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Abstract 

This paper presents a new globally convergent range- 
sensor based navigation algorithm in three-dimensions, 
called 3DBug. The 3DBug algorithm navigates a point 
robot in a three-dimensional unknown environment us- 
ing position and range sensors. The algorithm strives 
to process the sensory data in the most reactive way 
possible, without sacrificing the global convergence guar- 
antee. Moreover, unlike previous reactive-like algo- 
rithms, 3DBug uses three-dimensional range data and 
plans three-dimensional motion throughout the naviga- 
tion process. The algorithm alternates between two 
modes of motion. During motion towards the target, 
which is the first motion mode of the algorithm, the 
robot follows the locally shortest path in a purely reactive 
fashion. During traversal of an obstacle surface, which 
is the second mode of motion, the robot incrementally 
constructs a reduced data structure of an obstacle, while 
performing local shortcuts based on range data. W e  
present preliminary simulation results of the algorithm, 
which show that 3DBug generates paths that resemble 
the globally shortest path in simple scenarios. Moreover, 
the algorithm generates reasonably short paths even in 
concave, room-like environments. 

1 Introduction 

Autonomous robots which navigate in realistic settings 
must use sensors to perceive the environment, and plan 
accordingly. Some approaches to sensor-based naviga- 
tion are the works of Chatila [l],  Foux [2], Taylor [14], 
Rao [lo], Stentz [13], and their respective coworkers. 
One particular approach, called the Bug paradigm, was 
originated by Lumelsky and Stepanov [8] and subse- 
quently studied by [3, 7, 121. The Bug algorithms are 
simple to implement since they act mainly in a reac- 
tive fashion, while augmenting the local planning with a 
globally convergent criterion which influences the robot 
decisions. In the basic Bug algorithms, the robot ini- 
tially moves towards the target until it hits an obstacle. 
Then the robot switches to motion along the obstacle 
boundary. The robot leaves the obstacle and resumes 
its motion towards the target when a leaving condition, 

which monitors a globally convergent criterion, holds. 
If the robot completes a loop around the obstacle with- 
out satisfying the leaving condition, the robot concludes 
that the target is unreachable. 

Currently all the Bug algorithms plan paths in two- 
dimensional configuration spaces. Extending these al- 
gorithms to three-dimensional spaces is difficult since 
the obstacle boundaries are surfaces, while the robot’s 
path is a one-dimensional curve. Thus, to conclude tar- 
get unreachability the robot cannot merely complete a 
loop around the obstacle. Rather, the robot must verify 
that the leaving condition is not satisfied on the entire 
surface of the obstacle. 

Recently, Kutulakos and coworkers studied the prob- 
lem of Bug-type three-dimensional navigation [5]. They 
suggest a scheme for three-dimensional path planning 
which combines a 2D Bug algorithm with a 3D surface- 
exploration algorithm. They argue that the reactive be- 
havior of the planar algorithms must be relaxed during 
the three-dimensional obstacle surface exploration stage. 
In particular, a three-dimensional algorithm must in- 
clude a data structure which supports surface explo- 
ration and allows a conclusion that the entire obstacle 
surface has been explored. We propose a new and re- 
duced data structure of that type. Moreover, as dis- 
cussed below, our algorithm is fully three-dimensional. 

The work presented here has two objectives. First, 
we present basic results concerning sensor-based ob- 
stacle surface coverage, and results concerning compu- 
tation of a locally shortest path in three-dimensions. 
We believe that these results are of independent in- 
terest to researchers in motion planning. Second, we 
incorporate these basic results into the new globally 
convergent navigation algorithm 3DBug. The algo- 
rithm navigates a point robot in a three-dimensional 
unknown environment using position and range sen- 
sors. 3DBug uses three-dimensional range data and 
plans three-dimensional motion throughout the naviga- 
tion process. This is in contrast with Ref. [5], where the 
motion towards the target and the convergence mech- 
anism are restricted to a series of planes embedded in 
R3. Thus 3DBug provides a new and more effective 
Bug-type navigation algorithm for three-dimensions. 

