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Abstract

If a robot has to repeatedly perform
navigational tasks in a complex en-
vironment, it can improve its perfor-
mance by “learning” the layout of the
environment. This paper is the first ofa
planned series on navigational applica-
tions of learning. It deals with a “street
network™ environment, modeled by a
graph embedded in the plane; and with
a “taxi-driver” agent which initially
finds a path to its destination, and af-
terwards tries to find shorter paths to
it. Fora class of graphs that correspond
to planar mazes, we compare several
basic search strategies for finding the
destination; we show that once it has
been reached, a much shorter return
path can usually be found; and we also
define a simple path-shortening strat-
egy that searches for shortcuts in given
paths. Finally, we discuss types of par-
tial information about the environment
that might be especially useful to store
if the agent has limited memory.

1 Introduction

Iinagine that you suddenly find yourself driving
a radio-dispatched taxicab in a totally unfamil-
iar city. The city has no street signs or other
distinctive landmarks, and vou do not have a
map, but fortunately your taxiis equipped with
a radio link to the Global Positioning System,
so vou always know the coordinates of your
position.!  Furthermore, the dispatcher always
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"After writing this introduction, we discovered that
a very similar scenario is described in [Blum and Cha-
lasani, 1993).

identifies passenger pickup spots, and the pas-
sengers identify their destinations, by specifying
their coordinates. Unfortunately, the street pat-
tern in the city is very complex—not at all like
a regular grid; thus even though you know your
current coordinates and the coordinates of your
destination, it isn’t at all obvious how to get to
the destination. The first time you are given a
destination, you can try to drive toward it, but
you may soon discover that the city streets run
at odd angles, are curved, and have many dead
ends, so you are often forced to backtrack.

Luckily, you have an excellent memory, and
can recognize (by their coordinates) places
where you have already been; this allows you to
avoid repeating the same mistakes while search-
ing for destinations. In fact, if you wish, you can
memorize a complete description of the parts of
the street network on which you have driven.
Evidently, you may then be able to use the
memorized information to shorten later searches
that involve previously visited parts of the net-
work. If you are sent to many different desti-
nations, you will eventually have visited a large
fraction of the network; this will often allow you
to “plan” (and then take) a short path to a des-
tination without having to search for it at all.

If you have perfect, unlimited memory (where
retrieval of information from memory, and com-
putations performed on this information, take
negligible time and effort), and if your job will
require you to go to many different destina-
tions, it evidently makes sense for you to sys-
tematically build up, as you drive, a “com-
plete” representation of the part of the network
that you have visited so far. [For example,
you could construct a matrix whose rows and
columns correspond to street intersections and
dead ends (“nodes”), identified by their coor-
dinates, and where if two nodes are joined by
a street, the matrix specifies the distance be-
tween them along the street; this represents the
street network as a graph with labeled nodes
and weighted edges.] On the other hand, if
you will usually need to go only to a few des-
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tinations (hotels, stations,...), or if your mem-
ory capacity and memory search time are lim-
ited, it may make more sense to memorize the
most frequently needed paths (e.g., stored as se-
quences of turns and street lengths), and to use
search (as you did when you were a new driver)
only when you have to find unusual destina-
tions. Note, however, that even if you have only
a limited set of destinations (e.g., your taxi is a
“shuttle” which only needs to go back and forth
between two points), you still need to search for
destinations initially, and even after you have
found them, you can still use search to look for
shorter paths.

