
Proceedings of the 1999 EEE
International Conference on Robotics & Automation

Detroit, Michigan May 1999

Range-Sensor Based Navigation in Three Dimensions

Ishay Kamon Elon Rimon Ehud Rivlin
CS Department, Technion ME Department, Technion CS Department, Technion

ishay Qcs. technion. ac .il elonQrobby. technion.ac.il ehudr@cs.technion.ac.il

Abstract

This paper presents a new globally convergent range-
sensor based navigation algorithm in three-dimensions,
called 3DBug. The 3DBug algorithm navigates a point
robot in a three-dimensional unknown environment us-
ing position and range sensors. The algorithm strives
to process the sensory data in the most reactive way
possible, without sacrificing the global convergence guar-
antee. Moreover, unlike previous reactive-like algo-
rithms, 3DBug uses three-dimensional range data and
plans three-dimensional motion throughout the naviga-
tion process. The algorithm alternates between two
modes of motion. During motion towards the target,
which is the first motion mode of the algorithm, the
robot follows the locally shortest path in a purely reactive
fashion. During traversal of an obstacle surface, which
is the second mode of motion, the robot incrementally
constructs a reduced data structure of an obstacle, while
performing local shortcuts based on range data. W e
present preliminary simulation results of the algorithm,
which show that 3DBug generates paths that resemble
the globally shortest path in simple scenarios. Moreover,
the algorithm generates reasonably short paths even in
concave, room-like environments.

1 Introduction

Autonomous robots which navigate in realistic settings
must use sensors to perceive the environment, and plan
accordingly. Some approaches to sensor-based naviga-
tion are the works of Chatila [l], Foux [2], Taylor [14],
Rao [lo], Stentz [13], and their respective coworkers.
One particular approach, called the Bug paradigm, was
originated by Lumelsky and Stepanov [8] and subse-
quently studied by [3, 7, 121. The Bug algorithms are
simple to implement since they act mainly in a reac-
tive fashion, while augmenting the local planning with a
globally convergent criterion which influences the robot
decisions. In the basic Bug algorithms, the robot ini-
tially moves towards the target until it hits an obstacle.
Then the robot switches to motion along the obstacle
boundary. The robot leaves the obstacle and resumes
its motion towards the target when a leaving condition,

which monitors a globally convergent criterion, holds.
If the robot completes a loop around the obstacle with-
out satisfying the leaving condition, the robot concludes
that the target is unreachable.

Currently all the Bug algorithms plan paths in two-
dimensional configuration spaces. Extending these al-
gorithms to three-dimensional spaces is difficult since
the obstacle boundaries are surfaces, while the robot’s
path is a one-dimensional curve. Thus, to conclude tar-
get unreachability the robot cannot merely complete a
loop around the obstacle. Rather, the robot must verify
that the leaving condition is not satisfied on the entire
surface of the obstacle.

Recently, Kutulakos and coworkers studied the prob-
lem of Bug-type three-dimensional navigation [5]. They
suggest a scheme for three-dimensional path planning
which combines a 2D Bug algorithm with a 3D surface-
exploration algorithm. They argue that the reactive be-
havior of the planar algorithms must be relaxed during
the three-dimensional obstacle surface exploration stage.
In particular, a three-dimensional algorithm must in-
clude a data structure which supports surface explo-
ration and allows a conclusion that the entire obstacle
surface has been explored. We propose a new and re-
duced data structure of that type. Moreover, as dis-
cussed below, our algorithm is fully three-dimensional.

The work presented here has two objectives. First,
we present basic results concerning sensor-based ob-
stacle surface coverage, and results concerning compu-
tation of a locally shortest path in three-dimensions.
We believe that these results are of independent in-
terest to researchers in motion planning. Second, we
incorporate these basic results into the new globally
convergent navigation algorithm 3DBug. The algo-
rithm navigates a point robot in a three-dimensional
unknown environment using position and range sen-
sors. 3DBug uses three-dimensional range data and
plans three-dimensional motion throughout the naviga-
tion process. This is in contrast with Ref. [5], where the
motion towards the target and the convergence mech-
anism are restricted to a series of planes embedded in
R3. Thus 3DBug provides a new and more effective
Bug-type navigation algorithm for three-dimensions.

