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Abstract Otherwise, the robot eventually possesses full knowledge of the ob-
stacle blocking its path to the target and determines that the target

This paper is concerned with the problem of sensor-based navigg-unreachable. We have also implemented and verified the algo-

tion in three dimensions. The robot, which is modeled as a “bugtithm on three-dimensional simulated environments. The simulation

or a “point robot,” has no a priori knowledge of the environment. Itresults show thaBD Bug generates paths that resemble the glob-

must rather use its sensors to perceive the environment and plarally shortest path in simple scenarios and reasonably short paths in

collision-free path to various targets. The robot is further requirecconcave roomlike environments.

to navigate in the most reactive way possible, retaining the smallest

amount of information required for global convergence to the target.

We assume a three-dimensional polyhedral environment and present

two basic results for sensor-based navigation in this environmeni.

First we establish sufficient conditions for range-sensor-based e

ploration of the entire surface of a general polyhedron and prese

. Introduction

t . L . .
. . . utonomous robots navigating in a realistic setting must use
a strategy for performing this task. Then we characterize the loca@ensors to perceive thegenvi?onment and plan a?ccordingly

shortest path from the current robot location to the target and presergensor based motion-planning approaches use either global
a method for estimating this path in time that is linear with the prob- P g app 9

lem size. Based on these results, we present a range-sensor-b Qripcal planning. In the global planning approach, the robot

Se .

o . . . . :}Jw ds a global model of the environment based on sensory
navigation algorithm for a bug robot in a general three-dimension Information and uses this model for planning the path (e

polyhedral environment. The algorithm, call8® Bug, strives to P 9 P 9.

rocess the sensory data in the most reactive way possible withcg'artwset and Burdick 1995; Cox and Yap 1988; Foux, Hey-
P M yp ’ mann, and Bruckstein 1993; Rimon 1997; Stentz 1994).

sacrificing its global convergence guarantee. The algorithm uses
. . Global planners are guaranteed to reach the target or con-
two modes of motion, called motion-toward-the-target and obstacle; - o .
. ) . clude target unreachability, but they are difficult to imple-
surface-traversal. During the first mode of motion, the robot follows . . .
. . - ment due to the inherent uncertainty in sensor data (Crowley
the locally shortest path to the target in a purely reactive fashion. .
. : apd Demazeau 1993). In contrast, local planners are simple
During the second mode of motion, the robot attempts to reach exit . . . . ) .
. . . “to implement since they typically strive to act in a reactive
points along an obstacle surface, while simultaneously expanding IS | . . . . .
; ashion, using navigation vector-fields that directly map the
knowledge of the obstacle based on range data. We provide analysiS . . . L
ensor readings to actions. (A planner is caliedctiveif

of the algorithm, showing that if the target is reachable, the robo; . L .
; L L it considers only the currently visible obstacles for planning
always finds obstacle exit points from which it reaches the target.
the next step.) However, to guarantee convergence to the tar-
The Intermational Journal of Robotics Research get, the local planner§ aygment .the|r local plannmg’ with a
Vol. 20, No. 1, January 2001, pp. 6-25, globally convergent criterion that influences the robot’s local
©2001 Sage Publications, Inc. decisions.
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A classical family of local planners, called the Bug algogorithm uses two modes of motion, called motion-toward-the-
rithms, was originated by Lumelsky and Stepanov (1987) artdrget and obstacle-surface-traversal. During the first mode
subsequently studied by Kamon, Rimon, and Rivlin (forthef motion, the robot follows the locally shortest path to the
coming); Lumelsky (1991); Noborio and Yoshioka (1993)target in a purely reactive fashion. During the second mode
and Sankaranarayanan and Vidyasagar (1991). These algbmotion, the robot attempts to reach exit points along an ob-
rithms assuméwvo-dimensionatonfiguration spaces, so thatstacle surface, while simultaneously expanding its knowledge
each obstacle is bounded by a simple closed curve. In the Igdthe obstacle based on range data. If the target is reachable,
sic Bugalgorithm, the robot initially moves toward the targethe robot always finds an exit point and resumes its motion
until it hits an obstacle. On that occasion, the robot switchdgward the target. Otherwise, the robot eventually possesses
to a boundary-following mode of motion. It leaves the obstaull knowledge of the obstacle surface blocking its path to the
cle boundary and resumes its motion toward the target whéafget and determines that the target is unreachable.
anexit condition which monitors a globally convergent crite-  In the related literature, Kutulakos, Lumelsky, and Dyer
rion, holds. If the robot completes a loop around an obstac{é993) suggest a scheme for sensor-based three-dimensional
without satisfying the exit condition, the robot concludes thdtavigation, which combines a two-dimensiorizlg algo-
the target is unreachable. Our goal is to provide an effectifhm with three-dimensional surface exploration. Much like
Bugtype algorithm for navigation ithree dimensiongpo- OUr approach, they argue that the reactive behavior of the
tential applications are discussed below). This is a nontrivifi/0-dimensional algorithms must be relaxed during three-
goal, as the obstacle boundaries are now two-dimensiorfinensional obstacle exploration to guarantee algorithm com-
surfaces, while the robot's path is a one-dimensional curvel€téness. However, in their algorithm, the motion toward

Consequently, the robot cannot conclude target unreachafif]é target and the convergence mechanism are restricted to a

ity by simply completing a loop around an obstacle. RatheP/@ne, while ir3DBug the entire motion is fully three dimen-

the robot must check an exit condition on #reire surfacef  Sional. Furthermore, no implementation of their algorithm

the obstacle blocking its way to the target before concluding@S Peen reported, whibDBughas been implemented and

target unreachability. Furthermore, this check must be caréd/idated in three-dimensional simulated environments. The
fully integrated with the navigation task, to allow efficient_pmblem of sensor-based surface exploration is also discussed

departure from an obstacle when the target is reachable. in the context of map-building tasks (Kutulakos, Dyer, and

We assume a three-dimensional polyhedral environmelrﬁJrnGISky 1994; Rao et al. 1988). However, map-building

and present two results for sensor-based navigation in this ?éks are goncerned with efficient exp!oraFlomH)fobstacles
|r¢rthe environment. In contrast, navigation tasks focus on

vironment. The first result establishes that a robot equipped.. . I . .
. ) : efficient navigation to a given target, and surface exploration
with a range sensor can visually explore the entire surface ; 2 . .
. IS only a means for circumnavigating obstacles during this
of a polyhedral obstacle by tracing only the convex edges . . ; T
L ) . . motion. Other works consider visual exploration in the con-
within the obstacle’s convex hull. This collection of edge : L ! .
is minimal and it is analogous to thangent graptused for ext of grasping applications (Blake, Zisserman, and Cipolla
L : 9 ) gent grap 1992; Connoly 1985; March and Chaumette 1997; Maver and
navigation in two dimensions (Liu and Arimoto 1992; Rohn-

. Bajesy 1993; Whaite and Ferrie 1991). However, these works
ert 1986). The second result establishes that a sensor-baggebpnot directly relevant to the problem of online navigation.