Our taxi driver scenario is a paradigm for a
general class of problems dealing with a mobile
agent that operates in a complex environment,
and needs to (repeatedly) go from its current
position to a specified destination; this is evi-
dently a basic navigational task. We gave our
agent an absolute position sense, so it would not
have to use other types of sensory data (e.g.,
vision) to identify goals, landmarks, etc. (Obvi-
ously, we do assume that the agent uses sensory
data to follow the streets, detect intersections,
make turns, avoid collisions, etc.; but these as-
pects of navigation are not of interest to us at
the moment.) Our basic problem is: How can
the agent “learn” the structure of the environ-
ment, in order to simplify the task of finding fu-
ture destinations? In this paper, the agent is a
“taxicab” which always knows its position, and
the environment is a network of “city streets” (a
planar graph, which we will further restrict in
our experiments to a class of mazes with walls
piecewise parallel to the coordinate axes). Ev-
idently, however, we could have allowed other
tvpes of networks (a road network that has over-
and underpasses, or a network of caves or sewer
pipes, which can correspond to an arbitrary
graph, or a network in which streets can be one-
way, corresponding to a directed graph); or we
could have posed essentially the same problem
in other tvpes of environments (e.g., a region
of two- or three-dimensional space containing
pelygonal or polvhedral obstacles) or for other
tyvpes of agents (e.g., agents that can climb or
jump, or that can use sensors of various types
as aids to navigation).

In this paper we consider the following ques-
tions about an agent that has to find destina-
tions in a network (specifically, a maze):

a) How can the agent find its first destination?

b) Il the agent can remember every part of the
network that it has already visited, how can
it use this knowledge to find new destina-
tions, or shorter paths to old destinations?

¢) If the agent has limited memory, what infor-
mation about the network should it memo-
Lo
rize’

Graphs (and mazes) have been

used by
authors as a framework for theoreticajl' rsn‘:n
ies of navigation. Algorithms for 5ystematje

traversal of a graph (which can be regarded ag

another basic navigational task: “patrolling",
are well known (e.g., [Even, 1979): sce [Den

and Papadimitriou, 1990; Betke, 1992] for r:
cent work on economical traversal of all the
edges in a directed graph). Trave
a classical problem [Lucas, 1882; which contin.
ues to be studied (e.g., [Blum and Kozen, 1978.
Fraenkel, 1970]). Work on destinetion ﬁndimg1
has dealt primarily with mazes (o1 planar re.
gions that contain obstacles of simple shapes);
for a review of this class of search problunn;
see [Huang and Ahuja, 1992], and for other
recent examples see [Papadimitriou and Yan-
nakakis, 1991; Blum et al., 1991; Zelinsky, 1992;
Balch and Arkin, 1993; Lumelsky and Tiwari,
1994]. Very little work seems to have been done,
however, on learning to improve performance in
destination finding; an exception is a recent pa-
per by Blum and Chalasani [1993], which deals
only with axis-parallel rectangular obstacles in
the plane.

In Section 2 of this paper we describe search
algorithms that the agent can use to find des-
tinations, and we illustrate the performance of
these algorithms on a class of planar mazes. In
Section 3 we describe methods that can be used
to find short paths, or shortcuts in a given path.
Section 4 discusses planned extensions of our
work; in particular, it suggests types of partial
information about the environment that could
be useful to an agent that has limited memory.

2 Robotic graph (and maze) search

Since the agent initially knows nothing about
the layout of the graph, to find its destination
for the first time it must use a search algorithm
that is capable of visiting every node of the
graph. Evidently, standard graph traversal al-
gorithms [Even, 1979] can be used for this pur-
pose. However, such algorithms take no advan-
tage of the fact that our street-network graph
is embedded in the plane, and that the agent
always knows its own coordinates and the coor-
dinates of its destination (“goal”). This knowl-
edge allows the agent to use search algorithms
that attempt to reduce its (apparent) distance
from the goal, defined in terms of coordinate dif-
ferences. In our experiments, the graph repre-
sents a maze whose walls are everywhere parallel
to the coordinate axes, so that the “city block
(or “Manhattan”, or Ly) distance |z —a +y bl
is a lower bound on the distance in the maze
between the position (z,7) of the agent and the
position (a,b) of the goal.

“Heuristic” graph search algorithms that try
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to find a goal node in a graph by attempting to
reduce an estimate of the distance to the goal
have been extensively studied in the Artificial
Intelligence literature [Pearl, 1984]. However,
these algorithms allow the search to “jump”
from one part of the graph to another, e.g. to
shift the search to whichever (known) node has
minirnum estimated distance to the goal, even
if this node is not adjacent to the current search
position. A “robotic” agent, on the other hand,
operating on a “real” graph, can only make
moves between neighboring nodes. In this sec-
tion we consider only graph search algorithms
that take this limitation into account.

