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Abstract

This paper is concerned with the problem of sensor-based naviga-
tion in three dimensions. The robot, which is modeled as a “bug”
or a “point robot,” has no a priori knowledge of the environment. It
must rather use its sensors to perceive the environment and plan a
collision-free path to various targets. The robot is further required
to navigate in the most reactive way possible, retaining the smallest
amount of information required for global convergence to the target.
We assume a three-dimensional polyhedral environment and present
two basic results for sensor-based navigation in this environment.
First we establish sufficient conditions for range-sensor-based ex-
ploration of the entire surface of a general polyhedron and present
a strategy for performing this task. Then we characterize the locally
shortest path from the current robot location to the target and present
a method for estimating this path in time that is linear with the prob-
lem size. Based on these results, we present a range-sensor-based
navigation algorithm for a bug robot in a general three-dimensional
polyhedral environment. The algorithm, called3DBug, strives to
process the sensory data in the most reactive way possible, without
sacrificing its global convergence guarantee. The algorithm uses
two modes of motion, called motion-toward-the-target and obstacle-
surface-traversal. During the first mode of motion, the robot follows
the locally shortest path to the target in a purely reactive fashion.
During the second mode of motion, the robot attempts to reach exit
points along an obstacle surface, while simultaneously expanding its
knowledge of the obstacle based on range data. We provide analysis
of the algorithm, showing that if the target is reachable, the robot
always finds obstacle exit points from which it reaches the target.
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Otherwise, the robot eventually possesses full knowledge of the ob-
stacle blocking its path to the target and determines that the target
is unreachable. We have also implemented and verified the algo-
rithm on three-dimensional simulated environments. The simulation
results show that3DBug generates paths that resemble the glob-
ally shortest path in simple scenarios and reasonably short paths in
concave roomlike environments.

1. Introduction

Autonomous robots navigating in a realistic setting must use
sensors to perceive the environment and plan accordingly.
Sensor-based motion-planning approaches use either global
or local planning. In the global planning approach, the robot
builds a global model of the environment based on sensory
information and uses this model for planning the path (e.g.,
Choset and Burdick 1995; Cox and Yap 1988; Foux, Hey-
mann, and Bruckstein 1993; Rimon 1997; Stentz 1994).

Global planners are guaranteed to reach the target or con-
clude target unreachability, but they are difficult to imple-
ment due to the inherent uncertainty in sensor data (Crowley
and Demazeau 1993). In contrast, local planners are simple
to implement since they typically strive to act in a reactive
fashion, using navigation vector-fields that directly map the
sensor readings to actions. (A planner is calledreactive if
it considers only the currently visible obstacles for planning
the next step.) However, to guarantee convergence to the tar-
get, the local planners augment their local planning with a
globally convergent criterion that influences the robot’s local
decisions.
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A classical family of local planners, called the Bug algo-
rithms, was originated by Lumelsky and Stepanov (1987) and
subsequently studied by Kamon, Rimon, and Rivlin (forth-
coming); Lumelsky (1991); Noborio and Yoshioka (1993);
and Sankaranarayanan and Vidyasagar (1991). These algo-
rithms assumetwo-dimensionalconfiguration spaces, so that
each obstacle is bounded by a simple closed curve. In the ba-
sicBugalgorithm, the robot initially moves toward the target
until it hits an obstacle. On that occasion, the robot switches
to a boundary-following mode of motion. It leaves the obsta-
cle boundary and resumes its motion toward the target when
anexit condition, which monitors a globally convergent crite-
rion, holds. If the robot completes a loop around an obstacle
without satisfying the exit condition, the robot concludes that
the target is unreachable. Our goal is to provide an effective
Bug-type algorithm for navigation inthree dimensions(po-
tential applications are discussed below). This is a nontrivial
goal, as the obstacle boundaries are now two-dimensional
surfaces, while the robot’s path is a one-dimensional curve.
Consequently, the robot cannot conclude target unreachabil-
ity by simply completing a loop around an obstacle. Rather,
the robot must check an exit condition on theentire surfaceof
the obstacle blocking its way to the target before concluding
target unreachability. Furthermore, this check must be care-
fully integrated with the navigation task, to allow efficient
departure from an obstacle when the target is reachable.

We assume a three-dimensional polyhedral environment
and present two results for sensor-based navigation in this en-
vironment. The first result establishes that a robot equipped
with a range sensor can visually explore the entire surface
of a polyhedral obstacle by tracing only the convex edges
within the obstacle’s convex hull. This collection of edges
is minimal, and it is analogous to thetangent graphused for
navigation in two dimensions (Liu and Arimoto 1992; Rohn-
ert 1986). The second result establishes that a sensor-based
estimation of the shortest path to the target can be based on a
structure called theblocking contour, in time that is linear with
the problem size. For comparison, the exact computation of
the globally shortest path in a completely known polyhedral
space is NP-hard (Canny 1988). Moreover, existing approx-
imation algorithms compute anε-approximate shortest path

in a polynomial time ofO(n
3

ε2 ) (Choi, Sellen, and Yap 1994;
Papadimitriou 1985), wheren is the total number of edges.
Thus, ourO(n) approach for estimating the shortest path is
an attractive alternative that is suitable for reactive navigation
in three dimensions.

We incorporate the two results into a globally convergent
navigation algorithm called3DBug. The algorithm navigates
a bug robot in a general three-dimensional polyhedral envi-
ronment using position and range sensors. The algorithm
falls within the framework of theBugalgorithms as it strives
to process the sensory data in the most reactive way possible,
without sacrificing the global convergence guarantee. The al-

gorithm uses two modes of motion, called motion-toward-the-
target and obstacle-surface-traversal. During the first mode
of motion, the robot follows the locally shortest path to the
target in a purely reactive fashion. During the second mode
of motion, the robot attempts to reach exit points along an ob-
stacle surface, while simultaneously expanding its knowledge
of the obstacle based on range data. If the target is reachable,
the robot always finds an exit point and resumes its motion
toward the target. Otherwise, the robot eventually possesses
full knowledge of the obstacle surface blocking its path to the
target and determines that the target is unreachable.

In the related literature, Kutulakos, Lumelsky, and Dyer
(1993) suggest a scheme for sensor-based three-dimensional
navigation, which combines a two-dimensionalBug algo-
rithm with three-dimensional surface exploration. Much like
our approach, they argue that the reactive behavior of the
two-dimensional algorithms must be relaxed during three-
dimensional obstacle exploration to guarantee algorithm com-
pleteness. However, in their algorithm, the motion toward
the target and the convergence mechanism are restricted to a
plane, while in3DBug, the entire motion is fully three dimen-
sional. Furthermore, no implementation of their algorithm
has been reported, while3DBughas been implemented and
validated in three-dimensional simulated environments. The
problem of sensor-based surface exploration is also discussed
in the context of map-building tasks (Kutulakos, Dyer, and
Lumelsky 1994; Rao et al. 1988). However, map-building
tasks are concerned with efficient exploration ofall obstacles
in the environment. In contrast, navigation tasks focus on
efficient navigation to a given target, and surface exploration
is only a means for circumnavigating obstacles during this
motion. Other works consider visual exploration in the con-
text of grasping applications (Blake, Zisserman, and Cipolla
1992; Connoly 1985; March and Chaumette 1997; Maver and
Bajcsy 1993; Whaite and Ferrie 1991). However, these works
are not directly relevant to the problem of online navigation.