estimation of the shortest path to the target can be based on & frective sensor-based navigation algorithms in three di-
structure called thielocking contouyin time that s linear with ensions have several potential applications. First, they
the problem size. For comparison, the exact computation of .\ o \;seful for planning the motion of robot manipula-

the globally shortest path in a completely known polyhedrgl, o yesigned to operate in complex unstructured environ-
space is NP-hard (Canny 1988). Moreover, existing approgyents (e.g., Crane, Duffy, and Carnahan 1991; TITAN 1996).
imation algorithms compute anapproximate shortest path e can install a three-dimensional sensor device such as
in a polynomial time of0 (%7) (Choi, Sellen, and Yap 1994; the “eye” sensors of Nayar (1997) and Svoboda, Pajdla,
Papadimitriou 1985), where is the total number of edges. and Hlavac (1998) near the end effector, and use an algo-
Thus, ourO (n) approach for estimating the shortest path igithm such as3DBugto guide the motion of the end ef-
an attractive alternative that is suitable for reactive navigatidector without any a priori knowledge of the environment.
in three dimensions. (In this context, the links of the mechanism must be further
We incorporate the two results into a globally convergergrotected from collision.) A second potential use of algo-
navigation algorithm calledDBug The algorithm navigates rithms such a8DBugis for off-line virtual reality applica-
a bug robot in a general three-dimensional polyhedral envtions. For example, movie scenes where high-speed vehicles
ronment using position and range sensors. The algoriththase each other in a congested environment can be gener-
falls within the framework of th&ugalgorithms as it strives ated by motion-planning algorithms that use vehicle-based
to process the sensory data in the most reactive way possilgensor readings. LagPBugis a natural stepping stone to-
without sacrificing the global convergence guarantee. The alard a longer-term goal of achieving reactive sensor-based
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navigation in the(x, y, #) configuration space of mobile generic singularities generate the contours of the visible sur-
robots. Current reactive sensor-based implementations faces (Fig. 1). The first singularity is atcluding contour
mobile robots approximate the shape of the vehicle by a cylimhich is generated at surface points where the viewing direc-
der and use 2-degree-of-freedom algorithms to navigate ttien is perpendicular to the surface normal. This is the only
robot (Chatila 1995; Laubach, Burdick, and Matthies 1998jype of singularity that generates whole curves, and in polyhe-
The ability to include the robot’s rotational degree of freedordral environments these curves are visitiavex edges The
in the planning can significantly enhance the mobile robaecond type of stable singularity is tlgunction which ap-
maneuverability. pears as a single point, at a point where an occluding contour
The paper is organized as follows. We first present twmeets another occluding contour and becomes invisible. The
basic results useful for sensor-based navigation in three dhird singularity, called @usp also appears as a single point,
mensions. Then, we present and analyze the propertiesabfa point where a visible occluding contour terminates. We
the 3DBugalgorithm. Next, we describe simulation resultsmay therefore conclude that each visible surface is bounded
showing thaBDBuggenerates paths that often resemble thiey edges of two types—convex obstacle edges and edges gen-
globally shortest path to the goal in simple environments aretated from occlusion by convex edges of other obstacles (see
reasonably short paths in concave roomlike environmentsig. 1).
The concluding section outlines future work and extensions

of 3DBug )

2.2. Sensor-Based Surface Exploration
2. Basic Resultsfor Navigation in Three Surface exploration is a key component in the process of cir-
Dimensions cumnavigating a three-dimensional obstacle. We now show

that the entire surface of a polyhedr@ncan be visually ex-
In this section, we characterize the sensor data and then diwred while tracing only the convex edges in its convex hull.
cuss two basic results useful for sensor-based navigationlmgeneral, the boundary a8 may consist of several con-
three dimensions. First, we show that the robot can visualhected surfaces. We focus on the connected surfacg, of
explore the entire surface of a polyhedral obstacle by trawhich lies in the connected component®Ff that contains
ing the convex obstacle edges in its convex hull. Then, wbe robot. LetCo(8B) denote the convex hull oB, and let&é
show that the locally shortest path is determined by a strudenote the set of convex obstacle edges that inte€s&cB).
ture called the blocking contour, and we use this structure dMote that some convex edgesémay belong to neighboring

formulate an efficient method for estimating this path. obstacles.
To demonstrate the concept of visual exploration by trac-
21. The Sensor Data ing convex edges, consider the following analogous two-

dimensional example. To visually explore the entire outer

To begin with, we assume a position sensor that measures figndary of a polygon, it suffices to visit all the convex ver-
robot’s current location, denoted. We also assume a rangeyjces in the polygon’s convex hull. For example, the entire

sensor with annfinite detection range, which provides Per-houndary of the polygos; in Figure 2(a) is visible from the
fect readings of the distance from the robot to the obstaclggynyex vertices/1, ... , Ve contained in the convex hull of
The distance readings are acquired only for obstacle pointsgf) Moreover, it can be verified that this set is thnimalset
thevisible setwhich is the three-dimensional star-shaped sk yertices, which guarantees visual coverage, since remov-
centered at the robot's current locatisin We further assume nq a single vertex from this set would destroy the coverage
that the range data are transformed into the three-dmensmw%perty_ For example, removing the vertein Figure 2(b)
coordinates of all the vertices and edges of the visible ObSt&éstroys the coverage property. To characterize visibility in

cles. The assumption of infinite detection range is justified ifhree dimensions, we need the following lemma, which is

most indoor environments, as today’s range sensors (sucrb@éved in Appendix B.

laser scanners) measure distances to objects within a range of

at least 50 meters. A similar assumption has been made byMMA 1. Shortest path in three dimensions. The shortest

other researchers, e.g., Rao et al. (1988). path in a three-dimensional polyhedral environment is piece-
In a polyhedral environment, the obstacles’ visible sumwise linear, and the path’s vertices lie only on convex obstacle

faces are planar polygons (Rieger 1990). To gain insigkdges.

into the possible arrangements of the visible surfaces, let us ) ) )

mention some relevant results of singularity theory (Whitney’e Can now state a key result concerning visual exploration

1955). First, singularity theory guarantees that the contour%three dimensions.

that bound the VISI.ble §urfaces. ar.e t0.p0|Og|(?E'1||y stable u”._An obstacle edge isonvexif there exists a plane that passes through the

der small perturbations in generic viewing positions. Seconghyge such that the obstacle locally lies in one halfspace only. An edge is

the theory guarantees that only the following three kinds @bncavsf it is not convex.
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contour
/
cusp
concave
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convex edge
Fig. 1. Examples of convex and concave obstacle edges, and the three types of stable singularities: occluding contour,

T-junction, and cusp.

convex hull
Of B]_ *—o >——o
Vl , A R ,V2 1l
77777 V| | thisportion of the boundary
B isvisible only from the
1
convex vertex V
Va @ Vs (b)
Fig. 2. () Visual boundary exploration in two dimensions. (b) All convex vertices are required for visual boundary coverage

in two dimensions.
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THEOREM 1. Let B be a polyhedral obstacle in a three-
dimensiona polyhedral environment, and let & be the set of
convex obstacle edges in Co(8B). Then every point of B is
directly visible from some convex obstacle edge in &. Con-
sequently, the entire surface of B is visible from the convex
obstacle edgesin &.

Proof. Let ¥ be the free space inside Co(8B). (In other
words, F is the complement of the obstacles' interior in
Co(8).) We need the following facts concerning . First,
F' has polyhedral boundaries since the convex hull of apoly-
hedron is also a polyhedron. Second, the convex edgesin #’
necessarily belong to €. Third, by definition, the surface of B
liesentirely in . Since the surface of B is connected, it is
possible to find a path between any two points on the surface
of B, such that the path liesin .