As a “baseline”, we use a standard method
for searching graphs called Depth First Search
[Even, 1979T, referred to below as DFS. Start-
ing from an initial node s of the graph, DFS
searches for a desired goal node ¢ in accordance
with the following pseudocode:

proc DI'S(v)
mark v visited
If v #t then
for each w adjacent to v do
if w is not marked visited
then DFS{w)
end for
return
else break
end proc

The initial call is DFS(s). Note that we must
examine the nodes adjacent to v in some order;
we choose as the “next” node w the first un-
marked neighbor of v that we find.

DFS does not specify the order in which we
should examine the neighbors of v after making
the call DFS(v). Our next algorithm, called D-
DFS (for “Directional DFS”), uses coordinate
information in choosing this order. Specifically,
it gives priority to the neighbors of v whose I,
distances from ¢ are smallest. Note that in a
Cartesian grid, a node v can have two neighbors
that are closer than » (in [, distance) to t; one
of these neighbors has a smaller z-coordinate
difference |z — «f, and the other has a smaller
y-coordinate difference |y — bl. D-DFS chooses
the neighbor which reduces the larger of the two
differences; ties are resolved arbitrarily.

An alternative method of assigning an order-
ing to the neighbors of v takes advantage of the
fact that we know the directions to the neigh-
bors. This allows us to use the classical maze-
solving strategy in which, as you explore the
maze, you keep your right hand on the wall.
[This strategy works well when we know that
the start and goal nodes are both adjacent to a
common wall (such as the boundary wall of the
maze). If they are not, we can build an “imagi-

nary” boundary wall that has the start and goal
nodes (say) in opposite corners, and explore the
maze in such a way that we never cross this
imaginary wall. This strategy will work, pro-
vided the start and goal nodes belong to the
same connected component of the maze even af-
ter the wall is built. It has the advantage that
we do not need to memorize the coordinates of
the nodes that we have already visited; it is a
memoryless strategy. It also allows us to avoid
exploring certain types of “dead ends™, which
can be identified when the path approaches the
wall, as illustrated in Figure 1.] We can use a
similar strategy to explore a graph whose nodes
are embedded in the plane, by always examin-
ing the neighbors of v in counterclockwise order,
starting from the edge along which we reached
v. We shall call this algorithm RHW.
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Figure 1: Shortcutting an RHW path
at a dead end.

In D-DFS and RHW, the only possible choices
for the “next” node are the neighbors of the
“current” node. We next describe a generaliza-
tion of D-DE'S which we call RA* (for “Robotic
A*"); we have not yet implemented this gen-
eralization because an efficient implementation
would require an efficient algorithm for updat-
ing all the shortest (known) distances between
pairs of nodes each time a new node of the graph
G is visited. Specifically, let the current node
be v, and let G’ be the graph consisting of all
the nodes and edges of (G that have been vis-
ited so far. For every node u of G’ we com-
pute the shortest distance g(v,u)in G’ between
u and v, and we also compute the L distance
h(u,t) between u and the goal node. RA* then
chooses as next node a node u which minimizes
g{v,u)+h(u,t),or perhaps a linear combination
of them. [Note that since we are dealing with a
“real” robot on a “real” graph, we cannot sim-
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ply “jump to” the node u that minimizes h(u,t);
we must take into account the cost g(v,u) of
getting to u from v.]

A maze can be represented by a binary digital
image in which the walls are composed of black
pixels (unit squares). To represent a maze by a
graph, we take the white pixels to be the nodes
of the graph. Two nodes have an edge between
them if the corresponding pixels share a com-
mon side. Note that in this graph, each node
has degree at most 4; the possible directions to
the neighbors of a node are east, west, north,
and south, corresponding to differences of +1
in the - and y-coordinates of the pixels.