Effective sensor-based navigation algorithms in three di-
mensions have several potential applications. First, they
can be useful for planning the motion of robot manipula-
tors designed to operate in complex unstructured environ-
ments (e.g., Crane, Duffy, and Carnahan 1991; TITAN 1996).
One can install a three-dimensional sensor device such as
the “eye” sensors of Nayar (1997) and Svoboda, Pajdla,
and Hlavac (1998) near the end effector, and use an algo-
rithm such as3DBug to guide the motion of the end ef-
fector without any a priori knowledge of the environment.
(In this context, the links of the mechanism must be further
protected from collision.) A second potential use of algo-
rithms such as3DBug is for off-line virtual reality applica-
tions. For example, movie scenes where high-speed vehicles
chase each other in a congested environment can be gener-
ated by motion-planning algorithms that use vehicle-based
sensor readings. Last,3DBugis a natural stepping stone to-
ward a longer-term goal of achieving reactive sensor-based
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navigation in the(x, y, θ) configuration space of mobile
robots. Current reactive sensor-based implementations for
mobile robots approximate the shape of the vehicle by a cylin-
der and use 2-degree-of-freedom algorithms to navigate the
robot (Chatila 1995; Laubach, Burdick, and Matthies 1998).
The ability to include the robot’s rotational degree of freedom
in the planning can significantly enhance the mobile robot
maneuverability.

The paper is organized as follows. We first present two
basic results useful for sensor-based navigation in three di-
mensions. Then, we present and analyze the properties of
the3DBugalgorithm. Next, we describe simulation results,
showing that3DBuggenerates paths that often resemble the
globally shortest path to the goal in simple environments and
reasonably short paths in concave roomlike environments.
The concluding section outlines future work and extensions
of 3DBug.

2. Basic Results for Navigation in Three
Dimensions

In this section, we characterize the sensor data and then dis-
cuss two basic results useful for sensor-based navigation in
three dimensions. First, we show that the robot can visually
explore the entire surface of a polyhedral obstacle by trac-
ing the convex obstacle edges in its convex hull. Then, we
show that the locally shortest path is determined by a struc-
ture called the blocking contour, and we use this structure to
formulate an efficient method for estimating this path.

2.1. The Sensor Data

To begin with, we assume a position sensor that measures the
robot’s current location, denotedX. We also assume a range
sensor with aninfinite detection range, which provides per-
fect readings of the distance from the robot to the obstacles.
The distance readings are acquired only for obstacle points in
thevisible set, which is the three-dimensional star-shaped set
centered at the robot’s current locationX. We further assume
that the range data are transformed into the three-dimensional
coordinates of all the vertices and edges of the visible obsta-
cles. The assumption of infinite detection range is justified in
most indoor environments, as today’s range sensors (such as
laser scanners) measure distances to objects within a range of
at least 50 meters. A similar assumption has been made by
other researchers, e.g., Rao et al. (1988).

In a polyhedral environment, the obstacles’ visible sur-
faces are planar polygons (Rieger 1990). To gain insight
into the possible arrangements of the visible surfaces, let us
mention some relevant results of singularity theory (Whitney
1955). First, singularity theory guarantees that the contours
that bound the visible surfaces are topologically stable un-
der small perturbations in generic viewing positions. Second,
the theory guarantees that only the following three kinds of

generic singularities generate the contours of the visible sur-
faces (Fig. 1). The first singularity is anoccluding contour,
which is generated at surface points where the viewing direc-
tion is perpendicular to the surface normal. This is the only
type of singularity that generates whole curves, and in polyhe-
dral environments these curves are visibleconvex edges.1 The
second type of stable singularity is theT-junction, which ap-
pears as a single point, at a point where an occluding contour
meets another occluding contour and becomes invisible. The
third singularity, called acusp, also appears as a single point,
at a point where a visible occluding contour terminates. We
may therefore conclude that each visible surface is bounded
by edges of two types—convex obstacle edges and edges gen-
erated from occlusion by convex edges of other obstacles (see
Fig. 1).

2.2. Sensor-Based Surface Exploration

Surface exploration is a key component in the process of cir-
cumnavigating a three-dimensional obstacle. We now show
that the entire surface of a polyhedronB can be visually ex-
plored while tracing only the convex edges in its convex hull.
In general, the boundary ofB may consist of several con-
nected surfaces. We focus on the connected surface ofB,
which lies in the connected component ofR3 that contains
the robot. LetCo(B) denote the convex hull ofB, and letE
denote the set of convex obstacle edges that intersectCo(B).
Note that some convex edges inE may belong to neighboring
obstacles.

To demonstrate the concept of visual exploration by trac-
ing convex edges, consider the following analogous two-
dimensional example. To visually explore the entire outer
boundary of a polygon, it suffices to visit all the convex ver-
tices in the polygon’s convex hull. For example, the entire
boundary of the polygonB1 in Figure 2(a) is visible from the
convex verticesV1, . . . , V6 contained in the convex hull of
B1. Moreover, it can be verified that this set is theminimalset
of vertices, which guarantees visual coverage, since remov-
ing a single vertex from this set would destroy the coverage
property. For example, removing the vertexV in Figure 2(b)
destroys the coverage property. To characterize visibility in
three dimensions, we need the following lemma, which is
proved in Appendix B.

LEMMA 1. Shortest path in three dimensions. The shortest
path in a three-dimensional polyhedral environment is piece-
wise linear, and the path’s vertices lie only on convex obstacle
edges.

We can now state a key result concerning visual exploration
in three dimensions.

1. An obstacle edge isconvexif there exists a plane that passes through the
edge such that the obstacle locally lies in one halfspace only. An edge is
concaveif it is not convex.
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Fig. 1. Examples of convex and concave obstacle edges, and the three types of stable singularities: occluding contour,
T-junction, and cusp.
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THEOREM 1. Let B be a polyhedral obstacle in a three-
dimensional polyhedral environment, and let E be the set of
convex obstacle edges in Co(B). Then every point of B is
directly visible from some convex obstacle edge in E. Con-
sequently, the entire surface of B is visible from the convex
obstacle edges in E.

Proof. Let F ′ be the free space inside Co(B). (In other
words, F ′ is the complement of the obstacles’ interior in
Co(B).) We need the following facts concerning F ′. First,
F ′ has polyhedral boundaries since the convex hull of a poly-
hedron is also a polyhedron. Second, the convex edges in F ′
necessarily belong to E. Third, by definition, the surface of B
lies entirely in F ′. Since the surface of B is connected, it is
possible to find a path between any two points on the surface
of B, such that the path lies in F ′.

Let bdy(B) denote the boundary of B. For a given point
p ∈ bdy(B), there exists some other point p0 ∈ bdy(B)
from which p is not directly visible. Consider the shortest
path from p0 to p in F ′. According to Lemma 1, this path is
piecewise linear and its vertices lie on convex edges in F ′. Let
p0 = q1, q2, ...qk−1, qk = p denote the vertices of this path.
By construction, p is directly visible from the path vertex
qk−1. But qk−1 belongs to some convex edge in F ′. Since all
the convex edges in F ′ belong to E, p is directly visible from
some convex edge in E. �

The theorem implies that a robot equipped with a range
sensor can explore the entire surface of a polyhedral obstacle
B by tracing the convex obstacle edges in E. Furthermore, it
is not hard to see that E is the minimalcollection of edges that
guarantees visual coverage, since a removal of a single edge
from E can destroy the coverage property. Last, a shortest-
path argument can be used to show that the convex obstacle
edges in E are “visually connected.” That is, for every pair
of edges E′,E′′ in E, there exists a chain of edges in E, E′ =
E1, E2, . . . , Ek =E′′, such that Ei+1 is visible from Ei . It
follows that the robot can incrementally trace the entire set E
using range data.