The paper is organized as follows. First we discuss

0-7803-51 80-0-5/99 $10.00 0 1999 IEEE 163

some basic results necessary for sensor based naviga-
tion in three-dimensions. Next we present the 3DBug
algorithm, and describe preliminary simulation results,
showing that 3DBug generates paths which often re-
semble the globally shortest path to the goal. Finally,
the concluding discussion outlines future work and ex-
tensions of 3DBug.

2 Basic Results in 3D Sensor-Based Navigation

In this section we define the sensor model, then discuss
some basic results necessary for sensor based motion
planning in three-dimensions. We assume an environ-
ment populated by polyhedral obstacles. First we show
that the robot can visually explore the entire surface of
a given polyhedron by tracing the convex obstacle edges
which intersect the polyhedron’s convex hull. Then we
define a novel data structure which supports both sur-
face exploration and shortest path computation. Last
we focus on the notion of local information, and present
the locally shortest path and a technique for efficiently
computing this path. A detailed analysis of the results
described here appears in Ref. [4].

Let x be the current robot location. We assume a
range sensor with infinite detection range, which pro-
vides perfect readings of the minimal distance of the
robot from the obstacles along rays which emanate from
x in all directions. The resulting visible set is a three-
dimensional star-shaped set centered at x and contained
in the free space. It can be verified that the obstacles’
visible surfaces are planar polygons [ll]. Moreover, each
visible surface is bounded by edges of two types-convex
obstacle edges’ and edges generated by occlusion. In the
following we assume that the range data is processed
and transformed into the three-dimensional coordinates
of the vertices and edges of the visible obstacles.

2.1 Sensor Based Surface Exploration

In this section we show that the entire surface of a given
polyhedron 23 can be visually explored while tracing only
convex edges. To investigate the visibility properties in
three-dimensions, we use the following characteristic of
the shortest path in three-dimensions.

Lemma 2.1 The shortest path in a three-dimensional
polyhedral environment is piecewise linear, and the path
vertices lie only on convex obstacle edges.

Let S denote the set of convex edges contained in the
convex hull of the polyhedron B. It follows from the
lemma that the shortest path between any two points on
the surface of B passes through convex obstacle edges.

An obstacle edge is conves if there exists a plane which passes
through the edge such that the obstacle locally lies in one half
space only. An edge is concave if it is not convex.

Moreover, it can be verified that these edges belong to
the set S. Hence every point on the obstacle surface is
directly visible from some convex edge in S, as summa-
rized in the following theorem.

Theorem 1 The entire surface of a polyhedron 23 is vis-
ible from the convex obstacle edges which intersect its
convex hull.

Thus a robot equipped with a range sensor can visually
explore the entire surface of a polyhedral obstacle by
tracing all the convex obstacle edges in its convex hull.
It is not hard to see that S is the minimal collection of
edges which guarantees visual coverage. Hence we use
this compact representation both for surface exploration
and shortest path computation. We define a novel data
structure called the Convex Edges Graph, or CEG. The
CEG nodes represent convex obstacle edges which lie
in the obstacle’s convex hull and have been seen by the
robot during the exploration. The CEG edges repre-
sent paths between the respective convex obstacle edges.
They are constructed such that the connectivity of the
CEG is maintained. To make the CEG also useful for
motion planning, we add the current robot location x
and the target location T as special CEG nodes, and
add special edges from x and T to CEG nodes. Thus it
is possible to compute a path from x to T on the CEG.
A detailed description of the CEG appears in [4].

