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Fast Geodesic Active Contours

Roman Goldenberg, Ron Kimmel, Ehud Rivlin, and Michael Rudzsky

Abstract—We use an unconditionally stable numerical scheme that results in inefficient implementations. For example, explicit
to implement a fast version of the geodesic active contour model. Euler schemes for the geodesic active contour limit the numer-
The proposed scheme is useful for object segmentation in images,jcq) step for stability. In order to overcome these speed limita-

like tracking moving objects in a sequence of images. The method .. - . . .
is based on the Weickert—-Romeney—Viergever (additive operator tions, a multi-resolution approach was used in [34] and addi-

splitting) AOS scheme. It is applied at small regions, motivated by tional heuristic steps were applied in [25], like computationally
Adalsteinsson-Sethian level set narrow band approach, and usespreferring areas of high energy.

Sethian’s fast marching method for re-initialization. Experimental In this paper, we introduce a new method that maintains

results de_monstrate the power of the new method for tracking in the numerical consistency and makes the geodesic active

color movies. . . - .
contour model computationally efficient. The efficiency is

Index Terms—Additive operator splitting, color, geodesic active achieved by cancelling the limitation on the time step in the

contours, level sets, numerical scheme, partial differential equa- merical scheme, by limiting the computations to a narrow

tions, segmentation, tracking. band around the the active contour and by applying an efficient
re-initialization technique.

|. INTRODUCTION

N important problem in image analysis is object segmen- Il. FROM SNAKES TO GEODESICACTIVE CONTOURS

tation. It involves the isolation of a single object from the Snakes were introduced in [18] and [32] as an active contour
rest of the image that may include other objects and a backedel for boundary segmentation. The model is derived by a
ground. Here, we focus on boundary detection of one or sevevatiational principle from a nongeometric measure. The model
objects by a dynamic model known as the “geodesic active catarts from an energy functional that includes “internal” and “ex-
tour” introduced in [4]—[7] (see also [19] and [30]). ternal” terms that are integrated along a curve.

Geodesic active contours were introduced as a geometric altet the curveC(p) = {z(p),y(p)}, wherep € [0,1] is an
ternative for “snakes” [18], [32]. Snakes are deformable modedsbitrary parameterization. The snake model is defined by the
that are based on minimizing an energy along a curve. Theergy functional
curve, or snake, deforms its shape so as to minimize an *“in- 1
ternal” and “external” energies along its boundary. The internal s[cl = / (|cp|2 + a|cpp|2 + 2/39(6)) dady
part causes the boundary curve to become smooth, while the ex- 0

ternal part leads the curve toward the edges of the object in Wﬁerecp = {d,2(p),d,y(p)} ande and 3 are positive con-
image. stants.

In [2] and [23], a geometriC alternative for the snake model The last term represents an external energy, leé)—es
was introduced, in which an evolving curve was formulated by positive edge indicator function that depends on the image
the Osher—Sethian level set method [24] The method works p(&-’ y)' it gets small values a|ong the edges and h|gher values
a fixed grid, usually the image pixels grid, and automaticallysewhere. For examplgz,y) = 1/(|VI|? + 1). Taking the

handles changes in the topology of the evolving contour.  variational derivative with respect to the curé§[C]/6C, we
The geodesic active contour model was born latter. Itis botiBtain the Euler-Lagrange equations

geometric model as well as energy functional minimization. In
[4] and [5], it was shown that the geodesic active contour model —Cpp + aCpppp + BVg = 0.
is related to the classical snake model. Actually, a simplifie . . N
ne may start with a curve that is close to a significant local

shake model yields the same result as that of a geodesic ac Simum of S[] and use the Euler—Lagrange equations as a

contour model, up to an arbitrary constant that depends on {hé

initial parameterization. Unknown constants are an undesira lread|ent descent process that leads the curve to its proper posi-

property in most automated models ion. Formally, we add a time variabteand write the gradient

Although the geodesic active contour model has many a%@scent process &C = —45[C]/6C, or explicitly

vantages over the snake, its main drawback is its nonlinearity dc
P Cpp — Cpppp — BV g.

