depth

1 2.60 0.12 1.00 0.00
2 2.74 0.14 1.38 1.00
3 2.90 0.19 1.60 1.50
4 5.74 0.24 1.50 2.00
5 3.43 0.27 2.25 1.93
6 4.76 0.32 243 1.50
7 6.10 0.39 2.17 2.67
8 5.71 0.39 2,57 2.75
9 4.89 0.43 2.40 2.56
10 5.25 0.46 2.33 2.23
11 10.98 0.49 2.17 3.33
12 8.40 0.59 4.00 2.62
13 8.07 0.64 1.50 2.67
14 6.09 0.52 2.33 3.00
15 7.05 0.65 2.75 4.67
16 6.20 0.55 2.67 3.67
18 6.28 0.53 3.00 2.50
19 7.76 0.75 3.00 2.50
20 9.72 0.88 2.46 4.16
Overall 5.89 0.44 2.26 2.86

Note For the trademark database sorted by the number of curves, averﬁq
reparameterization time, average time spent for computing signatures (bot
seconds), average containment tree depth, and average fan out are presented;

The computational complexities for various stages in the prt
cess are as follows. The reparameterization complex@yf ¢ x
ord?), whereN is the number of points over the curve aomd
is the spline order (typically 6). The signature calculation com
plexity is O(N « Nun), whereNumis the number of signatures
in the multivalued signature. The containment tree matching &
gorithms (Algorithms 1 and 2) hav@(C) complexity, whereC
is the number of curves in the image.

5. EXPERIMENTS

To show the applicability of our approach we tested it firs
on a database of 500 constrained 3D objects, nhamely surfa
of revolution. Using the KBS bottles collection [32] we presen
queries showing good retrieving ability for a specific, and sim
ilar, objects. The effectiveness of the filtering process and tt
ability to handle different transformations are demonstrated |
the second part in which a UMD [33] database of 100 trade
! Srks is tested. We give results for sketch-based queries ol
QMQ [33] database of more than 300 “road signs.” To shov

quantities are averaged over all the images having the same number of cur3€. Scalability of our approach, as well as retrieval results for
The last row presents the results averaged over the whole database.

combination of various databases, we added a database of ak
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1100 contours of images of marine creatures used by SQU — =

system [34], and tested the system on combination of the fo — q A |
databases together. The section is concluded with performai ’f’a "
evaluation. For all four databases we used the same syst¢

One may note that our system performs best with structured ¢ (a.) (b) (c) (d) (e)

mains such as trademarks and road signs images. The systeris

implemented using the ORACLE/SQL environment and has @iG. 14. (a) The best match for the input image. (b)—(e) Retrieval results.

WWW interface. The user is allowed to query images by exam-

ple, logical description, or the combination of both. The example

image can be the database image or the image provided bynimare than 100 trademarks. In the first example (Fig. 17(1)), th

user. inputimage is a rotated and scaled version of one of the databa
trademarks. The user operated with the query

5.1. Invariant Signatures for Surfaces of Revolution

An interesting practical application field for multivalued sig- selecttitle ordered by dist(logo30-trans.tiff)

natures is recognition in a database of 3D objects which are where (context = text).
surfaces of revolution (see also Munelyal.[35]). We can treat

such objects as planar under a controlled change of the viepre query looks for images having textual strings in them. Bott
point (which is common in industrial settings, e.g., in assembljphanumerical information and geometric features are used ft
lines). In this case, we can approximately describe the viefiitering the database. Exploiting geometric features is especial
point change by affine transformation and apply our algorithmgifective for images with a large number of curves, becaus
In our experiment, the database contains more than 500 iteghsheir complicated structure. One can see that the number

some of which are photographed objects that are surfaces of re¥ndidates is rather small. In the following example (Fig. 17(2))
olution and the rest are bottles from the KBS bottles collectiqRe user operated with

[32]. Given an input image (one of the database objects under
rotation and zoom), we compared it with the database by using select title where (Ncircles= 1 and N_curves
multivalued signatures. Figure 13 presents an input image, its )
external contour, and its multivalued invariant signature. This > N_curves (logo55.tiff))
input image was checked against all the images in the database.
A good match was achieved retrieving the right database imadjeectly specifying the number of geometric entities (circles).
in the first place. Figure 14a presents the grey-level maps of filee input image is one of the database trademarks. One can s
input (above) and the database (below) contours at the shift plwat the candidates comply with the given condition. The use
sition giving the best match. Retrieval results are presented nbas the freedom to limit the transformation which the image:
(first four of the set). Figure 15 presents a number of queriage allowed to undergo by stating the transformation explicitly
performed using the surfaces of revolution database. in the query. In the next example (Fig. 17(3)), the user limitec