2.2 Locally Shortest Path in Three-Dimensions

We define the locally shortest path from the robot cur-
rent location x to the target T as the shortest collision-
free path, based only on the currently visible obstacles.
We now present a technique for efficiently estimating
this path. First let us introduce some terminology. We
model each visible surface as a polyhedral two-sided
thin wall or shell. If the target is not visible from x ,
there is some blocking obstacle between the robot and
the target. In this case the line segment [.,TI crosses
the blocking obstacle, and we refer to the visible surface
which blocks [x , T] as the blocking surface. The blocking
surface is bounded by a piecewise linear curve, termed
the blocking contour (Figure 2). By construction, the
blocking contour lies on the blocking obstacle, and its
edges are of two types-occluding and occluded edges.
Occluding edges are convex edges of the blocking ob-
stacle. Occluded edges are generated from occlusion by
some other obstacle. Each occluded edge of the block-
ing contour has a corresponding occluding edge, which
is a portion of a convex obstacle edge of some other ob-
stacle (Figure 2(b)). The following proposition asserts
that the locally shortest path always passes through the
blocking contour.

164

point within the visible set. First we describe the global
structure of the algorithm and then discuss its detailed
operation. A detailed convergence proof for the 3DBug
algorithm appears in Ref. [4].

3.1 Algorithm Description

The 3 D B W algorithm uses two basic motion-modes:
motion towards the target and motion along an obsta-
cle surface. During motion towards the target the robot
moves along the locally shortest path based on the cur-
rently visible obstacles. At each step of this motion
mode the robot senses the environment, chooses a fo-
cus point F , and moves directly to F without perform-
ing any sensing or replanning until it reaches the focus
point. Let w be a point in the free space, and let the
function d(w,T) be the Euclidean distance of w to the
target T . The robot keeps moving towards the target
until it becomes trapped in the basin of attraction of a
local minimum of d (w , T) . The local minimum is gener-
ated by an obstacle which blocks the robot's path to the
target, and the robot switches to traversing the surface
of this obstacle.

D~~~~~ the surface-traversing mode, the robot
searches for a suitable leave point on the surface from

14

Figure 1. The blocking-contour graph of (a) a convex ob-
stacle (b) a concave obstacle.

Proposition 2.2 In a polyhedral three-dimensional en-
vironment, let a blocking obstacle lie between the robot
location x and the target T. Then the shortest path
from x to T , considering only the currently visible
obstacles, passes through the blocking contour.

In principal, it is possible to compute the locally
shortest path using €-optimal algorithms (e.g. [91) on
the thin-wall model of the currently visible obstacles.
But these algorithms are computationally intensive, and
we now present an alternative method for efficiently esti-
mating the locally shortest Path. The resulting estimate
is called the blocking-contour path. For each point y on
the blocking contour, consider a path consisting of two
line segments: the visible Part [x ,Y] and the (OPtimisti-
callY) expected part bq
Lblock(Y) = (1% - 911 4- 119 -

The length Of this path is
For each line segment li

which it can resume its motion towards the target. At
the Same time the robot expands its knowledge of the

of the blocking contour, we Compute the Point V i which
minimizes L b k k (Y) . This Computation Can be done in
constant time per line segment 1%- Then we construct a
local graph, called the blocking-contour graph, consisting

obstacle surface and stores this information in the Con-
vex Edges Graph, CEG. At each step during the surface-
traversing mode, the robot computes the shortest path
to the target based on the current CEG, chooses the of edges from x to each and (optimistic) edges from

each vi to T , as &own in Figure 1. The blocking-contour
next focus point F on this path, and moves to F . The
robot then Senses the environment, updates the CEG,

path is the shortest path on the blocking-contour graph,
and it can be found in time linear in the number of line
segments in the blocking contour.

w e may ask, what is the relation of the blocking-

blocking obstacle is convex, the blocking-contour path

and records the closest point to the target observed SO
far on the surface of the followed obstacle. The closest
observed point is denoted p,,, and its distance to the
target is denoted drnin(T) .

ing condition as ~ollows~ It inspects Zlleave, which is

contour Path to the exact locally shortest Path? If the After updating the CEG, the robot tests the leav-

is precisely the locally shortest path, for the the closest point to the target along the visible par-
tion of the line segment [$,TI, where x is the current
robot location. The robot leaves the obstacle surface

Let Y be a Point On the contour. If
'IUface at the line segment [Y, TI intersects the

some visible point, the blocking obstacle must have a
visible concavity. Hence if the obstacle is convex, the
line [!I, T] never intersects the blocking surface, and the

path. But in general IIY -
estimate of the path length from y to T .