Let bdy(8) denote the boundary of 8. For a given point
p € bdy(8B), there exists some other point pg € bdy(B)
from which p is not directly visible. Consider the shortest
path from pg to p in . According to Lemma 1, this path is
piecewiselinear anditsverticeslieon convex edgesin . Let
PO = g1, 92, ---gk—1, gx = p denote the vertices of this path.
By construction, p is directly visible from the path vertex
qx—1. But gx_1 belongsto some convex edgein . Sinceall
the convex edgesin ' belong to &, p isdirectly visible from
some convex edgein &. g

The theorem implies that a robot equipped with a range
sensor can explore the entire surface of apolyhedral obstacle
B by tracing the convex obstacle edgesin &. Furthermore, it
isnot hard to seethat & isthe minimalcollection of edges that
guarantees visual coverage, since aremoval of asingle edge
from & can destroy the coverage property. Last, a shortest-
path argument can be used to show that the convex obstacle
edges in & are “visually connected.” That is, for every pair
of edges E’,E” in &, there exists achain of edgesin &, E' =
E1, Eo, ..., Ey=E", suchthat E; 1 isvisible from E;. It
follows that the robot can incrementally trace the entire set &
using range data.

To support surface exploration that is based on the set €,
we define in Appendix A a compact data structure called the
convex edges graptr CEG. The CEG is designed to sup-
port two tasks: obstacle surface traversal and computation of
shortest pathsto the target. The CEG nodes represent convex
obstacle edgesin Co(48) that have been seen by therobot dur-
ing the exploration process. The CEG edges connect between
CEG nodesinaway that guaranteesglobal connectivity of the
CEG. The CEG also contains a specia type of edges called
target edgeswhich connect each of the CEG nodes to the
target. Each target edge emanates from the point closest to
thetarget along the convex obstacle edge corresponding to the
CEG node. The weight of each target edge reflects an esti-
mate of the path length from the corresponding obstacle edge
to the target, and this weight plays an important role in the

ensuing algorithm. The full details of the CEG data structure
appear in Appendix A.

2.3. Locally Shortest Path in Three Dimensions

A reactive navigation algorithm plans its path based on the
currently sensed obstacles, and we now consider the compu-
tation of alocally optimal path based on these data. Let T
denote the target. We define the locally shortest pattirom
therobot current location X to T asthe shortest collision-free
path, based only on the currently visible obstacles. Before
describing atechnique for estimating this path, we introduce
some terminology. We model each visible obstacle surface
as apolyhedral two-sided thin wall (or shell) in the physical
world. If the target is not directly visible from X, there is
some blocking obstacldetween the robot and the target. In
this case, theline segment [ X, T'] crosses the blocking obsta-
cle, and we refer to the visible surface that blocks the seg-
ment [X, T'] as the blocking surface The blocking surface
is bounded by a piecewise linear curve, termed the blocking
contour (Fig. 3(a)). By construction, the blocking contour
lies on the blocking obstacle and its edges are of two types—
occluding and occluded. Occluding (or silhouette) edges are
convex edges that belong to the blocking obstacle. Occluded
edges are line segments generated from occlusion by some
other convex obstacle edges that partialy occlude the block-
ing obstacle (Fig. 3(b)).

The following proposition asserts that the locally shortest
path always passes through the blocking contour. (In con-
trast, the globally shortest path does not necessarily satisfy
this property.) A proof of the proposition appearsin Kamon
(1997).

ProPOSITION 1. Inathree-dimensional polyhedral environ-
ment, let ablocking obstacle lie between the robot location X
andthetarget T. Then, the shortest path from X to T, consid-
ering only the currently visible obstaclasust pass through
the blocking contour.

Inprincipal, itis possibleto compute the locally shortest path
using e-optimal algorithms (Choi, Sellen, and Yap 1994; Pa-
padimitriou 1985) on the thin-wall model of the currently vis-
ible obstacles. But these algorithms are computationally in-
tensive. We now present an alternative method for estimating
thelocally shortest path by acurvecalled theblocking-contour
path For each point y on the blocking contour, consider a
path consisting of two line segments. the visible part [ X, y]
and the (optimistically) expected part [y, T]. The length of
this path is Lpjock(y) = |X — y| + |y — T|. For each line
segment /; of the blocking contour, we compute the point v;,
which minimizes Ly, (y). Thiscomputation can be donein
constant time per line segment /;. Then we construct a local
graph, called the blocking-contour graphconsisting of edges
from X to each v;, and (optimistic) edges from each v; to T
(Fig. 4). The blocking-contour path is the shortest path on
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to the blocking obstacle
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(b)

Fig. 3. (8) A blocking contour consisting of silhouette edges only. (b) A blocking contour consisting of both silhouette edges

and edges generated from occlusion.

the blocking-contour graph, and it can befoundintimelinear
with the number of line segments in the blocking contour.

We may ask, What is the relation of the blocking-contour
pathtotheexact locally shortest path? If the blocking obstacle
is convex, the blocking-contour path is precisely the locally
shortest path for the following reason. Let y be a point on
the blocking contour. If the line segment [y, T'] intersectsthe
blocking surface at some interior point, the blocking obstacle
must haveavisibleconcavity. Hence, if the obstacleisconvex,
the line segment [y, T'] lies whally in the free space defined
by the thin-wall model of the currently visible obstacles. In
particular, this property holds for the blocking-contour path
that minimizes the path length L, (y). Consequently, the
blocking-contour path is the locally shortest path. However,
in general the blocking-contour path is merely an optimistic
estimate of the path from X to 7. Note that to compute the
blocking-contour path, knowledge of the blocking contour is
sufficient, and there is no need to construct a full polyhedral
model of the blocking surface.

3. The 3DBug Algorithm

The 3DBug algorithm navigates a point robot in a three-
dimensiona unknown environment populated by stationary
polyhedral obstacles. The sensory information available to
the robot consists of the robot’s current position X and range
datafrom X to every obstacle point within the currently visi-
ble set. We assume that this sensory information is generated
by ideal measuring devices and do not consider here practical
issues such as sensor selection, sensor noise, and sensor fu-
sion. First we describe the global structure of the algorithm
and then discuss its detailed operation.

3.1. Algorithm Description

The 3DBug algorithm uses two basic motion-modes: mo-
tion toward the target and obstacle surface traversal. During

motion toward the target, the robot moves along the locally
shortest path based on the currently observable obstacles. At
each step of this motion, the robot senses the environment
and chooses an intermediate target called focus pointF. The
robot then moves to F without performing any sensing or
replanning until it reaches F. While the focus point can be
computed continuously during the robot motion, our expe-
rience shows that computation of the focus point at discrete
steps reduces the computation time without significantly sac-
rificing the quality of the resulting path. The robot terminates
its motion toward the target as follows. Let the free spaceF
be the complement of the obstacles’ interiorsin 92, Let the
function d(w, T) : £ — N measure the Euclidean distance
of apoint w in the free space from T'. The robot keeps mov-
ing toward the target until it becomes trapped in the basin of
attraction of alocal minimum of d(w, T'). The appearance of
alocal minimum is always associated with the presence of a
blocking obstaclgwhich blocksthe direct path from the robot
to the target. At this point, the robot switches to traversing
the surface of the blocking obstacle.

During the surface-traversal mode of mation, the robot
searches for a suitable exit point on the obstacle surface from
which it can resumeits motion toward the target. At the same
time, the robot expandsits knowledge of the obstacle surface
and stores this information in the CEG. At each step during
surface traversal, the robot computes the shortest patho the
target based on the current CEG, chooses a focus point F
on this path, and moves to F. Upon reaching F, the robot
actsin one of the following two ways, according to aregime
described below. Either the robot senses the environment,
updates the CEG, and immediately moves to a new focus
point, or the robot first traces the convex edge containing
F while sensing the environment and then updates the CEG
and moves to a new focus point. In the edge-tracing mode
of operation, the accumulative effect of tracing the convex
obstacle edges is the visua coverage of the entire obstacle
surface. At the end of each CEG updating, the robot records
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blocking
contour

optimal [~
vertices

Al

the closest point to the target observed so far on the obstacle
surface. This point isdenoted p,y;;/, -

After updating the CEG, the robot tests an exit condition
asfollows. Let V,,;, bethe closest point to the target along
the visible portion of the line segment [ X, T'], where X isthe
current robot location. The robot |eaves the obstacle surface
when d(Veyir, T) < d(pmin, T). |If the robot is unable to
find an exit point during the obstacle surface exploration, it
performs a final target-reachability test, which is described
below. Therobot determinesthat thetarget isunreachableand
halts only if thisfinal test fails. A summary of the algorithm
follows.