. . . The snake model is a linear model and thus an efficient and
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Motivated by the theory of curve evolution, Casekgal.[2] The connection between classical snakes and the geodesic
and Malladiet al.[23] introduced a geometric flow that includesactive contour model was established in [5] via Maupertuis’
internal and external geometric measures. Given an initial cuiRenciple of least action [12]. By Fermat’s Principle, the final
Co, the geometric flow is given by the planar curve evolutiogeodesic active contours are geodesics in an isotropic nonho-

equationC; = g(C)(x — v)A/, where mogeneous medium.
V normal to the curve; Recent applications of the geodesic active contours include
kN curvature vector; three-dimensional (3-D) shape from multiple views, also known
v arbitrary constant; as shape from stereo [13], segmentation in 3-D movies [21],
g0 edge indication scalar function. tracking in two-dimensional (2-D) movies [25] and refinement

This is a geometric flow, that is, itis free of the parameterizationf efficient segmentation in 3-D medical images [22]. The curve
Yet, as long ag does not vanish along the boundary, the curygropagation equation is just part of the whole model. Subse-
continues its propagation and may skip its desired location. Ogently, the geometric evolution is implemented by the Osher-
remedy, proposed in [23] is a control procedure that monitoBethian level set method [24].
the propagation and sejdo zero as the curve gets closer to the
edge. A. Level Set Method

The geodesic active contour model was introduced inThe Osher-Sethian [24] level set method considers evolving
[4]-[7](see also [19] and [30]), as a geometric alternative féronts in an implicit form. It is a numerical method that works on
the snakes. The model is derived from a geometric functionalfixed coordinate system and takes care of topological changes
where the arbitrary parametgris replaced with a Euclidean of the evolving interface.

arclengthds = |C,,|dp. The functional reads Consider the general geometric planar curve evolution
L dc .
ste1= [ (o atey i ldp. SN

It may be shown to be equivalent to the arclength parameteri2&g€reV’ is any intrinsic quantity, i.ey" does not dep2end ona
functional specific choice of parameterization. Now,dét:, ) : R* — R

be an implicit representation @f, such thatC = {(z,y) :
¢(x,y) = 0}. One example is a distance function frahde-
fined over the coordinate plane, with negative sign in the inte-

. . rior and positive in the exterior of the closed curve.
whereL(C) is the total Euclidean length of the curve. One may The evolution forp such that its zero set tracks the evolving

equivalently defingy(x, v) = g(z,y) + «, in which case contour is given by

L(C) d
siel= [ a(yis 9 _ival
o p7 IVl
i.e., minimization of the modulated arcleng{C)ds. The This relation is easily proven by applying the chain rule and
Euler-Lagrange equations as a gradient descent process arasing the fact that the normal of any level set- constant, is
given by the gradient ap

L)
S[C] = /0 §(C)ds + aL(C)

dC - -
= = (9(0)r — (V9. M) ) . i ) vo
N = (V0.0 = (V0.VA) = (Vo T ) = VIl
Again, internal and external forces are coupled together, yet thigt IVl

time in a way that leads toward a meaningful minimum, which Thjs formulation enable us to implement curve evolution on
is the minimum of the functional.One may add an additional the ;. 4 fixed coordinate system. It automatically handles topo-
force that comes from an area minimization term and motlvatﬁgbicm changes of the evolving curve. The zero level set may
by the balloon force [10]. This way, the contour may be directeghit from a single simple connected curve, into two separate
to propagate inwards by minimization of the interior. The fungs;ryes.

cator function reads model written in its level set formulation is given by
L(c)
S[C] :/ g(C)ds + a/ gda d¢ = di V¢
o o o = dv{g(z,y) Vol V).

whereda is an area element arfdlis the interior of region en- |hc|uding a weighted area minimization term that yields a con-
closed by the contout. The Euler Lagrange as steepest descefant velocity, modulated by the edge indication function, we

following the development in [36] and [37] is have
dc - -
i (g(c)“ —(Vg,N) - ag(C)) N. % = <ag(x,y) + div <g(x,y)%)) V.