3 The 3DBug Algorithm

The 3DBug algorithm navigates a point robot in a
three-dimensional unknown environment populated by
stationary polyhedral obstacles. The sensory informa-
tion available to the robot consists of the robot cur-
rent position x, and range data from x to every obstacle

when d(wleave,T) < dmzn(T). After leaving the obsta-
cle, the robot performs a transition phase before it re-
sumes its motion towards the target. In this phase the

where d(z,T) < dmin(T). At this point the
robot resumes its motion towards the target.

While searching for a suitable leave point, the robot
accumulates data on the obstacle surface in the CEG. If
the robot finishes tracing all the convex obstacle edges
in the CEG before finding a leave point, it has com-
pleted the exploration of the obstacle surface. On that
occasion, the robot performs the following final target-
reachability test. The robot moves to the closest point

blocking-contour Path is Precisely the loCa1lY shortest robot moves directly towards wleave until it reaches a
iS merely an optimistic point

165

to the target on the obstacle surface, pmin, and checks
the leaving condition from there. If the leaving con-
dition is not satisfied at pmin, the target is necessarily
unreachable and the robot halts its motion. A summary
of the algorithm now follows.
1. Move towards T along the locally shortest path,

until one of the following events occurs:
0 The target is reached. Stop.
0 A local minimum is detected. Go to step 2.

a suitable leave point, while updating the CEG
and recording pmin and dmin(T) ,
until one of the following events occurs:

0 The target is reached. Stop.
0 The leaving condition holds:

0 The entire surface has been sensed. Go to step 3.

2. Traverse the obstacle's surface, searching for

3vleaue d(Uleouet T) < dmin(T). Go to step 4-

3. Perform the final target reachability test:
GO to pmin.
If the leaving condition holds at pmin, go to step 4.
Otherwise the target is unreachable. Stop.

Move directly towards uleoue until reaching
a point z where d (z , T) < dmin(T). Go to step 1.

4. Perform the transition phase.

3.2 Motion Towards the Target

During motion towards the target, the robot moves be-
tween successive focus points along the locally shortest
path to the target, based on the currently sensed ob-
stacles. If the target is visible to the robot, the robot
moves directly towards the target. the robot moves di-
rectly to it. Otherwise, the locally shortest path passes
through the blocking contour (Proposition 2.2). In or-
der to guarantee convergence to the target, we wish to
ensure that the distance of the robot to the target de-
creases monotonically between successive focus points.
To achieve this objective, the algorithm computes the
locally shortest path based only on the points y of the
blocking contour satisfying d(y, T) 5 d(z, T) , where x
is the current robot location. We call this subset of
the blocking contour the feasible sub-contour (Figure
2(a)). Once the feasible sub-contour is computed, the
algorithm constructs the blocking-contour graph based
on the feasible sub-contour and the target node, and
searches this graph for the shortest path to T .

Once the locally shortest path is computed,.the next
focus point F is chosen on this path as follows. Let G
be the point on the feasible sub-contour through which
the locally shortest path passes. If G lies on a convex
edge of the blocking obstacle, F is set to G (FI in Fig.
2(a)). If G lies on an edge generated from occlusion,
F is chosen on the occluding edge, at the point where
the line segment [x, G] crosses the occluding edge (Fi in
Fig. 2(b)).

Figure 2. Motion towards the target. (a) From x = S, the
locally shortest path passes through the focus point 9. (b)
At x = F1, the point G lies on an occluded edge. Hence the
next focus point, F2, is set on the occluding edge. (c) From
2 = Fz, the locally shortest path passes through F3, from
which the target can be reached directly.

The robot terminates its motion towards the target
and switches to the surface-traversing mode after de-
tecting that it is trapped in the basin of attraction of a
local minimum of the function d(w, T) . The correspond-
ing sensor-based termination condition is that the fea-
sible sub-contour becomes empty, and it can be verified
that this event is always associated with the presence of
a local minimum of d(w, T) [4].