Figure 16a presents our HTML interface. The input scene atlee transformations to the affine case, operating with the quer
the processing results are presented in Fig. 16b.

select title ordered by dist(logo50-transt.tiff) under affine

5.2. Filtering the Candidates Set

i he effective filteri btained b .. Both the filtering and the ranking are based on features that a
Next we illustrate the effective filtering obtained by using Nivariant under the affine transformation. The input image is al

variant features. We run our queries on a database which contayps|,ded version of one of the database trademarks

The next example presents sketch-based retrieval (Fig. 17(4
The sketch was drawn using curves-drawing software (Xfig)
Here we allow the omission of some small objects within the
image, while preserving its general structure. In this case w
used Algorithm 2 for filtering the database. The various stage

// for creating the sketch are presented in Fig. 18.
IR Note that in all the examples the number of the images i
i) M2 the candidates set is sufficiently smaller than the number of th
items in the database. The filtering is still effective even wher
(a) (b) (C) occlusion is present (see, for example, Fig. 17(3)). When the fil

tering is based on the containment tree we expectitto be more e

FIG. 13. (a) The input image. (b) The external contour of the input imagd€Ctive (see, _for (_axample, Fig. 17(4), where only four candidate
(c) The invariant signature for the input image. passed the filtering).
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Input image Retrieval results

i

FIG. 15. Results of queries on the bottle database.

FIG.16. (a)Querying the database using HTML interface. (b) The inputimage and processing results. (c) The grey-level maps, presenting multivalued sic
above, the map corresponding to the input image; below, the map, corresponding to the image which took the first place.
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FIG. 17. Query results.
5.3. Sketch-Based Queries 5.4. Experiments with a Combination of Different Databases

Figure 19 presents a number of sketch-based queries and rén these experiments we illustrate the scalability of our ap:
trieval results. In addition, we present the queries in SQL-likroach. For this purpose we added a database of about 11
notation (see Appendix A). The queries are performed on thentours of images of marine creatures used by the SQUID sy
database of “road signs,” containing about 300 images. Afteem [33]. Figure 21 presents the results of a simple query o
filtering based on Algorithm 1 or 2, the candidates passed matthis database. Next we present an experiment of retrieval usir
ing with the input sketch, based on invariant signatures. For eadhthe images from our four different databases (a combinatio
query, the resulting candidates set contains no more than 15 that includes more than 2000 images). Figure 22a presents tl
ages. One can see that the distance measure reflects the similamityt image. Figures 22b—22e present retrieval results obtaine
between the sketch and the candidate image. against the union of the four databases.

In the next experiment we checked sensitivity of the sketch-Figure 23 presents an example of retrieval using two date
based queries to deformations. Figure 20 (left) shows the tses, namely the trademark and sign databases.
havior of the retrieval process when the input sketch (the same
as in Fig. 17(4)) passes graduate deformation. One can see g1§t
the results are quite stable, and the first two places don’t change.
Figure 20 (right) shows how the error behaves as the input sketclin this section we used the combined database which ir

Efficiency Analysis

deforms. cluded both the database of the trademarks and the “road sign
.mlrx:.:l:-t? :\:‘ :::..... ---A.: Fils... .u—-... mimlw::":": ‘DEyD E .‘;‘T:’.;_;\,_.TT::.:;. s -;" i :‘:—‘:-::GE‘DW r-‘.'“: ...::::",what;...
S 3= S T
6 =
als Yaha( i =
AN

=l % Y y =2

1 - : =
','_._ ; . B L B

(a) (b) (c)

FIG.18. Creating an input sketch for the query in Fig. 17(4) using Xfig. (a) Basic elements, including a control polygon for the central element. (b) Interm
stage. (c) The final sketch.
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Input
Retrieval results
sketch
i é ) # v { +§q'.
[ on | - TR @ _, ~
0.072 0.251 0.816 6.08 20.71 106.24 928.02
select image sorted by sketch(093X) where (method = flexible)
0.048 0.321 1.97 2.52 40.17 85.09 121.93 442.10
select image sorted by sketch(093R)
i =)
0.053 0.821 8.23 10.01 30.68 35.12 90.14 112.65
select image sorted by sketch(097Q) where (method = flexible
and flexibility=0.1)
FIG. 19. Results of queries on the “road signs” database.
Input 1mage Retrieval results _ Error Plot
p— Emor ; : !
i ‘.:_ 1= 1 T
@ N |
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0.526 0.919 0.961 7
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FIG.20. Sensitivity of the matching to shape deformation. (Left) Retrieval results. (Right) The error plot. The lowest graph represents the error for the firs
the second graph represents the error for the second place, etc.