IAn early version of a geometric-variational model, in which We h t to det . ical sch d
S[C] = [g(C)ds/[ds, that deals with open curves was proposed in € have yet 10 determine a numerical scheme and an appro-
14].

priate edge indication function An explicit Euler scheme with
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forward time derivative, introduces a numerical limitation omwhereA;(«*) is a matrix corresponding to derivatives along the
the time step needed for stability. Moreover, the whole domaiifth coordinate axis. It can be efficiently solved foft! by
needs to be updated each step, which is a time consuming ®pemas’ algorithm (see [35]).
eration for a sequential computer. The narrow band approachn our case, the geodesic active contour model is given by
overcomes the last difficulty by limiting the computations to a
narrow strip around the zero set. First suggested by Chopp [9], in ] )
the context of the level set method and later developed in [1], the drp = div <9(|VU0|)W> [Vl
narrow band idea limits the computation to a tight strip of few
grid points around the zero set. The rest of the domain serv@serew is the image ane is the implicit representation of the
only as a sign holder. As the curve evolves, the narrow bapdrve. Since our interest is only at the zero level sep,oive
changes its shape and serves as a dynamic numerical suppaiitreset) to be a distance function every numerical iteration.
around the location of the zero level set. One nice property of distance maps is it unit gradient magnitude
almost everywhere. Thereby, the short term evolution for the
B. AOS Scheme geodesic active contour given by a distance map, |Nith = 1,
Additive operator splitting (AOS) schemes were introduced
by Weickertet al. [35] as an unconditionally stable numerical
scheme for nonlinear diffusion in image processing. Let us Ot = div (g(|Vuo|) V) .
briefly review its main ingredients and adapt it to our model.
The original AOS model deals with the Perona-MalilNote that nowA;(¢*) = A;(uo), which means that the ma-
[26], nonlinear image evolution equation of the formrices[I — 27A4;(uo)]~! can be computed once for the whole

dww = div(g(|Vu|)Vu) with given initial condition as image. Yet, we need to keep thigfunction as a distance map.
the imageu(0) = uo. Let us rewrite explicitly the right hand This is done through re-initialization by Sethian’s fast marching
side of the evolution equation method every iteration.
m It is now simple to introduce a weighted area “balloon” like
div (g(|Vu|)Vu) = Z Az, (g(|Vu|)3p, ) force to the scheme. The resulting AOS scheme with the “bal-
=1 loon” then reads

where! is an index running over the: dimensions of the 5

problem, e.g., for a 2-D image = 2, z; = x andzs = y. ktl _ 1 T — 27 Ay (u)] L (6 + ravg(n 2
As a first step toward discretization consider the operator ¢ 22[ mAuwo)| 9"+ rag(u)) - (2)

Ay(u”) = 80, (9(IVU*)02,)

=1

whereq is the weighted area/balloon coefficient.

where the superscript indicates the iteration number, e.g., In order to reduce the Computationgl cost, we_useamult@spale
u® = uo. We can write the explicit scheme approach [20]. We construct a Gaussian pyramid of the original
image. The algorithm is first applied at the lower resolution.
Next, the zero set is embedded at a higher resolution and the
¢ distance function is computed. Moreover, the computations
are performed only within a limited narrow band around the
wherer is the numerical time step. It requires an upper limit fozero set. The narrow band automatically modifies its shape as
7 if one desires to establish convergence to a stable steady statere-initiate the distance map.

Next, the semi-implicit scheme

W =

I+7 Z Ay(u®) | u®
=1

" 1 C. Re-Initialization by the Fast Marching Method
uhtt = l] -7 Z A(ky| Wk In order to maintain subgrid accuracy, we detect the zero level
=1 set curve with subpixel accuracy. We apply a linear interpolation

is unconditionally stable, yet inverting the large bandwidth m&? the four pixel cells in whichy changes its sign. The grid

trix is a computationally expensive operation. points with the exact distance to the zero level set are then used
Finally, the consistent, first order, semi-implicit, additive op!© initialize the fast marching method. _
erator splitting scheme Sethian’s fast marching method [29], [28], is a computa-
tionally optimal numerical method for distance computation
. 1 & a1—1 g on rectangular grids. The method keeps a front of updated
B+l & _ k k
v = Z [I m7 Ay )] u points sorted in a heap structure and constructs a numerical