3.3 Traversing an Obstacle Surface

This motion mode has two simultaneous objectives-to
find a suitable leave point and to explore the obsta-
cle surface. Let P denote the point where the robot
switches to surface-traversing mode. It can be verified
that the local minimum of d(w, 2') which terminated the
motion towards the target is visible from P , and lies on
the surface of the obstacle which blocks the direct path
from P to the target (the blocking obstacle). The robot
traverses the surface of this obstacle until either a leav-
ing condition is satisfied or the entire obstacle surface is
explored. Upon starting a new surface traversing seg-
ment, the robot moves into the convex hull of the block-
ing obstacle, senses the environment, and generates the
initial CEG of the blocking obstacle.

At each step after the initial one, the robot computes
the shortest path to the target, y, on the current CEG.
Given this path, the robot chooses the next focus point
F as the last vertex along y which lies on an obsta-
cle edge. The robot then moves to F by repeatedly
performing the following procedure. The robot chooses
the furthest visible point v along y, and moves directly
towards v without performing any sensing. After reach-
ing U, the robot senses the environment, and repeats the
same procedure of moving to the furthest visible point
along y. After finitely many such steps the robot reaches
the focus point F.

Upon reaching F , the robot traces a small portion
of the convex edge on which F is located while contin-
uously sensing the environment. The accumulative ef-
fect of tracing small edge segments each time the robot

166

envl I env2 I env3 1 env4
1.00 I 1.02 I 1.06 I 1.03

Table 1. Average simulation results of 3DBug, relative to
the (approximate) globally shortest path.

reaches a focus point is the visual coverage of the entire
obstacle surface. During the tracing operation the robot
updates the CEG according to the sensed range data,
and continuously records the closest point to the target
observed so far on the obstacle surface, pmin.

After updating the CEG, the robot tests the leaving
condition as follows. The robot inspects vieave, the clos-
est point to the target along the visible portion of the
segment [z, TI, where z is the current robot location.
The leaving condition is satisfied when d (v l e a v e , T) <
dmin(T) , where d,in(T) is the distance of pmin to T.
If the entire surface has been explored without find-
ing a leave point, the robot performs the following final
target-reachability test. The robot moves to pmin, and
checks the leaving condition at pmin. If the leaving con-
dition is not satisfied at pmjn, the target is unreachable.
This final test is necessary since the leaving condition is
previously tested only at discrete points on convex ob-
stacle edges. But in general these points do not suffice
to conclusively determine target unreachability.

Finally, after leaving the obstacle, the robot performs
a transition phase where it moves directly towards vleave

until it reaches a point z where d(z, T) < dmin(T). The
combination of the leaving condition and the transition
phase ensures that each local-minimum of d(w, T) is as-
sociated with at most one switch from motion-towards-
the-target to surface-traversing mode.

4 Simulation Results

In this section we present simulation results which com-
pare the path generated by 3DBug to the globally short-
est path. To simulate the 3DBug algorithm, we devel-
oped a three-dimensional range-sensor simulator, which
computes the blocking surface in environments popu-
lated by general polyhedra. We approximate the glob-
ally shortest path by constructing and searching a three-
dimensional generalized visibility graph [6].

We present simulation results of 3DBug in four sim-
ulated environments. The average results of the exper-
iments are expressed in Table 1, relative to the (ap-
proximate) globally shortest path. The environment
envl consists of a single box-like obstacle. In this en-
vironment 3DBug's paths are almost identical to the
visibility-graph paths in all of the runs. The environ-
ment env2 is more complex and consists of seven box-
like obstacles (Fig. 3) . The average path length of

Figure 3. 3DBug in env2. (a) The visible surfaces as seen
from the start point S. The locally shortest path leads to F1
since the blocking obstacle 0 1 is only partially visible. (b)
The path generated by 3DBug, compared to the globally
optimal path.

blocking contour

bloc!& contour two components of
blocking contour ta

Figure 4. 3DBug in env3, as the robot moves into the room.
(a) The entire path of 3DBug, compared to the globally
optimal path. (b) The blocking contour computed from S,
shown in bold line. (c) The blocking contour from F I . (d)
The blocking contour from F2. The target is directly visible
from F3.

167

T (invisible)

Figure 5 . 3DBug in env4. (a,b) The robot leaves house1
from the window, and enters house2 from the door. The
globally optimal path is almost identical to 3DBug’s path.
(c) The blocking contour from S. (d) The blocking contour
from FI (located at the internal window frame).