The paper is organized as follows. First we discuss 
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some basic results necessary for sensor based naviga- 
tion in three-dimensions. Next we present the 3DBug  
algorithm, and describe preliminary simulation results, 
showing that 3DBug  generates paths which often re- 
semble the globally shortest path to the goal. Finally, 
the concluding discussion outlines future work and ex- 
tensions of 3DBug.  

2 Basic Results in 3D Sensor-Based Navigation 

In this section we define the sensor model, then discuss 
some basic results necessary for sensor based motion 
planning in three-dimensions. We assume an environ- 
ment populated by polyhedral obstacles. First we show 
that the robot can visually explore the entire surface of 
a given polyhedron by tracing the convex obstacle edges 
which intersect the polyhedron’s convex hull. Then we 
define a novel data structure which supports both sur- 
face exploration and shortest path computation. Last 
we focus on the notion of local information, and present 
the locally shortest path and a technique for efficiently 
computing this path. A detailed analysis of the results 
described here appears in Ref. [4]. 

Let x be the current robot location. We assume a 
range sensor with infinite detection range, which pro- 
vides perfect readings of the minimal distance of the 
robot from the obstacles along rays which emanate from 
x in all directions. The resulting visible set is a three- 
dimensional star-shaped set centered at x and contained 
in the free space. It can be verified that the obstacles’ 
visible surfaces are planar polygons [ll]. Moreover, each 
visible surface is bounded by edges of two types-convex 
obstacle edges’ and edges generated by occlusion. In the 
following we assume that the range data is processed 
and transformed into the three-dimensional coordinates 
of the vertices and edges of the visible obstacles. 

2.1 Sensor Based Surface Exploration 

In this section we show that the entire surface of a given 
polyhedron 23 can be visually explored while tracing only 
convex edges. To investigate the visibility properties in 
three-dimensions, we use the following characteristic of 
the shortest path in three-dimensions. 

Lemma 2.1 The shortest path in a three-dimensional 
polyhedral environment is piecewise linear, and the path 
vertices lie only on convex obstacle edges. 

Let S denote the set of convex edges contained in the 
convex hull of the polyhedron B. It follows from the 
lemma that the shortest path between any two points on 
the surface of B passes through convex obstacle edges. 

An obstacle edge is conves if there exists a plane which passes 
through the edge such that the obstacle locally lies in one half 
space only. An edge is concave if it is not convex. 

Moreover, it can be verified that these edges belong to 
the set S. Hence every point on the obstacle surface is 
directly visible from some convex edge in S, as summa- 
rized in the following theorem. 

Theorem 1 The entire surface of a polyhedron 23 is vis- 
ible from the convex obstacle edges which intersect its 
convex hull. 

Thus a robot equipped with a range sensor can visually 
explore the entire surface of a polyhedral obstacle by 
tracing all the convex obstacle edges in its convex hull. 
It is not hard to see that S is the minimal collection of 
edges which guarantees visual coverage. Hence we use 
this compact representation both for surface exploration 
and shortest path computation. We define a novel data 
structure called the Convex Edges Graph, or CEG. The 
CEG nodes represent convex obstacle edges which lie 
in the obstacle’s convex hull and have been seen by the 
robot during the exploration. The CEG edges repre- 
sent paths between the respective convex obstacle edges. 
They are constructed such that the connectivity of the 
CEG is maintained. To make the CEG also useful for 
motion planning, we add the current robot location x 
and the target location T as special CEG nodes, and 
add special edges from x and T to  CEG nodes. Thus it 
is possible to compute a path from x to T on the CEG. 
A detailed description of the CEG appears in [4]. 