1. Move toward T aong the locally shortest path, until
one of the following events occurs:

» Thetarget isreached. Stop.

* A local minimum is detected.
Go to step 2.

2. Traverse the blocking obstacle surface, searching for a
suitable exit point while updating the CEG and record-
ing pmin, until one of the following events occurs:

» Thetarget isreached. Stop.

» The exit condition holds:
d(Vexitv T) < d(pmins T).
Goto step 4.

» The entire surface has been sensed.
Go to step 3.

3. Perform the final target-reachability test: go to p.ix.
If the exit condition holds at p,;;,., go to step 4.
Otherwise, the target is unreachable. Stop.

4. Perform atransition phase. Movedirectly toward V,,;,
until reaching apoint Z whered(Z, T) < d(pmin, T)-
Goto step 1.

blocking

vertices

(b)

Fig. 4. The blocking-contour graph of (&) a convex obstacle and (b) a concave obstacle.

3.2. Execution Example

In the following, we present a detailed example of the 3DBug
execution. The environment consists of asingle box-like ob-
stacle with a single entry hole (Fig. 5). The start point S is
located outside the box such that the entry hole is invisible
from S, whilethetarget T islocated insidethe box. Thus, the
robot is forced to explore the side-facets of the box using the
surface-traversal mode of motion beforeit findsthe entry hole
and reaches T. The robot initially uses the motion-toward-
the-target mode of motion. From S, the robot observes the
blocking contour, which isthe boundary of the visible surface
that blocks the robot’s direct path to the target (Fig. 5(a)).
Next, the robot computes the locally shortest path to the tar-
get. This path passes through the blocking contour, and the
robot moves to the point F; where the locally shortest path
intersectsthe blocking contour. At thisstage, therobot moves
toward the upper facet of the box, since thisfacet is not visi-
ble from § and is thus unknown to the robot. When the robot
reaches F1, it detects that it cannot further decrease its dis-
tance to the target as follows. The robot detects that al the
points y on the blocking contour, as defined from Fy, satisfy
d(y,T) > d(F1, T). Therobot subsequently switchesto the
obstacle-surface traversal mode of motion. In the new mode
of motion, the robot first constructs the CEG, which contains
all the convex obstacle edges visible from F;. The CEG aso
contains target edges, which connect its nodes to the target.
Therobot next computesthe shortest pathto T along the CEG
and movestothepoint F», whichliesonthe shortest path (Fig.
5(b)). When the robot reaches F», it observes another side-
facet of the box. The robot updates the CEG and computes
the shortest path to T on the updated CEG (Fig. 5(c)). Note
that the CEG has been created at 1 and not at S. Hence, the
edges of the side-facet that contain the point F» are added to
the CEG only at F», although this facet was first seen from
S. The shortest path from F, to T leadsto F3. Asthe robot
reaches Fs, it observes the entry hole and updates the CEG
accordingly (Fig. 5(d)). At this point, the convex obstacle
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Fig. 5. Execution example of 3DBug The figures present the local views from (@) the start point S, (b) the focal point Fi, (C)
F>, and (d) F3. Thevisible surfaces from each viewing position are filled.

edges in the CEG form two digjoint components. To make
the CEG a connected graph, a linking edge is added to the
CEG according to a procedure specified in Appendix A. The
robot now computes the shortest path to 7 aong the updated
CEG and moves along this path to F4. At Fy, the target is
directly visible and the robot moves directly to 7. We now
proceed to describe the detailed operation of the algorithm.

3.3. Motion Toward the Target

During motion toward the target, the robot moves between
successive focus points along the locally shortest path to the
target, based on the currently sensed obstacles. If thetarget T
isdirectly visible to the robot, the shortest path leads directly
to T. Otherwise, the locally shortest path passes through the
blocking contour (Proposition 1). To guarantee convergence
tothetarget, we wish to ensurethat the distance of therobot to
the target decreases monotonically between successive focus
points. To achieve this objective, the algorithm computes
the locally shortest path based only on the points y of the
blocking contour satisfying d(y, T) < d(X,T), where X
is the current robot location. This subset of the blocking
contour is termed the feasible subcontoufFig. 6(a)). Once
the feasible subcontour is computed, the algorithm constructs
the blocking-contour graph based on the feasible subcontour

and the target node and searches this graph for the shortest
pathto 7.

The robot chooses a new focus point F along the locally
shortest path as follows. Let Y be the point on the feasible
subcontour through which thelocally shortest path passes. (It
can be verified that Y isunique.) If Y lies on aconvex edge
of the blocking obstacle, F issetto Y (Fig. 6(a)). If Y lies
on aline segment generated by occlusion, F is chosen on the
occluding obstacle edge at the point where the line segment
[X, Y] crosses the occluding edge (Fig. 6(b)). The reason for
this choice is as follows. The globally shortest path never
passes through line segments generated by occlusion. Since
we wish to achieve local decisions that resemble the globally
optimal ones, F is chosen on the occluding edge. In Kamon
(1997), we describe a postprocessing step that removes cases
in which the decrease in d(X, T) between successive focus
points is infinitesimally small. This postprocessing step en-
sures that the number of focus points in each motion-toward-
the-target segment isfinite.

The robot terminates its motion toward the target and
switches to obstacle surface traversal when it detectsthat it is
trapped in the basin of attraction of alocal minimum of the
distance function d(w, T'). The corresponding sensor-based
termination condition isthat the feasible subcontour becomes
empty. Asshown below, this event is always associated with
the presence of alocal minimum of d(w, T).
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Fig. 6. Motion toward the target. (a) From X =S, the locally shortest path passes through Fi. (b) At X = F1, the point Y lies
on aline segment generated by occlusion. Hence, F» is chosen on the occluding edge. (c) From X = F5, the locally shortest
path passes through F3, from which the target is directly visible.

3.4. Obstacle Surface Traversal

During obstacle surface traversal, the robot attemptsto find a
suitable exit point while accumul ating data about the obstacle
surface to determine target unreachability. Let P denote the
point where the robot switches to obstacle surface traversal.
It can be verified that the local minimum of d(w, T), which
terminated the motion toward the target, is visible from P
and lies on the surface of the obstacle that blocks the direct
path from P to the target (the blocking obstacle). The robot
traverses the surface of this obstacle until either an exit con-
dition is satisfied or the entire obstacle surface is explored.
Upon starting a new obstacle-surface-traversal motion, the
robot moves into the convex hull of the blocking obstacle by
choosing afocus point Fy at the closest point to the target on
the blocking contour. Since the blocking contour lies on the
blocking obstacle, Fy liesinside the convex hull of the block-
ing obstacle. The robot moves directly to Fp, then senses the
environment and generates the initial CEG of the blocking
obstacle. At each step after the initial one, the robot com-
putes the shortest path to the target along the current CEG.
The last edge along this path is always a target edge, which
connects aparticular CEG nodeto T'. Let V denotethis CEG
node. Then the robot chooses the next focus point F at the
point where the target edge emanates from the convex ob-
stacle edge corresponding to V. The robot next movesto F
along the CEG-based shortest path.