To construct mazes for our experiments, we
first created “dense” mazes using the public-
domain PC program MAZE. Such mazes typ-
ically allow only one path from the start to the
goal. We then made these mazes less dense by
randomly changing pixels from black to white.
Examples of such mazes of size 75x 75 are shown
in Figure 2. In Figures 2a and 2b, 5% and
15% of the original black pixels were changed
to white, respectively.
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Figure 2: Examples of mazes having

two different “densities”.

We tested DFS, D-DFS, and RHW on a set

of mazes of size 200 x 200. We §

five dense mazes, and then ranndomﬁzlc Cir:ated
5%, 10%, and 15% of the black pixels tq wrllusfq
this gave us five examples each of magzes th e{
had three different “densities”. The start anad
goal nodes were always the cells in the south-
west and northeast corners of the magze, Fig-
ure 3 shows examples (displayed as dark grag)
of the sets of nodes visited by the three alps
rithms while searching for the goal in mazes
of size 75 x 75, for two of the maze densitjes.

(The lighter-gray paths in Figure 3 will be ox.

plained in Section 3.) The efficiency of a search
algorithm is measured by the number of searcl,
steps that were needed to find the goal; aver.
ages of these numbers for the five mazes of sjze
200 x 200 for each search algorithm and eacl,
maze density, are shown in Table 1. As the ta-
ble shows, RHW performs much better for dense
mazes, but D-DFS catches up as the maze be-
comes less dense.

Table 1: Average number of search steps to
reach the goal in mazes having three different
densities, using three search algorithms.

Percentage of black pixels
changed to white

Algorithm | 5% 10% 15%
DFS 13036 7142 | 6554
D-DFS 10077 1800 | 813
RHW 1733 1221 | 856 |
moves

3 Path shortening

As soon as the agent reaches the goal node, it
can use the information about the graph that it
acquired while searching for the goal to find a
much shorter path back to the start node. Let
(' be the part of the graph that the agent has
visited; then the agent can—*“in its head”, with-
out moving—apply a breadth-first search (BF5)
algorithm to find a shortest path in G’ between
the start and goal nodes. This “return” path.
which is shown in light gray in Figure 3, will
usually be much shorter than the path taken
by the agent in searching for the goal. Table 2
gives the average lengths of these paths for the
sets of examples treated in Table 1, as well as
the average lengths of the true shortest paths
from start to goal in these mazes, obtained by
applying BFS to G. It should be pointed out
that the bigger G’ is (i.e., the more exploration
was needed to find the goal), the shorter will be
the return path in G".

We now address the issue of still further
shortening the path when we next actually tra-
verse it, by exploring in its vicinity for possible
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Figure 3: Nodes visited while searching for the goal in mazes of size 75 x 75 having two densities,
using three search algorithms. (a,d) DFS; (b,e) D-DFS; (c,f) RHW. The upper (lower) maze in
each column was generated by randomly changing 5% (15%) of the black pixels to white.

Table 2: Average “return” path lengths for the
six cases in Table 1, and average true shortest
path lengths for the three sets of mazes.

Percentage of black pixels
changed to white

Algorithm 5% 1 10% | 15%
DFS 908 | 775 | 628
D-DFS 1005 | 761 | 642
RHW 1232 | 975 | 746

BFS (in G) ‘
(True shortest path) 642 | 470 | 418

shortcuts. Natural places at which to look for
shortcuts are segments (v;,...,v;) of the path
(v1,...,v,) for which the arc length 7 —¢ is high
and the L; “chord length” h(v;, v;) is low, since
such segments can potentially be significantly
shortened (provided the endpoints of the seg-
ment are not on opposite sides of a long piece
of wall),

We applied this method of path shortening
to the return path found after RHW was used

to find the goal in one of the “15%” mazes
of size 200 x 200. RHW generated relatively
small G’s in these sparse mazes, so that the re-
turn paths were relatively long (see Table 2),
and could thus especially benefit from further
shortening. We considered all path segments
(vi, .. .,v]-g) such that h(v;,v;) <5and j—1 > 15
and such that the pixel adjacent to v; in the
direction toward v;, and vice versa, was not
blocked by a wall.