2.2 Locally Shortest Path in Three-Dimensions 

We define the locally shortest path from the robot cur- 
rent location x to the target T as the shortest collision- 
free path, based only on the currently visible obstacles. 
We now present a technique for efficiently estimating 
this path. First let us introduce some terminology. We 
model each visible surface as a polyhedral two-sided 
thin wall or shell. If the target is not visible from x ,  
there is some blocking obstacle between the robot and 
the target. In this case the line segment [.,TI crosses 
the blocking obstacle, and we refer to the visible surface 
which blocks [ x ,  T] as the blocking surface. The blocking 
surface is bounded by a piecewise linear curve, termed 
the blocking contour (Figure 2). By construction, the 
blocking contour lies on the blocking obstacle, and its 
edges are of two types-occluding and occluded edges. 
Occluding edges are convex edges of the blocking ob- 
stacle. Occluded edges are generated from occlusion by 
some other obstacle. Each occluded edge of the block- 
ing contour has a corresponding occluding edge, which 
is a portion of a convex obstacle edge of some other ob- 
stacle (Figure 2(b)). The following proposition asserts 
that the locally shortest path always passes through the 
blocking contour. 
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point within the visible set. First we describe the global 
structure of the algorithm and then discuss its detailed 
operation. A detailed convergence proof for the 3DBug 
algorithm appears in Ref. [4]. 

3.1 Algorithm Description 

The 3 D B W  algorithm uses two basic motion-modes: 
motion towards the target and motion along an obsta- 
cle surface. During motion towards the target the robot 
moves along the locally shortest path based on the cur- 
rently visible obstacles. At each step of this motion 
mode the robot senses the environment, chooses a fo- 
cus point F ,  and moves directly to F without perform- 
ing any sensing or replanning until it reaches the focus 
point. Let w be a point in the free space, and let the 
function d(w,T) be the Euclidean distance of w to the 
target T .  The robot keeps moving towards the target 
until it becomes trapped in the basin of attraction of a 
local minimum of d ( w ,  T ) .  The local minimum is gener- 
ated by an obstacle which blocks the robot's path to the 
target, and the robot switches to traversing the surface 
of this obstacle. 

D~~~~~ the surface-traversing mode, the robot 
searches for a suitable leave point on the surface from 

14 

Figure 1. The blocking-contour graph of (a) a convex ob- 
stacle (b) a concave obstacle. 

Proposition 2.2 In  a polyhedral three-dimensional en- 
vironment, let a blocking obstacle lie between the robot 
location x and the target T. Then the shortest path 
from x to T ,  considering only the currently visible 
obstacles, passes through the blocking contour. 

In principal, it is possible to compute the locally 
shortest path using €-optimal algorithms (e.g. [91) on 
the thin-wall model of the currently visible obstacles. 
But these algorithms are computationally intensive, and 
we now present an alternative method for efficiently esti- 
mating the locally shortest Path. The resulting estimate 
is called the blocking-contour path. For each point y on 
the blocking contour, consider a path consisting of two 
line segments: the visible Part [x ,Y] and the (OPtimisti- 
callY) expected part bq 
Lblock(Y) = (1% - 911 4- 119 - 

The length Of this path is 
For each line segment li 

which it can resume its motion towards the target. At  
the Same time the robot expands its knowledge of the 

of the blocking contour, we Compute the Point V i  which 
minimizes L b k k ( Y ) .  This Computation Can be done in 
constant time per line segment 1%- Then we construct a 
local graph, called the blocking-contour graph, consisting 

obstacle surface and stores this information in the Con- 
vex Edges Graph, CEG. At each step during the surface- 
traversing mode, the robot computes the shortest path 
to the target based on the current CEG, chooses the of edges from x to each and (optimistic) edges from 

each vi to  T ,  as &own in Figure 1. The blocking-contour 
next focus point F on this path, and moves to F .  The 
robot then Senses the environment, updates the CEG, 

path is the shortest path on the blocking-contour graph, 
and it can be found in time linear in the number of line 
segments in the blocking contour. 