To support surface exploration that is based on the set E,
we define in Appendix A a compact data structure called the
convex edges graphor CEG. The CEG is designed to sup-
port two tasks: obstacle surface traversal and computation of
shortest paths to the target. The CEG nodes represent convex
obstacle edges inCo(B) that have been seen by the robot dur-
ing the exploration process. The CEG edges connect between
CEG nodes in a way that guarantees global connectivity of the
CEG. The CEG also contains a special type of edges called
target edges, which connect each of the CEG nodes to the
target. Each target edge emanates from the point closest to
the target along the convex obstacle edge corresponding to the
CEG node. The weight of each target edge reflects an esti-
mate of the path length from the corresponding obstacle edge
to the target, and this weight plays an important role in the

ensuing algorithm. The full details of the CEG data structure
appear in Appendix A.

2.3. Locally Shortest Path in Three Dimensions

A reactive navigation algorithm plans its path based on the
currently sensed obstacles, and we now consider the compu-
tation of a locally optimal path based on these data. Let T
denote the target. We define the locally shortest pathfrom
the robot current locationX to T as the shortest collision-free
path, based only on the currently visible obstacles. Before
describing a technique for estimating this path, we introduce
some terminology. We model each visible obstacle surface
as a polyhedral two-sided thin wall (or shell) in the physical
world. If the target is not directly visible from X, there is
some blocking obstaclebetween the robot and the target. In
this case, the line segment [X, T ] crosses the blocking obsta-
cle, and we refer to the visible surface that blocks the seg-
ment [X, T ] as the blocking surface. The blocking surface
is bounded by a piecewise linear curve, termed the blocking
contour (Fig. 3(a)). By construction, the blocking contour
lies on the blocking obstacle and its edges are of two types—
occluding and occluded. Occluding (or silhouette) edges are
convex edges that belong to the blocking obstacle. Occluded
edges are line segments generated from occlusion by some
other convex obstacle edges that partially occlude the block-
ing obstacle (Fig. 3(b)).

The following proposition asserts that the locally shortest
path always passes through the blocking contour. (In con-
trast, the globally shortest path does not necessarily satisfy
this property.) A proof of the proposition appears in Kamon
(1997).

PROPOSITION 1. In a three-dimensional polyhedral environ-
ment, let a blocking obstacle lie between the robot locationX
and the target T . Then, the shortest path fromX to T , consid-
ering only the currently visible obstacles, must pass through
the blocking contour.

In principal, it is possible to compute the locally shortest path
using ε-optimal algorithms (Choi, Sellen, and Yap 1994; Pa-
padimitriou 1985) on the thin-wall model of the currently vis-
ible obstacles. But these algorithms are computationally in-
tensive. We now present an alternative method for estimating
the locally shortest path by a curve called the blocking-contour
path. For each point y on the blocking contour, consider a
path consisting of two line segments: the visible part [X, y]
and the (optimistically) expected part [y, T ]. The length of
this path is Lblock(y) = |X − y| + |y − T |. For each line
segment li of the blocking contour, we compute the point vi ,
which minimizesLblock(y). This computation can be done in
constant time per line segment li . Then we construct a local
graph, called the blocking-contour graph, consisting of edges
from X to each vi , and (optimistic) edges from each vi to T
(Fig. 4). The blocking-contour path is the shortest path on
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Fig. 3. (a) A blocking contour consisting of silhouette edges only. (b) A blocking contour consisting of both silhouette edges
and edges generated from occlusion.

the blocking-contour graph, and it can be found in time linear
with the number of line segments in the blocking contour.

We may ask, What is the relation of the blocking-contour
path to the exact locally shortest path? If the blocking obstacle
is convex, the blocking-contour path is precisely the locally
shortest path for the following reason. Let y be a point on
the blocking contour. If the line segment [y, T ] intersects the
blocking surface at some interior point, the blocking obstacle
must have a visible concavity. Hence, if the obstacle is convex,
the line segment [y, T ] lies wholly in the free space defined
by the thin-wall model of the currently visible obstacles. In
particular, this property holds for the blocking-contour path
that minimizes the path length Lblock(y). Consequently, the
blocking-contour path is the locally shortest path. However,
in general the blocking-contour path is merely an optimistic
estimate of the path from X to T . Note that to compute the
blocking-contour path, knowledge of the blocking contour is
sufficient, and there is no need to construct a full polyhedral
model of the blocking surface.

3. The 3DBug Algorithm

The 3DBug algorithm navigates a point robot in a three-
dimensional unknown environment populated by stationary
polyhedral obstacles. The sensory information available to
the robot consists of the robot’s current position X and range
data from X to every obstacle point within the currently visi-
ble set. We assume that this sensory information is generated
by ideal measuring devices and do not consider here practical
issues such as sensor selection, sensor noise, and sensor fu-
sion. First we describe the global structure of the algorithm
and then discuss its detailed operation.

3.1. Algorithm Description

The 3DBug algorithm uses two basic motion-modes: mo-
tion toward the target and obstacle surface traversal. During

motion toward the target, the robot moves along the locally
shortest path based on the currently observable obstacles. At
each step of this motion, the robot senses the environment
and chooses an intermediate target called focus pointF . The
robot then moves to F without performing any sensing or
replanning until it reaches F . While the focus point can be
computed continuously during the robot motion, our expe-
rience shows that computation of the focus point at discrete
steps reduces the computation time without significantly sac-
rificing the quality of the resulting path. The robot terminates
its motion toward the target as follows. Let the free spaceF
be the complement of the obstacles’ interiors in 	3. Let the
function d(w, T ) : F → 	 measure the Euclidean distance
of a point w in the free space from T . The robot keeps mov-
ing toward the target until it becomes trapped in the basin of
attraction of a local minimum of d(w, T ). The appearance of
a local minimum is always associated with the presence of a
blocking obstacle, which blocks the direct path from the robot
to the target. At this point, the robot switches to traversing
the surface of the blocking obstacle.

During the surface-traversal mode of motion, the robot
searches for a suitable exit point on the obstacle surface from
which it can resume its motion toward the target. At the same
time, the robot expands its knowledge of the obstacle surface
and stores this information in the CEG. At each step during
surface traversal, the robot computes the shortest pathto the
target based on the current CEG, chooses a focus point F
on this path, and moves to F . Upon reaching F , the robot
acts in one of the following two ways, according to a regime
described below. Either the robot senses the environment,
updates the CEG, and immediately moves to a new focus
point, or the robot first traces the convex edge containing
F while sensing the environment and then updates the CEG
and moves to a new focus point. In the edge-tracing mode
of operation, the accumulative effect of tracing the convex
obstacle edges is the visual coverage of the entire obstacle
surface. At the end of each CEG updating, the robot records
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Fig. 4. The blocking-contour graph of (a) a convex obstacle and (b) a concave obstacle.

the closest point to the target observed so far on the obstacle
surface. This point is denoted pmin.

After updating the CEG, the robot tests an exit condition
as follows. Let Vexit be the closest point to the target along
the visible portion of the line segment [X, T ], where X is the
current robot location. The robot leaves the obstacle surface
when d(Vexit , T ) < d(pmin, T ). If the robot is unable to
find an exit point during the obstacle surface exploration, it
performs a final target-reachability test, which is described
below. The robot determines that the target is unreachable and
halts only if this final test fails. A summary of the algorithm
follows.