Before describing the action taken by the robot at F, let
us consider the high-level objectives of the obstacle-surface-
traversal mode of motion. This mode of motion has two ob-
jectives. The primary objective is to find an obstacle exit
point if one exists. The secondary objective isto explore the
obstacle surface to conclude target unreachability. Our ap-
proach to the integration of these two objectivesis based on
the following intuitive observation. In polyhedral environ-
ments, it often sufficesfor the robot to sense the environment
and test the exit condition from a single point on each con-
vex obstacle edge. In other words, it is often the case that

the data collected from a single point on a convex obstacle
edge reveal all the information necessary to register neigh-
boring obstacle edges and evaluate the exit condition. This
observation suggests that for navigation purposes, the robot
need only visit a single point in each convex obstacle edge
and then immediately proceed to some other obstacle edge.
Only when the collection of detected edges has been checked
and no exit point has been found should the robot resort to the
relatively time-consuming operation of edge tracing. Based
on this argument, we perform the obstacle surface traversal
using the following primary and secondary phases.

During the primary phase, the robot checks the exit con-
dition at a single point on each convex obstacle edge. When
the robot arrives to a focus point F, it senses the environ-
ment and updates the CEG as shown in Figure 7. Next, the
robot raises the weight of the target edge that emanates from
F toinfinity. This weight increase ensures that subseguent
CEG paths will lead the robot to other yet unvisited convex
obstacle edges. Our experiments have shown that the robot
isusually able to effectively find an exit point using only the
primary phase of the surface traversal motion. However, if
all the detected convex obstacle edges (equivalently, the CEG
nodes) have been visited without finding a suitable exit point,
the robot reinitializes the target edgesto their original weight
and executes the secondary phase.

During the secondary phase of obstacle surface traversal,
therobot tracesentire convex edges. Whentherobot arrivesto
afocuspoint F, it tracesthe convex obstacle edge, which con-
tainsthe point F', while continuously sensing the environment
and updating the CEG. During this tracing, the robot contin-
uously computes the closest point to the target observed so
far on the obstacle surface,? p,i,. At the end of this tracing,
the robot tests the exit condition. If the test is not satisfied,

2. To compute p,,;,, the robot decomposes the blocking surface into its
constituent planar polygons. For each planar polygon P, the robot computes
the closest point to 7', denoted y, in the plane of P. If y liesinside P, then
Pmin =Y. Otherwise, p,,;,, isthe closest point to 7 on the boundary of P.
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Fig. 7. An example of the primary phase of obstacle surface traversal. The robot switches to surface traversal aready at S,
sinced(S,T) < d(y, T) holds for all points y on the blocking contour. The robot moves through the focus points F1, Fb,
and F3. From F3, the target is visible, and the robot leaves the obstacle.

the robot raises the weight of the target edge that emanates
from F toinfinity. Thisweight increase ensuresthat the CEG
node corresponding to the traced convex obstacle edge will
not be retraced again. However, subsequent CEG paths may
pass through this CEG node on their way to yet untraced con-
vex obstacleedges. Thesecondary phaseendseither whenthe
robot findsan exit point or when al the convex obstacle edges
corresponding to CEG nodes have been completely traced.

Finally, we discuss the exit condition and the final target-
reachability test. After updating the CEG, the robot tests the
exit condition by inspecting V.,;;, the closest point to the
target along the visible portion of the segment [X, T']. If
d(Veyit, T) < d(pmin, T), the exit condition is satisfied. Be-
foreresuming its motion toward thetarget, the robot performs
atransition phase where it moves directly toward V,,;; until
it reaches apoint Z where d(Z, T) < d(pmin, T). Asdis
cussed below, the combination of the exit condition and the
transition phase ensures that each local-minimum of d(w, T)
is associated with at most one switch to surface traversal. Fi-
nally, if the entire surface has been explored without finding
an exit point, the robot performs a final target-reachability
test. Thistest is necessary since the exit condition is tested
only at discrete points on convex obstacle edges, and these
points aone do not suffice to conclusively determine target
unreachability. To perform the test, the robot moves to the
closest point to thetarget, p.,.i,, and checksthe exit condition
from there. If the exit condition is not satisfied at p,,;,, the
target is unreachable.

4. Algorithm Analysis

The convergence of 3DBugis based on the following ideas.
During motion toward the target, the distance of the robot
from the target, d(X, T), decreases monotonically between
successive steps. Moreover, the path length of each motion-
toward-the-target segment is finite. During obstacle surface
traversal, the robot either senses the entire obstacle surface
or leaves the surface before completing the exploration. We
prove that the path length of each obstacle-surface-traversal
segment isfinite. Therobot switchesto surfacetraversal only
at points that are uniquely associated with local minima of
the distance function d(w, T). Since d(w, T) has finitely
many local minimain any bounded polyhedral environment,
there are finitely many motion segments. As each segment is
of finite length, the algorithm terminates after a finite-length
path. If the target is reachable, convergence to the target
is guaranteed by the exit condition. This condition ensures
that therobot alwaysterminatesits surfacetraversal modeand
resumesits motion toward thetarget. By construction, thelast
motion-toward-the-target segment has no obstacle trapping
the robot at alocal minimum of d(w, T), and this segment
leadstherobot to 7.

Next we introduce some terminology. We consider a point
robot in a bounded three-dimensional space, populated by
a finite number of stationary polyhedral obstacles. A point
where the robot switches from motion toward the target to
obstacle surface traversal is termed a switch pointP;. Each
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switch point P; hasacorresponding local-minimum poini/;,
which isthe local minimum of the distance function d(w, T)
that triggersthe switch. A point wheretheexit condition holds
and the transition phase isinitiated istermed an exit pointL;.
Last, atransition pointZ; isapoint wherethetransition phase
terminates and the motion toward the target resumes.

We now summarize the convergence proof of 3DBug
which appearsin full detail in Kamon (1997). The following
two lemmas assert that each segment of the algorithm’s two
modes of motion has finite length.

LEMMA 2. Thepathlength of each motion-toward-the-target
segment isfinite.

Proof sketch. In the proof, we show that every motion-
toward-the-target segment consists of finitely many focus
points F;. By construction, the next focus point F; 1 is cho-
sen on aconvex obstacle edge that isdirectly visible from the
current focus point F;. Since Fiyj is directly visible from
F;, the robot moves between successive focus points along a
straight-line segment of finite length. Hence, the path length
of each motion-toward-the-target segment is finite. O

LEMMA 3. The path length of each obstacle-surface-
traversal segment isfinite.

Proof. Each obstacle-surface-traversal segment has primary
and secondary phases. In both phases, the weight of the tar-
get edge connecting a convex obstacle edge to T is raised
to infinity once the edge has been visited. Thus, the robot
visits at most one point in each convex obstacle edge dur-
ing the primary phase and traces a convex obstacle edge at
most onceduring the secondary phase. Sincetherearefinitely
many obstacle edges, both phasestake afinite number of steps
to complete. Each step involves motion between two nodes
along the CEG, together with a possible tracing of the obsta-
cle edge corresponding to the last CEG node aong the path.
The path between any two CEG nodes hasfinite length, since
by assumption the polyhedral environment is bounded and
contains finitely many obstacles. Hence, each step requires
motion along afinite-length path, and the total path length of
each obstacle-surface-traversal segment isfinite. O

We wish to show that there are finitely many segments of
each motion mode. We begin with a lemma that associates
with every switch point P; alocal minimum of d(w, 7). Then
we show that the distance to the target decreases monotoni-
cally between successive local-minimum points. The proofs
of these lemmas appear in Appendix B.

LEMMA 4.  Every switch point P;, where the robot switches
frommotiontoward thetarget to obstaclesurfacetraversal, has
a corresponding unique point M;, which is alocal minimum
of d(w, T),suchthatd(M;, T) < d(P;, T).