Retrieval results

[ ) J
[T V\“w""'"ff’/

FIG. 21. Results of a query on the marine creature database. (a) The input image. (b)—(e) Retrieval results.
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TABLE 3
Input . . .
. Retrieval results The Number of Retrieved Images as a Function
image of the Flexibility Threshold R

=

b At — n = =

(a) (b) | (o) [(d)] (e) 0.02

..,

2 4 10

3 6 12

) . ) . 0.04 6 15 18

FIG. 22. Experiment with four databases. (a) Input image. (b)-(e) Retrieval 0.08 10 16 18
results. 0.16 14 25 20

Note. For the presented input sketch, the number of

Figure 24a presents the average processing time (averaging on ~ 'etrievedimagesis given for different valuesrf

100 queries) for a query as a function of the number of the curves

in the inputimage. The upper curve corresponds to a sequengitivalued invariant signatures have been used for ranking tr
matching, i.e., a full signatures matching against the entriesjAswers. The substantial reduction of the candidates set due
the database. The middle presents average processing timgHgfiltering stage guarantees the efficient retrieval. The approa
a query using the number of geometric entities for pruning th@nports image retrieval while part of the shape is missing, ca
database. The lower curve corresponds to retrieval using the cRBndle images distorted by different viewpoint transformations
tainment tree. The middle and lower curves are nonmonotonigyd can flexibly answers queries based on logical description
a direct consequence of a tradeoff between a shorter query &fape (query by example), or combination of both.

cution time as a result of the pruning and the extra time neededy,e have implemented our approach in a heterogeneous da
for matching more signatures. The graphs demonstrate that gggse system having a SQL-like user interface augmented wi
metric entities and especially the containment tree are effectiygatch-based queries. The system is built on top of a commerci
means for database pruning and their efficiency grows with thgtapase system (Oracle) and can be activated from the Web. \

number of contours. have presented experimental results demonstrating the effectiy

Figure 24b demonstrates the scalability of our approackess of the proposed approach under various conditions usi
Queries have been run to retrieve an image from a subsetfee different databases.

the database. The queries used the number of geometric entities
for pruning the subset. When the subset grows, processing time
increases approximately as a linear function.

Table 3 illustrates the influence of the flexibility threshétd 5o implemented the database asahject-orientedin ac-
(see Algorithm 2) on the number of retrieved images forSketC@c')rdance with the definition in [36]. A database entry has «

based retrieval. The number of the answers depends on the CBH}hplex structurea direct result of the image features we use.

plexity of the input sketch. An imagedata type is a complex object, which includes, in a
nested structure, different data types. Some of these objects ¢
themselves complex, like @ntainment treer a curve Each

6. CONCLUSIONS database entry includes, in addition to the geometric feature

APPENDIX A: THE DATABASE

In this paper we have addressed the problem of shape-based
retrieval from image databases. Our approach emphasizes *'mul Proceving time ersas the umber of srven Procesing me ersasthe umber of s o he dfsbse
use of invariants as shape descriptors. Specifically, we have us ., "

geometric invariant features for efficient indexing, while loca o 7/
- /
- - /
// o
.I nput Retrieval results =
mage /"\ 1 o
NVANYEANEENA -
@ @ = | wBk | o | o -a =/ |
W = W, ~ I R R N L
(a) (b) (c) (d) (e) (a) (b)

FIG. 23. Experiment with trademark and sign databases. (a) Input imagelG. 24. (a) Average evaluation time versus a number of curves. (b) Scalabil
(b)-(e) Retrieval results. ity: Processing time versus the number of database items.
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Each curve is a complex object represented according to t
curve data model. For each curve the data model includes (s

|

Global geometri
Descriptors invariant Context
descriptors

Image features
(Color, texture)

of circles. cllipses,
straight lines

ues are stored, wheMumis a number of signatures (usually 1,
higher for the multivalued case),

—auxiliary information, i.e., signature maxima, global
curve features, etc.

elations
between
global feature;

Pointer to
a bitmap

“Internal-external”

tree

FIG.25. The image data model.

some alphanumerical information. This information allows for
textual-based querying, in addition to, or in combination with,l'

content-based retrieval. The alphanumerical data and the low-

Fig. 26):

—an ordered set of points,

—whether the curve is closed or not,

—the points of the B-spline which was fitted to the curve
—the information about the invariant reparameterizatio

(i.e., the values of the invariant parameter for each point),

—the invariant signature values—for each pokiimval-
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