1. Move toward T along the locally shortest path, until
one of the following events occurs:

• The target is reached. Stop.

• A local minimum is detected.
Go to step 2.

2. Traverse the blocking obstacle surface, searching for a
suitable exit point while updating the CEG and record-
ing pmin, until one of the following events occurs:

• The target is reached. Stop.

• The exit condition holds:
d(Vexit , T ) < d(pmin, T ).
Go to step 4.

• The entire surface has been sensed.
Go to step 3.

3. Perform the final target-reachability test: go to pmin.
If the exit condition holds at pmin, go to step 4.
Otherwise, the target is unreachable. Stop.

4. Perform a transition phase. Move directly toward Vexit
until reaching a point Z where d(Z, T ) < d(pmin, T ).
Go to step 1.

3.2. Execution Example

In the following, we present a detailed example of the 3DBug
execution. The environment consists of a single box-like ob-
stacle with a single entry hole (Fig. 5). The start point S is
located outside the box such that the entry hole is invisible
from S, while the target T is located inside the box. Thus, the
robot is forced to explore the side-facets of the box using the
surface-traversal mode of motion before it finds the entry hole
and reaches T . The robot initially uses the motion-toward-
the-target mode of motion. From S, the robot observes the
blocking contour, which is the boundary of the visible surface
that blocks the robot’s direct path to the target (Fig. 5(a)).
Next, the robot computes the locally shortest path to the tar-
get. This path passes through the blocking contour, and the
robot moves to the point F1 where the locally shortest path
intersects the blocking contour. At this stage, the robot moves
toward the upper facet of the box, since this facet is not visi-
ble from S and is thus unknown to the robot. When the robot
reaches F1, it detects that it cannot further decrease its dis-
tance to the target as follows. The robot detects that all the
points y on the blocking contour, as defined from F1, satisfy
d(y, T ) > d(F1, T ). The robot subsequently switches to the
obstacle-surface traversal mode of motion. In the new mode
of motion, the robot first constructs the CEG, which contains
all the convex obstacle edges visible from F1. The CEG also
contains target edges, which connect its nodes to the target.
The robot next computes the shortest path to T along the CEG
and moves to the pointF2, which lies on the shortest path (Fig.
5(b)). When the robot reaches F2, it observes another side-
facet of the box. The robot updates the CEG and computes
the shortest path to T on the updated CEG (Fig. 5(c)). Note
that the CEG has been created at F1 and not at S. Hence, the
edges of the side-facet that contain the point F2 are added to
the CEG only at F2, although this facet was first seen from
S. The shortest path from F2 to T leads to F3. As the robot
reaches F3, it observes the entry hole and updates the CEG
accordingly (Fig. 5(d)). At this point, the convex obstacle
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Fig. 5. Execution example of 3DBug. The figures present the local views from (a) the start point S, (b) the focal point F1, (c)
F2, and (d) F3. The visible surfaces from each viewing position are filled.

edges in the CEG form two disjoint components. To make
the CEG a connected graph, a linking edge is added to the
CEG according to a procedure specified in Appendix A. The
robot now computes the shortest path to T along the updated
CEG and moves along this path to F4. At F4, the target is
directly visible and the robot moves directly to T . We now
proceed to describe the detailed operation of the algorithm.

3.3. Motion Toward the Target

During motion toward the target, the robot moves between
successive focus points along the locally shortest path to the
target, based on the currently sensed obstacles. If the target T
is directly visible to the robot, the shortest path leads directly
to T . Otherwise, the locally shortest path passes through the
blocking contour (Proposition 1). To guarantee convergence
to the target, we wish to ensure that the distance of the robot to
the target decreases monotonically between successive focus
points. To achieve this objective, the algorithm computes
the locally shortest path based only on the points y of the
blocking contour satisfying d(y, T ) ≤ d(X, T ), where X
is the current robot location. This subset of the blocking
contour is termed the feasible subcontour(Fig. 6(a)). Once
the feasible subcontour is computed, the algorithm constructs
the blocking-contour graph based on the feasible subcontour

and the target node and searches this graph for the shortest
path to T .

The robot chooses a new focus point F along the locally
shortest path as follows. Let Y be the point on the feasible
subcontour through which the locally shortest path passes. (It
can be verified that Y is unique.) If Y lies on a convex edge
of the blocking obstacle, F is set to Y (Fig. 6(a)). If Y lies
on a line segment generated by occlusion, F is chosen on the
occluding obstacle edge at the point where the line segment
[X, Y ] crosses the occluding edge (Fig. 6(b)). The reason for
this choice is as follows. The globally shortest path never
passes through line segments generated by occlusion. Since
we wish to achieve local decisions that resemble the globally
optimal ones, F is chosen on the occluding edge. In Kamon
(1997), we describe a postprocessing step that removes cases
in which the decrease in d(X, T ) between successive focus
points is infinitesimally small. This postprocessing step en-
sures that the number of focus points in each motion-toward-
the-target segment is finite.

The robot terminates its motion toward the target and
switches to obstacle surface traversal when it detects that it is
trapped in the basin of attraction of a local minimum of the
distance function d(w, T ). The corresponding sensor-based
termination condition is that the feasible subcontour becomes
empty. As shown below, this event is always associated with
the presence of a local minimum of d(w, T ).
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Fig. 6. Motion toward the target. (a) From X=S, the locally shortest path passes through F1. (b) At X=F1, the point Y lies
on a line segment generated by occlusion. Hence, F2 is chosen on the occluding edge. (c) From X=F2, the locally shortest
path passes through F3, from which the target is directly visible.

3.4. Obstacle Surface Traversal

During obstacle surface traversal, the robot attempts to find a
suitable exit point while accumulating data about the obstacle
surface to determine target unreachability. Let P denote the
point where the robot switches to obstacle surface traversal.
It can be verified that the local minimum of d(w, T ), which
terminated the motion toward the target, is visible from P

and lies on the surface of the obstacle that blocks the direct
path from P to the target (the blocking obstacle). The robot
traverses the surface of this obstacle until either an exit con-
dition is satisfied or the entire obstacle surface is explored.
Upon starting a new obstacle-surface-traversal motion, the
robot moves into the convex hull of the blocking obstacle by
choosing a focus point F0 at the closest point to the target on
the blocking contour. Since the blocking contour lies on the
blocking obstacle, F0 lies inside the convex hull of the block-
ing obstacle. The robot moves directly to F0, then senses the
environment and generates the initial CEG of the blocking
obstacle. At each step after the initial one, the robot com-
putes the shortest path to the target along the current CEG.
The last edge along this path is always a target edge, which
connects a particular CEG node to T . Let V denote this CEG
node. Then the robot chooses the next focus point F at the
point where the target edge emanates from the convex ob-
stacle edge corresponding to V . The robot next moves to F
along the CEG-based shortest path.