LEMMA 5. The distance to the target decreases monoton-
ically between successive local-minimum points, that is,
dMi+1,T) <dM;, T).

The next lemma assertsthat if the target is reachable, the exit
condition holds true after afinite-length path.

LEMMA 6. If thetarget is reachable from a switch point P;,
the exit condition will cause the robot to leave the obstacle
surface after afinite-length path.

Proof. Since each obstacle-surface-traversal segment isfinite
inlength (Lemma3), it sufficesto show that the exit condition
is satisfied in the final target-reachability test, performed at
the end of each surface-traversal segment. The final target-
reachability test is performed from apoint p,,;,,, which isthe
closest to T on the obstacle surface. Since T is reachable, it
must bepossibletoleavetheobstacleat p,,;, and movetoward
T for some, possibly short, line segment that endsat V,.;;. If
T isdirectly visible from p,;,, then V,,;; = T. Otherwise,
Vexir 1S the point where the line segment [ pi,, T] crosses
some other obstacle, and d(X, T') decreases monotonically
along theline segment [ pyin, Vexi:]- Thus, the exit condition
d(Vexit, T) < d(pmin, T) holds in both cases and the robot
|eaves the obstacle surface. O

Thefollowing theorem asserts that 3DBugalwaysterminates.

THEOREM 2. (3DBugterminates.) The 3DBug agorithm
terminatesn any three-dimensional polyhedral environment,
after following afinite-length path.

Proof. The robot switches to obstacle surface traversal only
at points that are associated with unique local-minima of
d(w, T) (Lemma 4). The distance to the target decreases
between successive |ocal-minimum points (Lemmab). Thus,
each local-minimum point of d(w, T) is associated with at
most one switching to obstacle surface traversal. There are
finitely many local minimaof d (w, T') inany bounded polyhe-
dral space. Hence, the path consists of finitely many obstacle-
surface-traversal segments, which are interleaved by motion-
toward-the-target segments and transition phases. Lemmas
2 and 3 guarantee that the path length of each motion seg-
ment is finite. The path length of each transition phase is
finite since the robot moves directly toward afixed point dur-
ing this phase. Hence, the total path length generated by the
algorithm isfinite. O

The following theorem asserts that 3DBugis complete, that
is, that it always finds the target if the target is reachable.

THEOREM 3. (3DBugis complete.) The 3DBugalgorithm
finds the targein any three-dimensional polyhedral environ-
ment, provided that thetarget isreachablefrom the start point.

Proof. Asstated in the proof of Theorem 2, there arefinitely
many obstacle-surface-traversal segments. If T is reachable
from S, Lemma 6 guarantees that every obstacle-surface-
traversal segment terminates after a finite-length path. Since
every such segment isfollowed by atransition phase, thereis
alasttransition phase. Thistransition phaseisfollowed by a
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last motion-toward-the-target segment, which leads the robot
to the target. O

5. Simulation Results

Thissection describessimul ation resultsthat comparethepath
generated by 3DBugto the globally shortest path. We present
the average performance of 3DBugin five environments and
describe particular examplesin detail. Then, wediscusssome
general search characteristics of 3DBug

To simulate the 3DBugalgorithm, we developed a three-
dimensional range-sensor simulator, which computes the
blocking surface in environments populated by general poly-
hedra. The simulator is based on the solid modeling package
IRIT (Technion—Israel Institute of Technology 1997). Since
computing the globally shortest path in apolyhedral environ-
ment is NP-hard (Canny 1988), we approximate this path by
constructing and searching a three-dimensional generalized
visibility graph (Lozano-Perez and Wesley 1979). In this
graph, the obstacle edges are broken into fixed-length seg-
ments, and each edge-segment becomes a node. The edges
of the generalized visibility graph are the collision-free lines
that interconnect all edge-segments. For example, Figure8(b)
shows the shortest path computed on the generalized visibil-
ity graph using aresolution of 0.1 units. The obstaclein this
examplehasasize of 2x0.6x0.1 units, and aresolution of 0.1
unitsmeansapartition of the edgesinto 20x6x1 segments. As
the size of the edge-segments decreases to zero, the shortest
path on the generalized visibility graph approaches the exact
globally shortest path.

The average results of running 3DBugon five simulated
environments are summarized in Table 1. The algorithm was
tested in 400 runs for each environment, with randomly cho-
sen start and target points. Thetarget T was always reachable
but was chosen such that it was invisible from the start point
S. For comparison, we also computed the globally shortest
path on the generalized visibility graph for each run, using a
resolution of 0.1 units. The resultslisted in the table express
the ratio between the average length of the paths generated by
3DBugand the approximate globally shortest paths. The en-
vironment envlconsists of asingle boxlike obstacle (Fig. 8).
In this environment, the 3DBug paths were almost identical
to the visibility-graph pathsin all of the runs. The next envi-
ronment, env2 ismore complex and consists of seven boxlike
obstacles (Fig. 9). Theaverage path length of 3DBugin env2
relative to the 3D visibility graph shortest path, was 1.02. In
both envland env2 the algorithm used the motion-toward-
the-target mode of motion along the entire path in over 99% of
theruns. The behavior of 3DBugin env2isfurther discussed
below.

The environment env3consists of a single concave obsta-
clethat resembles aroom with adoor and awindow (Fig. 10).
The average path length in this environment was 1.06 (rela-
tiveto the 3D visibility graph shortest path), and the obstacle-

surface-traversal mode of motion was activated in 65% of the
runs. It isinteresting to note that there was a significant dif-
ference between moving out from the room and moving into
the room. The average path length while moving out from
the room was 1.01, while the average path length of moving
into the room was 1.13. This difference can be explained as
follows. Moving out from the room is easier for the robot,
since the exits from the room (the door and window) are di-
rectly visible from start points inside the room. In contrast,
when the robot starts outside the room, it is not always able
to see the entries to the room and must first search for these
entries(Fig. 10). Theenvironment env4consistsof two room-
like obstacles, separated by awall (Fig. 11). The start and
target points were always placed inside or near the rooms,
on different sides of the separating wall. The average path
length of 1.03 in env4is better than the average path length
in env3 since the entriesto each room are visible as the robot
approaches it from the other room. To summarize, the ssimu-
lation resultsindicate that the locally shortest path resembles
the globally optimal onein simple environments consisting of
disoint convex obstacles. Moreover, the algorithm generates
reasonably short paths even in more complex environments,
which include concave roomlike obstacles.

In the last experiment, we tested the 3DBug algorithm
under specifically unfavorable conditions. The environment
env5consists of a closed box with a small hole near one of
its corners (Fig. 12). We call the wall that contains the hole
the front wall, the wall on the opposite side therear wall, and
all the other walls side walls As mentioned above, the nav-
igation task is more difficult when the robot moves into the
room from outside, such that the entry to the room isnot vis-
ible from the start point. In our experiment, S was randomly
chosen within a1x 1 x 1 volume located near the rear wall,
such that the front wall was alwaysinvisiblefrom S. Thetar-
get was randomly chosen within the box, whose size is also
1x1x1 units. Thisconstruction forcestherobot to explorethe
side walls using the obstacle-surface-traversal mode of mo-
tion. Moreover, since the entry hole into the box is small and
located near one of the corners, the length of atypical path
from the vicinity of the front wall to the target via the hole
isrelatively long. Thus, both the environment and the choice
of start/target locations are unfavorable for 3DBug The av-
erage path length over 200 runs, in which the robot moves
into the room, was 1.67. The average path length over 200
runs in which the robot moves out from the room was 1.03.
This example demonstrates how the limited nature of local
information can sometimes lead to significantly long paths.