=t solution iteratively, by fixing the smallest element at the top

may be applied to efficiently solve the nonlinear diffusion.  of the heap and expanding the solution to its neighboring grid
The AOS semi-implicit scheme in 2-D is then given by oints. This method enjoys a computational complexity bound

linear tridiagonal system of equations of O(Nlog N), whereN is the number of grid points in the
9 narrow band. See also [8], [33], where consist@fiV log V)
uF Tl — lz[_f_ 27 Ay(uF)]tuk (1) schemes are used to compute distance maps on rectangular
2

= grids.
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[ll. EDGE INDICATOR FUNCTIONS FORCOLOR AND MOVIES Array of Linked Lists - Columns

What is a proper edge indicator for color images? Severa lll l
generalizations for the gradient magnitude of gray level images = =
were proposed, see e.g., [11], [27], and [31]. In [25], Paragios -
and Deriche introduced a probability-based edge indicator func: | +—= " e BRI
tion for movies. In this paper, we have chosen the geometric SRt ,' % }H % H; }
philosophy to extract an edge indicator. We consider a measur e e T
suggested by the Beltrami framework in [31], to construct an =, e O BN BN SN BN o
edge indicator function. - 5 o e e ‘

1
|

Rows
|
|
!

A. Edges in Color

According to the Beltrami framework, a color image is con- \ T
sidered as a two dimensional surface in the five dimensiona £ DB e e FR AR A S - ol G0 0 B N
spatial-spectral space. The metric tensor is used to measure di £ ESeten g 1B BN e iy 3 o Y pe
tances on the image manifold. The magnitude of this tensor i< | 1—_ kel T
an area element of the color image surface, which can be cor | T=
sidered as a generalization of the gradient magnitude.

Formally, the metric tensor of the 2-D image given by the 2-D I e e o e e S
surface(x, y, R(z,y), G(z.y), B(z,y)} inthe{z,y, R, G, B}
space, is given by (see first equation at the bottom of the page)rig. 1. Two arrays of linked lists used for narrow band representation.
whereR, = d, R. Our edge indicator is the largest eigenvalue
of the structure tensor metric. Itis the eigenvalue in the directionThe edge indicator function is again derived from the

f Linked Lists

PP

" Narrow
Band

of maximal change idR? + dG? + dB? and it reads Beltrami framework, where for color movies we pull-back the

1 ‘ metric (see the second equation at the bottom of the page)
A=1+ > Z |Vu'|? which is the metric for a 3-D volume in the six-dimensional
i (6-D) {«,y,7, R, G, B} spatial-temporal-spectral space. Now

. 2 we have (det(g;;))*/?dx dydr as a volume element of the
+ <_ Z |Vui|2> -z Z Z | Vi x Vi |? image and, again, the largest eigenvalue of the structure tensor

24 24 S metric, A, can be used as an edge indicator. Intuitively, the
larger A gets, the smaller spatial-temporal steps one should
whereu' = R,u* = G,u*> = B. Then, the edge indicator gpply in order to cover the same volume.
function ¢ is given by a decreasing function of e.g.,.g = A different approach uses the contour location in framas
1+ A%~ an initial condition for the 2-D solution in frame + 1, see

. . . . e.g., [3] and [25]. The above edge indicator is still valid in this
B. Tracking Objects in Movies cagse.[ l\]lote, t[ha'g the aspect ratigs between the time, the image
Let us explore two possibilities to track objects in moviespace and the intensity, should be determined according to the

The first, considers the whole movie volume as a Riemanniapplication.
space, as done in [7]. In this case the active contour becomeShe first approach was found to yield accurate results in off
an active surface. The AOS scheme in the spatial-temporal 3thk tracking analysis. While the second approach gives up some
hybrid space is accuracy, that is achieved by temporal smoothing in the first

1 approach, for efficiency in real-time tracking.
P = 5 > = 37 A (uo)] ¢
l IV. IMPLEMENTATION DETAILS

whereA;(ug) is @ matrix corresponding to derivatives along the There are some implementation considerations one should be
Ith coordinate axis, where nole [z, v, 7]. aware of. For example, the summation over the two dimensions

(g35) = 1+R2+G2+B2  R.R,+G,G,+ B,B,
9i) =\ R,R, + G,G, + B,B, 1+R>+G2+ B>

1+ R2+ G2+ B2 R.R,+G.Gy+ ByB, R.R. +G.G, +B,B;
: 1+R}+G,+B, R,R +G,G,.+B,B;
. 1+ R24+ G2+ B2

(gij )=
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Curvature Flow — CPU time
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Fig. 3. Curvature flow CPU time for the explicit scheme and the implicit AOS
scheme. First, the whole domain is updated, next, the narrow band is used to
increase the efficiency and finally the AOS speeds the whole process. For the
explicit scheme the maximal time step that still maintains stability is choosen.
For the AOS scheme, CPU times for several time steps are presented.