Before describing the action taken by the robot at F , let
us consider the high-level objectives of the obstacle-surface-
traversal mode of motion. This mode of motion has two ob-
jectives. The primary objective is to find an obstacle exit
point if one exists. The secondary objective is to explore the
obstacle surface to conclude target unreachability. Our ap-
proach to the integration of these two objectives is based on
the following intuitive observation. In polyhedral environ-
ments, it often suffices for the robot to sense the environment
and test the exit condition from a single point on each con-
vex obstacle edge. In other words, it is often the case that

the data collected from a single point on a convex obstacle
edge reveal all the information necessary to register neigh-
boring obstacle edges and evaluate the exit condition. This
observation suggests that for navigation purposes, the robot
need only visit a single point in each convex obstacle edge
and then immediately proceed to some other obstacle edge.
Only when the collection of detected edges has been checked
and no exit point has been found should the robot resort to the
relatively time-consuming operation of edge tracing. Based
on this argument, we perform the obstacle surface traversal
using the following primary and secondary phases.

During the primary phase, the robot checks the exit con-
dition at a single point on each convex obstacle edge. When
the robot arrives to a focus point F , it senses the environ-
ment and updates the CEG as shown in Figure 7. Next, the
robot raises the weight of the target edge that emanates from
F to infinity. This weight increase ensures that subsequent
CEG paths will lead the robot to other yet unvisited convex
obstacle edges. Our experiments have shown that the robot
is usually able to effectively find an exit point using only the
primary phase of the surface traversal motion. However, if
all the detected convex obstacle edges (equivalently, the CEG
nodes) have been visited without finding a suitable exit point,
the robot reinitializes the target edges to their original weight
and executes the secondary phase.

During the secondary phase of obstacle surface traversal,
the robot traces entire convex edges. When the robot arrives to
a focus pointF , it traces the convex obstacle edge, which con-
tains the pointF , while continuously sensing the environment
and updating the CEG. During this tracing, the robot contin-
uously computes the closest point to the target observed so
far on the obstacle surface,2 pmin. At the end of this tracing,
the robot tests the exit condition. If the test is not satisfied,

2. To compute pmin, the robot decomposes the blocking surface into its
constituent planar polygons. For each planar polygon P , the robot computes
the closest point to T , denoted y, in the plane of P . If y lies inside P , then
pmin=y. Otherwise, pmin is the closest point to T on the boundary of P .
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Fig. 7. An example of the primary phase of obstacle surface traversal. The robot switches to surface traversal already at S,
since d(S, T ) < d(y, T ) holds for all points y on the blocking contour. The robot moves through the focus points F1, F2,
and F3. From F3, the target is visible, and the robot leaves the obstacle.

the robot raises the weight of the target edge that emanates
from F to infinity. This weight increase ensures that the CEG
node corresponding to the traced convex obstacle edge will
not be retraced again. However, subsequent CEG paths may
pass through this CEG node on their way to yet untraced con-
vex obstacle edges. The secondary phase ends either when the
robot finds an exit point or when all the convex obstacle edges
corresponding to CEG nodes have been completely traced.

Finally, we discuss the exit condition and the final target-
reachability test. After updating the CEG, the robot tests the
exit condition by inspecting Vexit , the closest point to the
target along the visible portion of the segment [X, T ]. If
d(Vexit , T ) < d(pmin, T ), the exit condition is satisfied. Be-
fore resuming its motion toward the target, the robot performs
a transition phase where it moves directly toward Vexit until
it reaches a point Z where d(Z, T ) < d(pmin, T ). As dis-
cussed below, the combination of the exit condition and the
transition phase ensures that each local-minimum of d(w, T )
is associated with at most one switch to surface traversal. Fi-
nally, if the entire surface has been explored without finding
an exit point, the robot performs a final target-reachability
test. This test is necessary since the exit condition is tested
only at discrete points on convex obstacle edges, and these
points alone do not suffice to conclusively determine target
unreachability. To perform the test, the robot moves to the
closest point to the target, pmin, and checks the exit condition
from there. If the exit condition is not satisfied at pmin, the
target is unreachable.

4. Algorithm Analysis

The convergence of 3DBugis based on the following ideas.
During motion toward the target, the distance of the robot
from the target, d(X, T ), decreases monotonically between
successive steps. Moreover, the path length of each motion-
toward-the-target segment is finite. During obstacle surface
traversal, the robot either senses the entire obstacle surface
or leaves the surface before completing the exploration. We
prove that the path length of each obstacle-surface-traversal
segment is finite. The robot switches to surface traversal only
at points that are uniquely associated with local minima of
the distance function d(w, T ). Since d(w, T ) has finitely
many local minima in any bounded polyhedral environment,
there are finitely many motion segments. As each segment is
of finite length, the algorithm terminates after a finite-length
path. If the target is reachable, convergence to the target
is guaranteed by the exit condition. This condition ensures
that the robot always terminates its surface traversal mode and
resumes its motion toward the target. By construction, the last
motion-toward-the-target segment has no obstacle trapping
the robot at a local minimum of d(w, T ), and this segment
leads the robot to T .

Next we introduce some terminology. We consider a point
robot in a bounded three-dimensional space, populated by
a finite number of stationary polyhedral obstacles. A point
where the robot switches from motion toward the target to
obstacle surface traversal is termed a switch pointPi . Each
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switch pointPi has a corresponding local-minimum pointMi ,
which is the local minimum of the distance function d(w, T )
that triggers the switch. A point where the exit condition holds
and the transition phase is initiated is termed an exit pointLi .
Last, a transition pointZi is a point where the transition phase
terminates and the motion toward the target resumes.

We now summarize the convergence proof of 3DBug,
which appears in full detail in Kamon (1997). The following
two lemmas assert that each segment of the algorithm’s two
modes of motion has finite length.

LEMMA 2. The path length of each motion-toward-the-target
segment is finite.

Proof sketch. In the proof, we show that every motion-
toward-the-target segment consists of finitely many focus
points Fi . By construction, the next focus point Fi+1 is cho-
sen on a convex obstacle edge that is directly visible from the
current focus point Fi . Since Fi+1 is directly visible from
Fi , the robot moves between successive focus points along a
straight-line segment of finite length. Hence, the path length
of each motion-toward-the-target segment is finite. �
LEMMA 3. The path length of each obstacle-surface-
traversal segment is finite.

Proof. Each obstacle-surface-traversal segment has primary
and secondary phases. In both phases, the weight of the tar-
get edge connecting a convex obstacle edge to T is raised
to infinity once the edge has been visited. Thus, the robot
visits at most one point in each convex obstacle edge dur-
ing the primary phase and traces a convex obstacle edge at
most once during the secondary phase. Since there are finitely
many obstacle edges, both phases take a finite number of steps
to complete. Each step involves motion between two nodes
along the CEG, together with a possible tracing of the obsta-
cle edge corresponding to the last CEG node along the path.
The path between any two CEG nodes has finite length, since
by assumption the polyhedral environment is bounded and
contains finitely many obstacles. Hence, each step requires
motion along a finite-length path, and the total path length of
each obstacle-surface-traversal segment is finite. �

We wish to show that there are finitely many segments of
each motion mode. We begin with a lemma that associates
with every switch pointPi a local minimum of d(w, T ). Then
we show that the distance to the target decreases monotoni-
cally between successive local-minimum points. The proofs
of these lemmas appear in Appendix B.

LEMMA 4. Every switch point Pi , where the robot switches
from motion toward the target to obstacle surface traversal, has
a corresponding unique point Mi , which is a local minimum
of d(w, T ), such that d(Mi, T ) ≤ d(Pi, T ).

LEMMA 5. The distance to the target decreases monoton-
ically between successive local-minimum points, that is,
d(Mi+1, T ) < d(Mi, T ).

The next lemma asserts that if the target is reachable, the exit
condition holds true after a finite-length path.