w e  may ask, what is the relation of the blocking- 

blocking obstacle is convex, the blocking-contour path 

and records the closest point to the target observed SO 
far on the surface of the followed obstacle. The closest 
observed point is denoted p,,, and its distance to the 
target is denoted drnin(T) .  

ing condition as ~ollows~ It inspects Zlleave,  which is 

contour Path to the exact locally shortest Path? If the After updating the CEG, the robot tests the leav- 

is precisely the locally shortest path, for the the closest point to the target along the visible par- 
tion of the line segment [$,TI, where x is the current 
robot location. The robot leaves the obstacle surface 

Let Y be a Point On the contour. If 
'IUface at the line segment [Y, TI intersects the 

some visible point, the blocking obstacle must have a 
visible concavity. Hence if the obstacle is convex, the 
line [!I, T ]  never intersects the blocking surface, and the 

path. But in general IIY - 
estimate of the path length from y to T .  

3 The 3DBug Algorithm 

The 3DBug algorithm navigates a point robot in a 
three-dimensional unknown environment populated by 
stationary polyhedral obstacles. The sensory informa- 
tion available to the robot consists of the robot cur- 
rent position x, and range data from x to every obstacle 

when d(wleave,T) < dmzn(T). After leaving the obsta- 
cle, the robot performs a transition phase before it re- 
sumes its motion towards the target. In this phase the 

where d(z,T) < dmin(T). At this point the 
robot resumes its motion towards the target. 

While searching for a suitable leave point, the robot 
accumulates data on the obstacle surface in the CEG. If 
the robot finishes tracing all the convex obstacle edges 
in the CEG before finding a leave point, it has com- 
pleted the exploration of the obstacle surface. On that 
occasion, the robot performs the following final target- 
reachability test. The robot moves to the closest point 

blocking-contour Path is Precisely the loCa1lY shortest robot moves directly towards wleave until it reaches a 
iS merely an optimistic point 
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to the target on the obstacle surface, pmin, and checks 
the leaving condition from there. If the leaving con- 
dition is not satisfied at pmin, the target is necessarily 
unreachable and the robot halts its motion. A summary 
of the algorithm now follows. 
1. Move towards T along the locally shortest path, 

until one of the following events occurs: 
0 The target is reached. Stop. 
0 A local minimum is detected. Go to step 2. 

a suitable leave point, while updating the CEG 
and recording pmin and dmin(T) ,  
until one of the following events occurs: 

0 The target is reached. Stop. 
0 The leaving condition holds: 

0 The entire surface has been sensed. Go to step 3. 

2. Traverse the obstacle's surface, searching for 

3vleaue d(Uleouet T )  < dmin(T).  Go to step 4- 

3. Perform the final target reachability test: 
GO to pmin. 
If the leaving condition holds at pmin, go to step 4. 
Otherwise the target is unreachable. Stop. 

Move directly towards uleoue until reaching 
a point z where d ( z , T )  < dmin(T).  Go to step 1. 

4. Perform the transition phase. 

3.2 Motion Towards the Target 

During motion towards the target, the robot moves be- 
tween successive focus points along the locally shortest 
path to the target, based on the currently sensed ob- 
stacles. If the target is visible to the robot, the robot 
moves directly towards the target. the robot moves di- 
rectly to it. Otherwise, the locally shortest path passes 
through the blocking contour (Proposition 2.2). In or- 
der to guarantee convergence to the target, we wish to 
ensure that the distance of the robot to the target de- 
creases monotonically between successive focus points. 
To achieve this objective, the algorithm computes the 
locally shortest path based only on the points y of the 
blocking contour satisfying d(y,  T )  5 d(z, T ) ,  where x 
is the current robot location. We call this subset of 
the blocking contour the feasible sub-contour (Figure 
2(a)). Once the feasible sub-contour is computed, the 
algorithm constructs the blocking-contour graph based 
on the feasible sub-contour and the target node, and 
searches this graph for the shortest path to T .  