Figure 4 shows “closeups” of two such seg-
ments of the return path that were judged to
be the best candidates for shortening; they have
arc lengths 30 and 20, respectively. Asindicated
in Figure 4, both of these segments can indeed
be shortened considerably—in fact, they can be
replaced by arcs of lengths 4 and 8, respectively.
[It is not hard to see that these shortcuts are the
same as the paths from v; to v; that would have
been found by D-DFS; other search algorithms
could also be used to find the shortcuts.]

It should be pointed out that if the agent ex-
pects to make very few trips, finding shorter
paths may be of little benefit to it, since the ef-
fort spent in searching for a shorter path may be
greater than the effort required to take a longer
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Figure 4: Shortcuts found in two segments
of a return path.

path. On the other hand, if the agent expects to
make very many trips, even a small amount of
path shortening will pay off; in fact, it would be
worth the agent’s while to systematically tra-
verse the entire graph and determine shortest
paths to its destination(s), since these paths will
be used many times, whereas the “overhead” of
graph traversal and shortest path determination
is incurred only once. Thus searching for shorter
paths is of interest primarily when the expected
number of trips is not very large, and this in
turn limits the amount of effort that should be
spent in the search.

4 Future directions

Evidently, the ideas discussed in this paper can
be extended in many directions. As pointed
out in Section 1, the problems considered here
can also be posed in many other types of do-

mains, involving various classes of agents that
have to perform various types of navigational
tasks in various types of environments. FEvep
for the specific choices of agent, task, and envi-
ronment considered here, other types of search
algorithms (e.g., RA*) could be investigated. It
would be of interest to characterize the expected
performance of all these algorithms on various
classes of mazes or graphs.

Path shortening heuristics should be system-
atically investigated; here too, it would be of
interest to characterize their expected perfor-
mance on various classes of graphs. It would
also be desirable to extend the theoretical re-
sults of [Betke et al., 1993] and [Blum and Cha-
lasani, 1993] to our more general class of envi-
ronments.

An especially interesting direction for future
investigation is the study of how agents that
have limited memory capacity can learn to nav-
igate. Memory limitations may account for the
navigational strategies used by various kinds of
animals, particularly insects (e.g., [Wehner and
Wehner, 1990]); and they may also be help-
ful in explaining human performance on com-
plex navigational tasks in strange environments
(e.g., [Elliott and Lesk, 1982]). We have not yet
attempted to formulate models for animal or
human navigational performance based on such
considerations, but in the following paragraphs
we suggest some tools that a limited-memory
agent might use in finding destinations.

If the environment is large, and the agent
has a limited amount of memory, 1t may not
have the memory capacity to store information
about the entire environment, or even about
the portion it has traversed. In such a situ-
ation, a possible strategy for the agent is to
store a “spanner” of an appropriate size. A c-
spanner of a graph G is a sparse spanning sub-
graph H with the property that the distance
between any pair of nodes in H is no more
than ¢ times the distance between them in G.
Thus H is a “sparse” representation of (G that
encodes “approximate” shortest paths between
every pair of nodes of G. For recent results
on graph spanners see [Althofer et al., 1993;
Chandra et al., 1992]. The main result is that
if ¢ =1+1, any graph G has a spanner with at
most O(n!*+1) edges.

Another possible strategy is to partition G
into a union of “neighborhoods” Ny U ... U Ny
such that each neighborhood has limited size
and limited radius {with respect to some cen-
tral vertex v;); the size and radius might be
functions of the size of G. Such a neighborhood
decomposition of G can be used as an approxi-
mate “map” of G. We memorize all the shortest
paths (or build a spanner) between the centers
of the neighborhoods. We can then find a path
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from s to t by first finding a path from s to the
center of its neighborhood; then taking a short-
est path to the center of t's neighborhood; and
finally finding a path from that center to t.
The “learning” studied in this paper consists
primarily of discovering short(er) paths to des-
tinations using search techniques. A more in-
teresting objective would be to discover general
characteristics of the environment that could
be useful in guiding the search for short paths.
An agent that could accomplish this could more
correctly be described as “learning to navigate”.
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