LEMMA 6. If the target is reachable from a switch point Pi ,
the exit condition will cause the robot to leave the obstacle
surface after a finite-length path.

Proof. Since each obstacle-surface-traversal segment is finite
in length (Lemma 3), it suffices to show that the exit condition
is satisfied in the final target-reachability test, performed at
the end of each surface-traversal segment. The final target-
reachability test is performed from a point pmin, which is the
closest to T on the obstacle surface. Since T is reachable, it
must be possible to leave the obstacle atpmin and move toward
T for some, possibly short, line segment that ends at Vexit . If
T is directly visible from pmin, then Vexit = T . Otherwise,
Vexit is the point where the line segment [pmin, T ] crosses
some other obstacle, and d(X, T ) decreases monotonically
along the line segment [pmin, Vexit ]. Thus, the exit condition
d(Vexit , T ) < d(pmin, T ) holds in both cases and the robot
leaves the obstacle surface. �
The following theorem asserts that 3DBugalways terminates.

THEOREM 2. (3DBug terminates.) The 3DBug algorithm
terminatesin any three-dimensional polyhedral environment,
after following a finite-length path.

Proof. The robot switches to obstacle surface traversal only
at points that are associated with unique local-minima of
d(w, T ) (Lemma 4). The distance to the target decreases
between successive local-minimum points (Lemma 5). Thus,
each local-minimum point of d(w, T ) is associated with at
most one switching to obstacle surface traversal. There are
finitely many local minima ofd(w, T ) in any bounded polyhe-
dral space. Hence, the path consists of finitely many obstacle-
surface-traversal segments, which are interleaved by motion-
toward-the-target segments and transition phases. Lemmas
2 and 3 guarantee that the path length of each motion seg-
ment is finite. The path length of each transition phase is
finite since the robot moves directly toward a fixed point dur-
ing this phase. Hence, the total path length generated by the
algorithm is finite. �

The following theorem asserts that 3DBugis complete, that
is, that it always finds the target if the target is reachable.

THEOREM 3. (3DBug is complete.) The 3DBugalgorithm
finds the targetin any three-dimensional polyhedral environ-
ment, provided that the target is reachable from the start point.

Proof. As stated in the proof of Theorem 2, there are finitely
many obstacle-surface-traversal segments. If T is reachable
from S, Lemma 6 guarantees that every obstacle-surface-
traversal segment terminates after a finite-length path. Since
every such segment is followed by a transition phase, there is
a last transition phase. This transition phase is followed by a
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lastmotion-toward-the-target segment, which leads the robot
to the target. �

5. Simulation Results

This section describes simulation results that compare the path
generated by 3DBugto the globally shortest path. We present
the average performance of 3DBugin five environments and
describe particular examples in detail. Then, we discuss some
general search characteristics of 3DBug.

To simulate the 3DBugalgorithm, we developed a three-
dimensional range-sensor simulator, which computes the
blocking surface in environments populated by general poly-
hedra. The simulator is based on the solid modeling package
IRIT (Technion—Israel Institute of Technology 1997). Since
computing the globally shortest path in a polyhedral environ-
ment is NP-hard (Canny 1988), we approximate this path by
constructing and searching a three-dimensional generalized
visibility graph (Lozano-Perez and Wesley 1979). In this
graph, the obstacle edges are broken into fixed-length seg-
ments, and each edge-segment becomes a node. The edges
of the generalized visibility graph are the collision-free lines
that interconnect all edge-segments. For example, Figure 8(b)
shows the shortest path computed on the generalized visibil-
ity graph using a resolution of 0.1 units. The obstacle in this
example has a size of 2×0.6×0.1 units, and a resolution of 0.1
units means a partition of the edges into 20×6×1 segments. As
the size of the edge-segments decreases to zero, the shortest
path on the generalized visibility graph approaches the exact
globally shortest path.

The average results of running 3DBugon five simulated
environments are summarized in Table 1. The algorithm was
tested in 400 runs for each environment, with randomly cho-
sen start and target points. The target T was always reachable
but was chosen such that it was invisible from the start point
S. For comparison, we also computed the globally shortest
path on the generalized visibility graph for each run, using a
resolution of 0.1 units. The results listed in the table express
the ratio between the average length of the paths generated by
3DBugand the approximate globally shortest paths. The en-
vironment env1consists of a single boxlike obstacle (Fig. 8).
In this environment, the 3DBugpaths were almost identical
to the visibility-graph paths in all of the runs. The next envi-
ronment, env2, is more complex and consists of seven boxlike
obstacles (Fig. 9). The average path length of 3DBugin env2,
relative to the 3D visibility graph shortest path, was 1.02. In
both env1and env2, the algorithm used the motion-toward-
the-target mode of motion along the entire path in over 99% of
the runs. The behavior of 3DBugin env2is further discussed
below.

The environment env3consists of a single concave obsta-
cle that resembles a room with a door and a window (Fig. 10).
The average path length in this environment was 1.06 (rela-
tive to the 3D visibility graph shortest path), and the obstacle-

surface-traversal mode of motion was activated in 65% of the
runs. It is interesting to note that there was a significant dif-
ference between moving out from the room and moving into
the room. The average path length while moving out from
the room was 1.01, while the average path length of moving
into the room was 1.13. This difference can be explained as
follows. Moving out from the room is easier for the robot,
since the exits from the room (the door and window) are di-
rectly visible from start points inside the room. In contrast,
when the robot starts outside the room, it is not always able
to see the entries to the room and must first search for these
entries (Fig. 10). The environment env4consists of two room-
like obstacles, separated by a wall (Fig. 11). The start and
target points were always placed inside or near the rooms,
on different sides of the separating wall. The average path
length of 1.03 in env4is better than the average path length
in env3, since the entries to each room are visible as the robot
approaches it from the other room. To summarize, the simu-
lation results indicate that the locally shortest path resembles
the globally optimal one in simple environments consisting of
disjoint convex obstacles. Moreover, the algorithm generates
reasonably short paths even in more complex environments,
which include concave roomlike obstacles.

In the last experiment, we tested the 3DBug algorithm
under specifically unfavorable conditions. The environment
env5consists of a closed box with a small hole near one of
its corners (Fig. 12). We call the wall that contains the hole
the front wall, the wall on the opposite side the rear wall, and
all the other walls side walls. As mentioned above, the nav-
igation task is more difficult when the robot moves into the
room from outside, such that the entry to the room is not vis-
ible from the start point. In our experiment, S was randomly
chosen within a 1×1×1 volume located near the rear wall,
such that the front wall was always invisible from S. The tar-
get was randomly chosen within the box, whose size is also
1×1×1 units. This construction forces the robot to explore the
side walls using the obstacle-surface-traversal mode of mo-
tion. Moreover, since the entry hole into the box is small and
located near one of the corners, the length of a typical path
from the vicinity of the front wall to the target via the hole
is relatively long. Thus, both the environment and the choice
of start/target locations are unfavorable for 3DBug. The av-
erage path length over 200 runs, in which the robot moves
into the room, was 1.67. The average path length over 200
runs in which the robot moves out from the room was 1.03.
This example demonstrates how the limited nature of local
information can sometimes lead to significantly long paths.

6. Concluding Discussion

We presented basic results in sensor-based surface exploration
and locally shortest path computation in three-dimensional
polyhedral environments. We showed that the entire surface
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(a) (b)
Fig. 8. A path generated by 3DBugin env1. (b) The 3D visibility graph with resolution 0.1 (only edges which connect S and
T to other nodes are presented), with the approximate globally shortest path overlaid as a thick curve.