Once the locally shortest path is computed,.the next 
focus point F is chosen on this path as follows. Let G 
be the point on the feasible sub-contour through which 
the locally shortest path passes. If G lies on a convex 
edge of the blocking obstacle, F is set to G (FI in Fig. 
2(a)). If G lies on an edge generated from occlusion, 
F is chosen on the occluding edge, at the point where 
the line segment [x, G] crosses the occluding edge (Fi in 
Fig. 2(b)). 

Figure 2. Motion towards the target. (a) From x = S, the 
locally shortest path passes through the focus point 9. (b) 
At x = F1, the point G lies on an occluded edge. Hence the 
next focus point, F2, is set on the occluding edge. (c) From 
2 = Fz, the locally shortest path passes through F3, from 
which the target can be reached directly. 

The robot terminates its motion towards the target 
and switches to the surface-traversing mode after de- 
tecting that it is trapped in the basin of attraction of a 
local minimum of the function d(w, T ) .  The correspond- 
ing sensor-based termination condition is that the fea- 
sible sub-contour becomes empty, and it can be verified 
that this event is always associated with the presence of 
a local minimum of d(w, T )  [4]. 

3.3 Traversing an Obstacle Surface 

This motion mode has two simultaneous objectives-to 
find a suitable leave point and to  explore the obsta- 
cle surface. Let P denote the point where the robot 
switches to surface-traversing mode. It can be verified 
that the local minimum of d(w, 2') which terminated the 
motion towards the target is visible from P ,  and lies on 
the surface of the obstacle which blocks the direct path 
from P to the target (the blocking obstacle). The robot 
traverses the surface of this obstacle until either a leav- 
ing condition is satisfied or the entire obstacle surface is 
explored. Upon starting a new surface traversing seg- 
ment, the robot moves into the convex hull of the block- 
ing obstacle, senses the environment, and generates the 
initial CEG of the blocking obstacle. 

At each step after the initial one, the robot computes 
the shortest path to the target, y, on the current CEG. 
Given this path, the robot chooses the next focus point 
F as the last vertex along y which lies on an obsta- 
cle edge. The robot then moves to F by repeatedly 
performing the following procedure. The robot chooses 
the furthest visible point v along y, and moves directly 
towards v without performing any sensing. After reach- 
ing U, the robot senses the environment, and repeats the 
same procedure of moving to  the furthest visible point 
along y. After finitely many such steps the robot reaches 
the focus point F. 

Upon reaching F ,  the robot traces a small portion 
of the convex edge on which F is located while contin- 
uously sensing the environment. The accumulative ef- 
fect of tracing small edge segments each time the robot 
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envl I env2 I env3 1 env4 
1.00 I 1.02 I 1.06 I 1.03 

Table 1. Average simulation results of 3DBug, relative to 
the (approximate) globally shortest path. 

reaches a focus point is the visual coverage of the entire 
obstacle surface. During the tracing operation the robot 
updates the CEG according to the sensed range data, 
and continuously records the closest point to the target 
observed so far on the obstacle surface, pmin. 

After updating the CEG, the robot tests the leaving 
condition as follows. The robot inspects vieave, the clos- 
est point to the target along the visible portion of the 
segment [z, TI, where z is the current robot location. 
The leaving condition is satisfied when d ( v l e a v e ,  T) < 
dmin(T) ,  where d,in(T) is the distance of pmin to T. 
If the entire surface has been explored without find- 
ing a leave point, the robot performs the following final 
target-reachability test. The robot moves to pmin, and 
checks the leaving condition at pmin. If the leaving con- 
dition is not satisfied at  pmjn, the target is unreachable. 
This final test is necessary since the leaving condition is 
previously tested only at  discrete points on convex ob- 
stacle edges. But in general these points do not suffice 
to conclusively determine target unreachability. 