3DBug’s paths in e m 2 is 1.02. In both envl and env2
the algorithm used the motion-towards-the-target mode
along the entire path in over 99% of the runs.

The environment env3 consists of a single concave
room-like obstacle (Fig. 4) . The average path length in
this environment is 1.06 (relative to the generalized vis-
ibility graph shortest path), and the surface-traversing
mode was activated in 65% of the runs. The last envi-
ronment env4 consists of two room-like obstacles, sep-
arated by a wall (Fig. 5). The start and target points
were always placed inside or near the rooms, on differ-
ent sides of the separating wall. In this environment the
average path length of 3DBug is 1.03. The tested sce-
narios constitute only a preliminary study. There are
other environments, in which the locally optimal deci-
sions do not necessarily lead to globally optimal paths,
and in these environments 3Dbug would be less effective.

The local characteristics of 3DBug: The paths
of 3DBug are distinct from the globally optimal ones
for several reasons. As demonstrated in Figure 4 , the
locally shortest path may differ from the globally op-
timal one due to the limited nature of local informa-
tion. From S, the robot moves towards the ”roof” of
the room, since the roof is not visible from S and thus
considered non-existent (Fig. 4(b)) . After observing

the roof from FI, the robot moves along the shortest
path from Fl to T . Partial occlusion is another mani-
festation of the limited nature of local information, as
demonstrated in Figure 3. Using the motion-towards-
the-target mode, the robot moves from S to the focus
point Fl, which lies on an occluding edge (Fig. 3(a)).
The robot chooses this path from S since it does not see
the entire blocking obstacle, denoted 01, and occluded
portions of obstacles are considered as non-existent. An-
other reason for the difference between the two paths
is the incorporation of the global convergence require-
ment during motion-towards-the-target. Restricting the
computed shortest path to the feasible sub-contour may
prevent the robot from moving along the precise locally
shortest path, which may pass through any point on the
blocking contour. Thus there are several reasons which
cause 3DBug’s paths to differ from the globally optimal
ones.

3DBug as a search algorithm: Last we discuss the
search characteristics of 3DBug. In the graph-search
terminology, the motion-towards-the-target mode is
a hill-descending strategy, and the surface-traversing
mode is a mechanism for escaping local minima. For
comparison, we consider the classical A* algorithm
which uses the generalized visibility graph as the un-
derlying search space. The 3DBug algorithm finds the
target in fewer steps than A* for the following reasons.
First, 3DBug performs a depth search, thus it moves
faster towards the target. Second, the candidate loca-
tions for the next step in 3DBug are limited to a single
obstacle, which is the blocking obstacle in both modes
of motion. In contrast, A* must consider all the nodes
which are visible from each node U in the generalized vis-
ibility graph. In env3, for example, 3DBug reaches the
target after 3.3 steps on average, while A* requires 32.4
steps to reach the target. The advantage of 3DBug is
even more pronounced when the target is unreachable.
The 3DBug algorithm concludes target unreachability
after exploring the entire surface of a single obstacle in
which the target is trapped, while A* must expand all
the nodes in its search space to conclude unreachability.
Another advantage of 3DBug is that it uses a compact
data structure, since it uses only a limited amount of
global information. In contrast, a data structure which
represents the entire environment may be very large.
For example, the generalized visibility graph of env2
with resolution 0.1 consists of 620 nodes and 118912
edges, while 3DBug’s data structure consists on the av-
erage of 7 nodes and 9 edges.

5 Concluding Discussion
We presented new basic results in sensor-based surface
exploration, and locally shortest path computation in
three-dimensional polyhedral environments. Consider-

168

ing surface exploration, we showed that the entire sur-
face of a polyhedral obstacle is visible from the convex
obstacle edges within the obstacle’s convex hull. Then
we introduced the notion of a locally shortest path in
three-dimensions, and showed that it must pass through
the blocking contour. We used this property to for-
mulate an efficient technique for estimating the locally
shortest path in time linear in the number of edges in
the blocking contour.