6. Concluding Discussion
We presented basi c resultsin sensor-based surface exploration

and locally shortest path computation in three-dimensional
polyhedral environments. We showed that the entire surface
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(a (b)
Fig. 8. A path generated by 3DBugin envl (b) The 3D visihility graph with resolution 0.1 (only edges which connect S and
T to other nodes are presented), with the approximate globally shortest path overlaid as athick curve.

Table 1. Simulation Results of 3DBug, Relative to the Approximate Globally Shortest Path
envl env2 env3 env4 envs
3DBug 1.00 1.02 1.06 1.03 1.35

optima path—>=— T

N
blocking contour

(a (b)
Fig. 9. The environment env2 (a) Thevisible surfaces as seen from S. Thelocally shortest path leadsto F1 sincethe blocking
obstacle 81 isonly partially visible from S. (b) The path generated by 3DBug compared to the globally optimal path.
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Fig. 10. 3DBugin the roomlike environment env3 as the robot movesinto the room. (a) The entire path of 3DBug compared
to the globally optimal path. The blocking contour shown in bold line, as seen from (b) S, (c) F1, and (d) F2. Thetarget is
directly visible from Fs.
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Fig. 11. 3DBugin env4 (a),(b) Therobot leaves houselhrough the window and enters house2hrough the door. The globally
optimal path is almost identical to 3DBuds path. The blocking contour as seen from (c) S, (d) F1 (located at the internal
window frame), (€) F> (located at the external window frame of housel), and (f) F3. Thetarget isdirectly visible from Fjy.
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Fig. 12. A particular path generated by 3DBugin env compared to the optimal path. The path length is 1.29.

of a polyhedral obstacle can be visually covered by tracing
the convex obstacle edges within the obstacle's convex hull.
Based on thisresult, we described adata structure, the convex
edges graplor CEG, which consists of convex obstacle edges
and supports both surface exploration and navigation along an
obstacle surface. The CEG isthe minimal data structure that
supports visual coverage of an obstacle surface and is easy to
maintain relative to previously proposed data structures. We
also introduced the notion of alocally shortest path in three-
dimensions, and we investigated the properties of this path.
We showed that the locally shortest path must pass through
convex obstacle edges that form the blocking contourof an
obstacle. Based on thisproperty, we described atechniquefor
efficiently estimating the locally shortest path in time linear
with the number of edges in the blocking contour.

These results have been incorporated into a globally con-
vergent algorithm called 3DBug The algorithm navigates
a point robot equipped with position and range sensors in
genera polyhedral environments. The algorithm strives to
process the sensory data in the most reactive way possible,
without sacrificing the global convergence guarantee. Dur-
ing motion toward the target, the robot follows the locally
shortest path in a purely reactive fashion. During traversa
of an obstacle surface, the robot incrementally constructs the
CEG of the obstacle being followed, while attempting to find
exit points along the obstacle surface. The analysis of the
a gorithm confirms that 3DBugconvergesto the target in any
polyhedral environment. The simulation results show that
3DBug generates paths that resemble the globally shortest
paths in simple scenarios and reasonably short paths in con-
cave roomlike environments.

The 3DBugalgorithm can be used to navigate free-flying
robots both in real tasks such as surveillance and ssimulated
tasks such as virtua reality applications. To highlight the
advantage of 3DBugin off-line applications, let us compare
3DBugwith the conventional approach of running a global
search algorithm such as A*. We consider an A* agorithm,
which uses the 3D visibility graph as the underlying search
space.3 3DBugfinds the target in fewer steps than A*, since
the candidate locations for the next step in 3DBugare lim-
ited to a single obstaclewhich is the blocking obstacle in
both modes of motion. In contrast, A* must consider all
nodesthat are visiblefrom each node v in the visibility graph.
Moreover, restricting the candidate locations of 3DBugto the
blocking contour during motiontoward thetarget i sequivalent
to considering only tangent edges (i.e., edges that are tangent
to obstacles at their endpoints) in the visibility graph. The
tangent edgestypically constitute asmall fraction of the total
visibility edges. Thus, 3DBugprocesses a smaller amount of
information and finds the target in fewer stepsthan A*.

We have implemented A* on the 3D visibility graph and
compared its performance to 3DBug In env3 for example,
3DBugreached the target after 3.3 steps on average, while
A* required 32.4 steps to reach the target. The advantage of
3DBugis even more pronounced when the target is unreach-
able. 3DBugconcludes target unreachability after exploring
the entire surface of a single obstacle in which the target is
trapped, while A* must expand al nodes in its search space
to conclude unreachability. Another advantage of 3DBugis

3. A* is not suitable for physical sensor-based search, since the location of
the most promising node, which corresponds to the current robot location,
“jumps” discontinuously during the search process.
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its efficient memory requirements, sinceit usesonly alimited
amount of global information. In contrast, a data structure
that represents the entire environment may be very large. For
example, the 3D visibility graph of env2with resolution 0.1
consists of 620 nodesand 118,912 edges, while 3DBugsdata
structure consists on the average of 7 nodes and 9 edges.

Last, the problem of sensor-based navigation of a point
robot in three dimensions is a natural step toward a longer-
term goal of sensor-based navigation in the (x, y, 6) config-
uration space of mobile robots. The extension of 3DBugto
the case of mobile robotsis currently under investigation. In
the context of this investigation, the following two techni-
cal problems arise. The first is how to model the visible set
measured by conventional sensors in the physical world as
avisible c-space region in the (x, y, 8) configuration space.
The second is how to bridge the gap between the polyhe-
dral configuration space assumed for a point robot and the
inherently curved configuration space of amobile robot. The
resolution of these and other issueswill yield reactive sensor-
based algorithms that achieve much greater maneuverability
than today’s 2-degree-of -freedom agorithms.

Appendix A. The Convex Edges Graph

In this appendix, we define a data structure called the convex
edges graplor CEG, which supports efficient sensor-based
traversal of a polyhedral obstacle 8. Before describing the
CEG, let us consider the exploration process of B. At each
step of the process, the robot moves to a viewing position
on some convex obstacle edge in Co(8). Then, the robot
traces the obstacle edge while continuously sensing the envi-
ronment. Attheend of thistracing, therobot updatesthe CEG
and moves to a new viewing position on some other convex
obstacle edge. We now proceed to define the CEG itself.

First, we describe the CEG nodes. By definition, the CEG
nodes represent portions of convex obstacle edgesin Co(B)
that have been seen by the robot during the exploration. Sev-
eral CEG nodes may correspond to different portions of a
single obstacle edge. Thesevisible portionsonly expand dur-
ing exploration, and two CEG nodes may mergeinto asingle
node during the exploration. To make the CEG aso useful
for motion planning, we add the target 7 as a specia node
to the CEG. An example of CEG nodes V1, ... , Vg together
with T is shown in Figure 13.

Next, we describe the CEG edges. There arethreetypes of
CEG edges, each having itsweight defined differently. Typel
edges, termed point edgesconnect convex obstacle edges,
which share a vertex. The weight of such edges is always
zero. Type 2 edges, termed linking edgesguarantee that the
CEG is connected by the end of each exploration step. The
linking edges are chosen after the CEG nodes were updated
and point edges were added. These edges are sel ected based
on the currently observable obstacles, according to the fol-

lowing three criteria. Linking edges connect disjoint subsets
of CEG nodes, they do not intersect any obstacle (i.e., they
arevisibility edges), and they have minimal length among the
edges that satisfy the two previous requirements. It can be
verified that it is aways possible to find such linking edges
that make the CEG a connected graph. The weight of alink-
ing edgeisset to its Euclidean length. Notethat the endpoints
of alinking edge may lie in the interior of an obstacle edge,
as illustrated in Figure 13(a). Type 3 edges, termed target
edgesare abstract edges that connect the CEG nodes to the
target T. Each target edge emanates from the point closest
to the target along the convex obstacle edge corresponding
to the CEG node. The weight of each target edge reflects an
estimate of the path length from the corresponding obstacle
edge to the target. The path length is computed based on the
accumulated data about the obstacle surface, and the details
of thiscomputation are described in Kamon (1997). Thethree
types of CEG edges are shown in Figure 13(b).