Table 1. Simulation Results of 3DBug, Relative to the Approximate Globally Shortest Path

env1 env2 env3 env4 env5

3DBug 1.00 1.02 1.06 1.03 1.35
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1 F1
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3DBug
path

B

(a) (b)
Fig. 9. The environment env2. (a) The visible surfaces as seen from S. The locally shortest path leads to F1 since the blocking
obstacle B1 is only partially visible from S. (b) The path generated by 3DBug, compared to the globally optimal path.
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Fig. 10. 3DBugin the roomlike environment env3, as the robot moves into the room. (a) The entire path of 3DBug, compared
to the globally optimal path. The blocking contour shown in bold line, as seen from (b) S, (c) F1, and (d) F2. The target is
directly visible from F3.
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Fig. 11. 3DBugin env4. (a),(b) The robot leaves house1through the window and enters house2through the door. The globally
optimal path is almost identical to 3DBug’s path. The blocking contour as seen from (c) S, (d) F1 (located at the internal
window frame), (e) F2 (located at the external window frame of house1), and (f) F3. The target is directly visible from F4.
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Fig. 12. A particular path generated by 3DBugin env5, compared to the optimal path. The path length is 1.29.

of a polyhedral obstacle can be visually covered by tracing
the convex obstacle edges within the obstacle’s convex hull.
Based on this result, we described a data structure, the convex
edges graphor CEG, which consists of convex obstacle edges
and supports both surface exploration and navigation along an
obstacle surface. The CEG is the minimal data structure that
supports visual coverage of an obstacle surface and is easy to
maintain relative to previously proposed data structures. We
also introduced the notion of a locally shortest path in three-
dimensions, and we investigated the properties of this path.
We showed that the locally shortest path must pass through
convex obstacle edges that form the blocking contourof an
obstacle. Based on this property, we described a technique for
efficiently estimating the locally shortest path in time linear
with the number of edges in the blocking contour.

These results have been incorporated into a globally con-
vergent algorithm called 3DBug. The algorithm navigates
a point robot equipped with position and range sensors in
general polyhedral environments. The algorithm strives to
process the sensory data in the most reactive way possible,
without sacrificing the global convergence guarantee. Dur-
ing motion toward the target, the robot follows the locally
shortest path in a purely reactive fashion. During traversal
of an obstacle surface, the robot incrementally constructs the
CEG of the obstacle being followed, while attempting to find
exit points along the obstacle surface. The analysis of the
algorithm confirms that 3DBugconverges to the target in any
polyhedral environment. The simulation results show that
3DBug generates paths that resemble the globally shortest
paths in simple scenarios and reasonably short paths in con-
cave roomlike environments.

The 3DBugalgorithm can be used to navigate free-flying
robots both in real tasks such as surveillance and simulated
tasks such as virtual reality applications. To highlight the
advantage of 3DBugin off-line applications, let us compare
3DBugwith the conventional approach of running a global
search algorithm such as A∗. We consider an A∗ algorithm,
which uses the 3D visibility graph as the underlying search
space.3 3DBugfinds the target in fewer steps than A∗, since
the candidate locations for the next step in 3DBugare lim-
ited to a single obstacle, which is the blocking obstacle in
both modes of motion. In contrast, A∗ must consider all
nodes that are visible from each node v in the visibility graph.
Moreover, restricting the candidate locations of 3DBugto the
blocking contour during motion toward the target is equivalent
to considering only tangent edges (i.e., edges that are tangent
to obstacles at their endpoints) in the visibility graph. The
tangent edges typically constitute a small fraction of the total
visibility edges. Thus, 3DBugprocesses a smaller amount of
information and finds the target in fewer steps than A∗.

We have implemented A∗ on the 3D visibility graph and
compared its performance to 3DBug. In env3, for example,
3DBug reached the target after 3.3 steps on average, while
A∗ required 32.4 steps to reach the target. The advantage of
3DBugis even more pronounced when the target is unreach-
able. 3DBugconcludes target unreachability after exploring
the entire surface of a single obstacle in which the target is
trapped, while A∗ must expand all nodes in its search space
to conclude unreachability. Another advantage of 3DBugis

3. A∗ is not suitable for physical sensor-based search, since the location of
the most promising node, which corresponds to the current robot location,
“ jumps” discontinuously during the search process.
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its efficient memory requirements, since it uses only a limited
amount of global information. In contrast, a data structure
that represents the entire environment may be very large. For
example, the 3D visibility graph of env2with resolution 0.1
consists of 620 nodes and 118,912 edges, while 3DBug’s data
structure consists on the average of 7 nodes and 9 edges.

Last, the problem of sensor-based navigation of a point
robot in three dimensions is a natural step toward a longer-
term goal of sensor-based navigation in the (x, y, θ) config-
uration space of mobile robots. The extension of 3DBugto
the case of mobile robots is currently under investigation. In
the context of this investigation, the following two techni-
cal problems arise. The first is how to model the visible set
measured by conventional sensors in the physical world as
a visible c-space region in the (x, y, θ) configuration space.
The second is how to bridge the gap between the polyhe-
dral configuration space assumed for a point robot and the
inherently curved configuration space of a mobile robot. The
resolution of these and other issues will yield reactive sensor-
based algorithms that achieve much greater maneuverability
than today’s 2-degree-of-freedom algorithms.

Appendix A. The Convex Edges Graph

In this appendix, we define a data structure called the convex
edges graphor CEG, which supports efficient sensor-based
traversal of a polyhedral obstacle B. Before describing the
CEG, let us consider the exploration process of B. At each
step of the process, the robot moves to a viewing position
on some convex obstacle edge in Co(B). Then, the robot
traces the obstacle edge while continuously sensing the envi-
ronment. At the end of this tracing, the robot updates the CEG
and moves to a new viewing position on some other convex
obstacle edge. We now proceed to define the CEG itself.

First, we describe the CEG nodes. By definition, the CEG
nodes represent portions of convex obstacle edges in Co(B)
that have been seen by the robot during the exploration. Sev-
eral CEG nodes may correspond to different portions of a
single obstacle edge. These visible portions only expand dur-
ing exploration, and two CEG nodes may merge into a single
node during the exploration. To make the CEG also useful
for motion planning, we add the target T as a special node
to the CEG. An example of CEG nodes V1, . . . , V9 together
with T is shown in Figure 13.

Next, we describe the CEG edges. There are three types of
CEG edges, each having its weight defined differently. Type 1
edges, termed point edges, connect convex obstacle edges,
which share a vertex. The weight of such edges is always
zero. Type 2 edges, termed linking edges, guarantee that the
CEG is connected by the end of each exploration step. The
linking edges are chosen after the CEG nodes were updated
and point edges were added. These edges are selected based
on the currently observable obstacles, according to the fol-

lowing three criteria. Linking edges connect disjoint subsets
of CEG nodes, they do not intersect any obstacle (i.e., they
are visibility edges), and they have minimal length among the
edges that satisfy the two previous requirements. It can be
verified that it is always possible to find such linking edges
that make the CEG a connected graph. The weight of a link-
ing edge is set to its Euclidean length. Note that the endpoints
of a linking edge may lie in the interior of an obstacle edge,
as illustrated in Figure 13(a). Type 3 edges, termed target
edges, are abstract edges that connect the CEG nodes to the
target T . Each target edge emanates from the point closest
to the target along the convex obstacle edge corresponding
to the CEG node. The weight of each target edge reflects an
estimate of the path length from the corresponding obstacle
edge to the target. The path length is computed based on the
accumulated data about the obstacle surface, and the details
of this computation are described in Kamon (1997). The three
types of CEG edges are shown in Figure 13(b).