These results were incorporated into the new glob-
ally convergent 3DBug algorithm, which navigates a
point robot equipped with position and range sensors
in a three-dimensional unknown environment. The al-
gorithm falls within the general framework of the Bug
paradigm since it strives to process the sensory data
in the most reactive way possible, without sacrificing
the global convergence guarantee. During motion to-
wards the target, the robot follows the locally shortest
path in a purely reactive fashion. During traversal of
an obstacle surface, the robot incrementally constructs
the CEG of the obstacle, while performing local short-
cuts based on the local range data. Simulation results
show that 3DBug generates paths which resemble the
globally shortest path in simple scenarios, consisting of
disjoint convex obstacles. Moreover, the algorithm gen-
erates reasonably short paths even in concave, room-like
environments.

Let us mention several potential uses and extensions
for the new algorithm. First, 3DBug is useful for nav-
igating free-flying robots in either real tasks such as
surveillance, or in simulated scenarios such as virtual re-
ality games. Second, 3DBug provides new insight into
the important problem of sensor-based navigation in
three-dimensions. Third, the algorithm can be extended
to other three-dimensional configuration spaces, such as
the ones associated with three degrees-of-freedom mo-
bile robots. Last, 3DBug is also useful as a search al-
gorithm in completely known three-dimensional envi-
ronments. The main advantage of 3Dug over classical
search algorithms such as A* is that it takes into con-
sideration the geometric characteristics of the locally
shortest path. Consequently, 3DBug finds the target
much faster than other, less informed, algorithms.

References

R. Chatila. Deliberation and reactivity in au-
tonomous mobile robots. Robotics and Autonomous
Systems, 16:197-211, 1995.

G. Foux, M. Heymann, and A. Bruckstein. Two
dimensional robot navigation among unknown sta-
tionary polygonal obstacles. IEEE Transactions on
Robotics and Automation, 9(1):96-102, 1993.

I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A
range-sensor based navigation algorithm. To appear
in the International Journal on Robotic Research.

I. Kamon, E. Rimon, and E. Rivlin. Range-sensor
based navigation in three dimensions. CIS 9712,
Center of Intelligent Systems, Dept. of Computer
Science, Technion, Israel, 1997.

K. N. Kutulakos, V. J. Lumelsky, and C. R. Dyer.
Vision guided exploration: a step toward general
motion planning in three dimensions. IEEE Conf.
on Robotics and Automation, 289-296, 1993.

T. Lozano-Perez and M. A. Wesley. An algo-
rithm for planning collision free paths among poly-
hedral obstacles. Communications of the ACM,
22(10):560-570, 1979.

V. J. Lumelsky. A comparative study on the path
length performance of maze-searching and robot
motion planning algorithms. IEEE Transactions
on on Robotics and Automation, 7(1):57-66, 1991.

V. J. Lumelsky and A. A. Stepanov. Path-planning
strategies for a point mobile automaton moving
amidst obstacles of arbitrary shape. Algoritmica,
2:403-430, 1987.

C. H. Papadimitriou. An algorithm for shortest
path motion in three dimensions. Information pro-
cessing letters, 20:259-263, 1985.

N. S. V. Rao and S. S. Iyengar. Autonomous robot
navigation in unknown terrains: visibility graph
based methods. IEEE transactions on Systems,
Man and Cybernetics, 20(6):1443-1449, 1990.

J. H. Rieger. The geometry of view space of opaque
objects bounded by smooth surfaces. Artificial In-
telligence, 44:l-40, 1990.

A. Sankaranarayanan and M. Vidyasagar. Path
planning for moving a point object amidst unknown
obstacles in a plane: the universal lower bound on
worst case path lengths and a classification of algo-
rithms. IEEE Conf. on Robotics and Automation,
1734-1941,1991.

A. Stentz. Optimal and efficient path planning
for partially known environments. IEEE Conf. on
Robotics and Automation, 3310-3317, 1994.

C. J. Taylor and D. J. Kriegman. Vision based mo-
tion planning and exploration algorithms for mobile
robots. Workshop on Algorithmic Foundations of
Robotics, 69-83. A K Peters, 1995.

169