Finally, after leaving the obstacle, the robot performs 
a transition phase where it moves directly towards vleave 

until it reaches a point z where d(z,  T) < dmin(T). The 
combination of the leaving condition and the transition 
phase ensures that each local-minimum of d(w,  T) is as- 
sociated with at most one switch from motion-towards- 
the-target to surface-traversing mode. 

4 Simulation Results 

In this section we present simulation results which com- 
pare the path generated by 3DBug to the globally short- 
est path. To simulate the 3DBug algorithm, we devel- 
oped a three-dimensional range-sensor simulator, which 
computes the blocking surface in environments popu- 
lated by general polyhedra. We approximate the glob- 
ally shortest path by constructing and searching a three- 
dimensional generalized visibility graph [6]. 

We present simulation results of 3DBug  in four sim- 
ulated environments. The average results of the exper- 
iments are expressed in Table 1, relative to the (ap- 
proximate) globally shortest path. The environment 
envl consists of a single box-like obstacle. In this en- 
vironment 3DBug's  paths are almost identical to the 
visibility-graph paths in all of the runs. The environ- 
ment env2 is more complex and consists of seven box- 
like obstacles (Fig. 3) .  The average path length of 

Figure 3. 3DBug in env2. (a) The visible surfaces as seen 
from the start point S. The locally shortest path leads to F1 
since the blocking obstacle 0 1  is only partially visible. (b) 
The path generated by 3DBug, compared to the globally 
optimal path. 

blocking contour 

bloc!& contour two components of 
blocking contour ta 

Figure 4. 3DBug in env3, as the robot moves into the room. 
(a) The entire path of 3DBug, compared to the globally 
optimal path. (b) The blocking contour computed from S, 
shown in bold line. (c) The blocking contour from F I .  (d) 
The blocking contour from F2. The target is directly visible 
from F3. 
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T (invisible) 

Figure 5 .  3DBug in env4. (a,b) The robot leaves house1 
from the window, and enters house2 from the door. The 
globally optimal path is almost identical to 3DBug’s path. 
(c) The blocking contour from S. (d) The blocking contour 
from FI (located at the internal window frame). 

3DBug’s paths in e m 2  is 1.02. In both envl and env2 
the algorithm used the motion-towards-the-target mode 
along the entire path in over 99% of the runs. 

The environment env3 consists of a single concave 
room-like obstacle (Fig. 4 ) .  The average path length in 
this environment is 1.06 (relative to the generalized vis- 
ibility graph shortest path), and the surface-traversing 
mode was activated in 65% of the runs. The last envi- 
ronment env4 consists of two room-like obstacles, sep- 
arated by a wall (Fig. 5). The start and target points 
were always placed inside or near the rooms, on differ- 
ent sides of the separating wall. In this environment the 
average path length of 3DBug is 1.03. The tested sce- 
narios constitute only a preliminary study. There are 
other environments, in which the locally optimal deci- 
sions do not necessarily lead to globally optimal paths, 
and in these environments 3Dbug would be less effective. 

The local characteristics of 3DBug: The paths 
of 3DBug are distinct from the globally optimal ones 
for several reasons. As demonstrated in Figure 4 ,  the 
locally shortest path may differ from the globally op- 
timal one due to the limited nature of local informa- 
tion. From S, the robot moves towards the ”roof” of 
the room, since the roof is not visible from S and thus 
considered non-existent (Fig. 4(b ) ) .  After observing 

the roof from FI, the robot moves along the shortest 
path from Fl to T .  Partial occlusion is another mani- 
festation of the limited nature of local information, as 
demonstrated in Figure 3. Using the motion-towards- 
the-target mode, the robot moves from S to the focus 
point Fl,  which lies on an occluding edge (Fig. 3(a)). 
The robot chooses this path from S since it does not see 
the entire blocking obstacle, denoted 01, and occluded 
portions of obstacles are considered as non-existent. An- 
other reason for the difference between the two paths 
is the incorporation of the global convergence require- 
ment during motion-towards-the-target. Restricting the 
computed shortest path to the feasible sub-contour may 
prevent the robot from moving along the precise locally 
shortest path, which may pass through any point on the 
blocking contour. Thus there are several reasons which 
cause 3DBug’s paths to differ from the globally optimal 
ones. 