Finally, we define a notion of path length on the CEG. A
path between two CEG nodes is a chain of CEG edges con-
necting thetwo nodes. Since aCEG noderepresentsaportion
of aconvex obstacle edge, two CEG edges may emanate from
the same CEG node at different physical points. For example,
inFigure 13(a), the edgesthat connect the CEG node V5 to the
nodes V» and V7 emanate from different points on the convex
obstacle edge corresponding to Vs. Hence, to compute the
length of a CEG path, we collect not only the weights of the
CEG edges along the path but al so the length of the edge seg-
ment between the entry and exit pointswithin each CEG node
along the path. Rather than give a formal definition of this
process, let us consider an example. Consider the path from
the robot’s current location X to T along the CEG shown in
Figure 13(a). The robot islocated on a convex obstacle edge
corresponding to the CEG node V,. We regard the point X
as aspecial CEG node and connect it to Vo with a point edge
denoted a. The node V5 is connected to Vs by another point
edge denoted b. Let Iy (i, j) denote the length of the edge
segment within the CEG node V' between the entry points of
the edgesi and j. Then, the length of the CEG path from X
to T isgivenby [(X, T) = Ly,(a, b) + Ly, (b, ¢) + |c| + |d|,
where |c| and |d| arethe weights of the linking edge c and the
target edge d.

L et uscomparethe CEG withtwo other datastructurespro-
posed in the literature for obstacle surface exploration. The
first data structure is the complete polyhedral model of an
obstacle (Rao et al. 1988). To achieve efficient navigation
to the target, both of these structures must support shortest
path computation. Consequently, both the CEG and the com-
plete polyhedral model must consider all objectsthat lieinthe
obstacle’'s convex hull, Co(8). Hence, the complete model
would containall the object featuresin Co(8B), whilethe CEG
contains only the convex edgesin Co(8). The second alter-
native data structure is the visible rim (Kutulakos, Lumel-
sky, and Dyer 1993), which is the collection of curves that
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Fig. 13. (@) The CEG components. Two digoint sets of CEG nodes are visible from the robot location at X, and alinking
edge connects them. (b) The corresponding CEG graph. (Only representative target edges are shown.)

separate visible surface patches from invisible surface
patches. Much like the CEG, in a polyhedral environment,
thevisible rim consists of convex obstacle edgesand line seg-
ments generated by occluding convex obstacle edges. How-
ever, the line segments generated by occlusion vary continu-
ously as the robot moves in the environment. In contrast, the
CEG consistsonly of convex obstacle edgesthat never change
their position. The description and maintenance of thevisible
rim is therefore significantly harder than that of the CEG.

Appendix B. Proof Details

The following lemma characterizes the shortest path in three
dimensions.

LEMMA 1. Theshortest path in athree-dimensional polyhe-
dral environment is piecewise linear, and the path’s vertices
lie only on convex obstacle edges.

Proof. Using the standard tool of path-length variation
(Thorpe 1979, p. 164), it can be verified that the shortest path
in a three-dimensional polyhedral environment is piecewise
linear, such that the path’s vertices lie on obstacle edges. We
now show that the path’s vertices must lie on convex obstacle
edges. Let O = [q1, ... , g,] bethe vertices along the short-
est path between two points g1 and g,,. Assume by contradic-
tion that some vertex ¢; of Q lies on a concave edge, where
2 <i < n—1. Consider thetwo-dimensional plane A defined
by the points ¢;_1, ¢; and g; 1. The three-dimensional poly-
hedral obstacles in the environment induce two-dimensional
polygonal obstaclesin A. Inparticular, thepoint ¢; becomesa
concave obstaclevertex in A. Theoptimality of Q inthreedi-
mensionsimplies that the path segment [¢; 1, ¢i, gi+1] must
be the shortest path in A from ¢;_1 to ¢;+1. But the path

[gi—1, gi, gi+1] isnot optimal in A, since the locally optimal
path in the plane passes only through convex obstacle vertices
(Liuand Arimoto 1992). Hence, Q isnot the shortest path—a
contradiction. O

Thefollowing lemma associates with every switch point P; a
local minimum of d(w, T).

LEMMA 2. Every switch point P;, where the robot switches
frommotiontoward thetarget to obstacl e surfacetraversal, has
a corresponding unique point M;, which is alocal minimum
of d(w, T), suchthat d(M;, T) < d(P;, T).

Proof. When the robot switches to obstacle surface traver-
sal a P;, there must be a blocking obstacle between P;
and T. Otherwise, the robot can reach T directly from P;,
and no switching to obstacle surface traversal would occur.
Let v.05s denote the point where the line segment [P;, T']
crosses the blocking surface (Fig. 14). By construction,
d(veross, T) < d(P;, T). Themotion toward the target ister-
minated because the feasible subcontour has become empty.
Thus, d(P;,T) < d(y,T) holds for every point y on the
blocking contour. But d(veress, T) < d(P;, T). Hence,
d(veross, T) < d(y, T) for every point y onthe blocking con-
tour. The function d(w, T) is continuous, and the blocking
surface is a connected compact set (i.e., closed and bounded)
whose boundary is precisely the blocking contour. Since ev-
ery continuous function attains a minimum on a compact set,
there exists a point where d(w, T') attains its minimum on
the blocking surface. Furthermore, the local-minimum point,
M;, satisfiesd(M;, T) < d(veross, T) < d(P;, T). Findly,
if there are several local minima, the onethat isclosestto T
is chosen, so that a unigque local-minimum point is associated
with P;. [l
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blocking contour
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associated with P

Fig. 14. Thefeasible subcontour becomesempty at the switch point P;, andd(w, T') hasaloca minimum at M; ontheblocking

surface.

Thefinal lemmaassertsthat thedistanceto thetarget decreases
monotonically between successive local-minimum points.

LEMMA 3. The distance to the target decreases monoton-
ically between successive local-minimum points, that is,
dMi+1,T) <d(M;, T).

Proof. According to Lemmad4, each switch point P; is asso-
ciated with a unique local-minimum point M;. While mov-
ing from P; to P;,1, the robot first traverses an obstacle sur-
face, then leaves the obstacle and performs atransition phase.
The transition phase is followed by motion toward the tar-
get, which ends at the switch point P;11. By construction,
the entire blocking surface is visible from P;. Since M; lies
on the blocking surface, it is visible from P;. Hence, the
minimum distance to the target observed by the robot satis-
fies d(pmin, T) < d(M;, T). The surface traversa is ter-
minated when the exit condition, d(V,xir, T) < d(pmin, T),
holds true. The robot then performs the transition phase and
movestoward V,,;; until it reachesapoint Z;, which satisfies
d(Zi, T) < d(pmin, T). Thus, d(Z;, T) < d(M;, T) a the
end of the transition phase. From Z;, the motion toward the
target isresumed until the switch point P; ;1 isreached. Since
thedistance d (X, T) decreases monotonically during motion
toward the target, d(P;1, T) < d(Z;, T), and consequently
d(Pi+1,T) <d(M;, T). BasedonLemmad, d(M; 11, T) <
d(P;41, T), and consequently d(M; 41, T) < d(M;, T). O
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