Finally, we define a notion of path length on the CEG. A
path between two CEG nodes is a chain of CEG edges con-
necting the two nodes. Since a CEG node represents a portion
of a convex obstacle edge, two CEG edges may emanate from
the same CEG node at different physical points. For example,
in Figure 13(a), the edges that connect the CEG nodeV5 to the
nodes V2 and V7 emanate from different points on the convex
obstacle edge corresponding to V5. Hence, to compute the
length of a CEG path, we collect not only the weights of the
CEG edges along the path but also the length of the edge seg-
ment between the entry and exit points within each CEG node
along the path. Rather than give a formal definition of this
process, let us consider an example. Consider the path from
the robot’s current location X to T along the CEG shown in
Figure 13(a). The robot is located on a convex obstacle edge
corresponding to the CEG node V2. We regard the point X
as a special CEG node and connect it to V2 with a point edge
denoted a. The node V2 is connected to V5 by another point
edge denoted b. Let lV (i, j) denote the length of the edge
segment within the CEG node V between the entry points of
the edges i and j . Then, the length of the CEG path from X

to T is given by l(X, T ) = LV2(a, b)+LV5(b, c)+|c|+ |d|,
where |c| and |d| are the weights of the linking edge c and the
target edge d.

Let us compare the CEG with two other data structures pro-
posed in the literature for obstacle surface exploration. The
first data structure is the complete polyhedral model of an
obstacle (Rao et al. 1988). To achieve efficient navigation
to the target, both of these structures must support shortest
path computation. Consequently, both the CEG and the com-
plete polyhedral model must consider all objects that lie in the
obstacle’s convex hull, Co(B). Hence, the complete model
would contain all the object features inCo(B), while the CEG
contains only the convex edges in Co(B). The second alter-
native data structure is the visible rim (Kutulakos, Lumel-
sky, and Dyer 1993), which is the collection of curves that
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Fig. 13. (a) The CEG components. Two disjoint sets of CEG nodes are visible from the robot location at X, and a linking
edge connects them. (b) The corresponding CEG graph. (Only representative target edges are shown.)

separate visible surface patches from invisible surface
patches. Much like the CEG, in a polyhedral environment,
the visible rim consists of convex obstacle edges and line seg-
ments generated by occluding convex obstacle edges. How-
ever, the line segments generated by occlusion vary continu-
ously as the robot moves in the environment. In contrast, the
CEG consists only of convex obstacle edges that never change
their position. The description and maintenance of the visible
rim is therefore significantly harder than that of the CEG.

Appendix B. Proof Details

The following lemma characterizes the shortest path in three
dimensions.

LEMMA 1. The shortest path in a three-dimensional polyhe-
dral environment is piecewise linear, and the path’s vertices
lie only on convex obstacle edges.

Proof. Using the standard tool of path-length variation
(Thorpe 1979, p. 164), it can be verified that the shortest path
in a three-dimensional polyhedral environment is piecewise
linear, such that the path’s vertices lie on obstacle edges. We
now show that the path’s vertices must lie on convex obstacle
edges. Let Q = [q1, . . . , qn] be the vertices along the short-
est path between two points q1 and qn. Assume by contradic-
tion that some vertex qi of Q lies on a concave edge, where
2 ≤ i ≤ n−1. Consider the two-dimensional planeA defined
by the points qi−1, qi and qi+1. The three-dimensional poly-
hedral obstacles in the environment induce two-dimensional
polygonal obstacles inA. In particular, the point qi becomes a
concave obstacle vertex inA. The optimality ofQ in three di-
mensions implies that the path segment [qi−1, qi, qi+1] must
be the shortest path in A from qi−1 to qi+1. But the path

[qi−1, qi, qi+1] is not optimal in A, since the locally optimal
path in the plane passes only through convex obstacle vertices
(Liu and Arimoto 1992). Hence,Q is not the shortest path—a
contradiction. �

The following lemma associates with every switch point Pi a
local minimum of d(w, T ).

LEMMA 2. Every switch point Pi , where the robot switches
from motion toward the target to obstacle surface traversal, has
a corresponding unique point Mi , which is a local minimum
of d(w, T ), such that d(Mi, T ) ≤ d(Pi, T ).

Proof. When the robot switches to obstacle surface traver-
sal at Pi , there must be a blocking obstacle between Pi
and T . Otherwise, the robot can reach T directly from Pi ,
and no switching to obstacle surface traversal would occur.
Let vcross denote the point where the line segment [Pi, T ]
crosses the blocking surface (Fig. 14). By construction,
d(vcross, T ) ≤ d(Pi, T ). The motion toward the target is ter-
minated because the feasible subcontour has become empty.
Thus, d(Pi, T ) < d(y, T ) holds for every point y on the
blocking contour. But d(vcross, T ) ≤ d(Pi, T ). Hence,
d(vcross, T ) < d(y, T ) for every point y on the blocking con-
tour. The function d(w, T ) is continuous, and the blocking
surface is a connected compact set (i.e., closed and bounded)
whose boundary is precisely the blocking contour. Since ev-
ery continuous function attains a minimum on a compact set,
there exists a point where d(w, T ) attains its minimum on
the blocking surface. Furthermore, the local-minimum point,
Mi , satisfies d(Mi, T ) ≤ d(vcross, T ) ≤ d(Pi, T ). Finally,
if there are several local minima, the one that is closest to T
is chosen, so that a unique local-minimum point is associated
with Pi . �
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Fig. 14. The feasible subcontour becomes empty at the switch pointPi , and d(w, T ) has a local minimum atMi on the blocking
surface.

The final lemma asserts that the distance to the target decreases
monotonically between successive local-minimum points.

LEMMA 3. The distance to the target decreases monoton-
ically between successive local-minimum points, that is,
d(Mi+1, T ) < d(Mi, T ).

Proof. According to Lemma 4, each switch point Pi is asso-
ciated with a unique local-minimum point Mi . While mov-
ing from Pi to Pi+1, the robot first traverses an obstacle sur-
face, then leaves the obstacle and performs a transition phase.
The transition phase is followed by motion toward the tar-
get, which ends at the switch point Pi+1. By construction,
the entire blocking surface is visible from Pi . Since Mi lies
on the blocking surface, it is visible from Pi . Hence, the
minimum distance to the target observed by the robot satis-
fies d(pmin, T ) ≤ d(Mi, T ). The surface traversal is ter-
minated when the exit condition, d(Vexit , T ) < d(pmin, T ),
holds true. The robot then performs the transition phase and
moves toward Vexit until it reaches a point Zi , which satisfies
d(Zi, T ) < d(pmin, T ). Thus, d(Zi, T ) < d(Mi, T ) at the
end of the transition phase. From Zi , the motion toward the
target is resumed until the switch pointPi+1 is reached. Since
the distance d(X, T ) decreases monotonically during motion
toward the target, d(Pi+1, T ) ≤ d(Zi, T ), and consequently
d(Pi+1, T ) < d(Mi, T ). Based on Lemma 4, d(Mi+1, T ) ≤
d(Pi+1, T ), and consequently d(Mi+1, T ) < d(Mi, T ). �
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