3DBug as a search algorithm: Last we discuss the 
search characteristics of 3DBug. In the graph-search 
terminology, the motion-towards-the-target mode is 
a hill-descending strategy, and the surface-traversing 
mode is a mechanism for escaping local minima. For 
comparison, we consider the classical A* algorithm 
which uses the generalized visibility graph as the un- 
derlying search space. The 3DBug algorithm finds the 
target in fewer steps than A* for the following reasons. 
First, 3DBug performs a depth search, thus it moves 
faster towards the target. Second, the candidate loca- 
tions for the next step in 3DBug are limited to a single 
obstacle, which is the blocking obstacle in both modes 
of motion. In contrast, A* must consider all the nodes 
which are visible from each node U in the generalized vis- 
ibility graph. In env3, for example, 3DBug reaches the 
target after 3.3 steps on average, while A* requires 32.4 
steps to reach the target. The advantage of 3DBug is 
even more pronounced when the target is unreachable. 
The 3DBug algorithm concludes target unreachability 
after exploring the entire surface of a single obstacle in 
which the target is trapped, while A* must expand all 
the nodes in its search space to conclude unreachability. 
Another advantage of 3DBug is that it uses a compact 
data structure, since it uses only a limited amount of 
global information. In contrast, a data structure which 
represents the entire environment may be very large. 
For example, the generalized visibility graph of env2 
with resolution 0.1 consists of 620 nodes and 118912 
edges, while 3DBug’s data structure consists on the av- 
erage of 7 nodes and 9 edges. 

5 Concluding Discussion 
We presented new basic results in sensor-based surface 
exploration, and locally shortest path computation in 
three-dimensional polyhedral environments. Consider- 
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ing surface exploration, we showed that the entire sur- 
face of a polyhedral obstacle is visible from the convex 
obstacle edges within the obstacle’s convex hull. Then 
we introduced the notion of a locally shortest path in 
three-dimensions, and showed that it must pass through 
the blocking contour. We used this property to for- 
mulate an efficient technique for estimating the locally 
shortest path in time linear in the number of edges in 
the blocking contour. 

These results were incorporated into the new glob- 
ally convergent 3DBug  algorithm, which navigates a 
point robot equipped with position and range sensors 
in a three-dimensional unknown environment. The al- 
gorithm falls within the general framework of the Bug 
paradigm since it strives to process the sensory data 
in the most reactive way possible, without sacrificing 
the global convergence guarantee. During motion to- 
wards the target, the robot follows the locally shortest 
path in a purely reactive fashion. During traversal of 
an obstacle surface, the robot incrementally constructs 
the CEG of the obstacle, while performing local short- 
cuts based on the local range data. Simulation results 
show that 3DBug  generates paths which resemble the 
globally shortest path in simple scenarios, consisting of 
disjoint convex obstacles. Moreover, the algorithm gen- 
erates reasonably short paths even in concave, room-like 
environments. 

Let us mention several potential uses and extensions 
for the new algorithm. First, 3DBug is useful for nav- 
igating free-flying robots in either real tasks such as 
surveillance, or in simulated scenarios such as virtual re- 
ality games. Second, 3DBug provides new insight into 
the important problem of sensor-based navigation in 
three-dimensions. Third, the algorithm can be extended 
to other three-dimensional configuration spaces, such as 
the ones associated with three degrees-of-freedom mo- 
bile robots. Last, 3DBug  is also useful as a search al- 
gorithm in completely known three-dimensional envi- 
ronments. The main advantage of 3Dug over classical 
search algorithms such as A* is that it takes into con- 
sideration the geometric characteristics of the locally 
shortest path. Consequently, 3DBug finds the target 
much faster than other, less informed, algorithms. 
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