Using the narrow band approach is a bit more tricky. The
question is what is the most efficient representation for the
narrow band that would allow to find for every row/column the
segments that belong to the narrow band? One may suggest to
use the run length encoding, but the standard static run length
implementation is not sufficient. This is due to the fact that the
narrow band is rebuilt every iteration using the fast marching
algorithm, which generates narrow band pixels in arbitrary
order. Creating the run length encoding from such a stream
of pixels can be done either off-line, by first constructing and
Step 80 Step30 then scanning a map of the whole image (which is clearly
inefficient), or online using a dynamic data structure.

In our implementation we use two arrays of linked lists, one
for the rows and one for the columns, where each linked list
corresponds to one row/column and contains segments of ad-
jacent pixels belonging to the narrow band (see Fig. 1). Each
segment is defined by its first and last pixels coordinates. Since
a narrow band is generated as the fast marching algorithm grows
outwards, adding a new pixel usually means just changing one
Step 150 Step58 of the boundaries of an already existing segment. For reasonably
Fig. 2. Curvature flow by the proposed scheme. A nonconvex curve vanist%gqpl(,a c_ontours.the number _Of timesa n?W Seg_ment is created or
in finite time at a circular point by Grayson’s Theorem. The curve evolution 8N €Xisting one is merged with another is relatively low. There-
presented for two different time steps: left= 20 and rightr = 50. fore, the number of segments per row/column is always small

and the complexity of adding a new pixel to the narrow band is
in (1) and (2) should be done in such a way that the matricpgactically O(1).
A1(uo) andAs(ug), corresponding to the derivatives along the The calculations are performed separately for every
x andy axes, respectively, will be tridiagonal. This is achievetlorizontal and vertical segment)* and the vectors
by spanning the matrix* once by rows and once by columns.[I — 27Ai(uo)] ¢, where A! of size |pF| x |¢F| is a

Working on the whole domain is fairly straightforward. Thematrix corresponding to the derivatives of a single segment, are
matrix ¢* is represented as vectas$ corresponding to a single summed according to their coordinates to yield the new level
row/column. The vectorld — 27 A% (ug)] 1 ¢¥, whereA: of size  set functiong**! for the narrow band pixels only.
|p¥| x |¢¥| is a matrix corresponding to the derivatives of a Another issue requiring a special attention is the value of the
single row/column, are computed using the Thomas algorithtime step. If we choose a relatively large time step, the active
and summed according to their coordinates to yield the matgrntour may skip over the object boundary. The time step should
PFFL thus correspond to the numerical support of the edges (edge
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Fig. 5. Gray matter segmentation in a MRI brain image. The white contour
converges to the outer cortical surface and the black contour converges to the
inner cortical surface.

cular point in finite time [15], [17]. Fig. 2 shows an application

of the proposed method for a curve evolving by its curvature
and vanishes at a point. One can see how the number of itera-
tions needed for the curve to converge to a point decreases as
the time step is increased.

We tested several implementations for the curvature flow.
Fig. 3 shows the CPU time it takes the explicit and implicit
schemes to evolve a contour into a circular point. For the ex-
Fig. 4. Multiple objects segmentation in a static color image. plicit scheme we tested both the narrow band and the naive ap-
proach in which every grid point is updated every iteration. The

. - . . tests were performed on an Ultra SPARC 360 MHz machine for
width). This, in turn, dictates the width of the narrow band th t256>< 256 resolution image.

should be wide enough, so that the contour would not escape |h should be noted that when the narrow band approach is

:2 tc:) n[?sléear\acflooz:r.seo?:f;,r\:zysglz\;e(;?zgfn?aertlg]r(ra]osgter?irilmﬁ:lr? LTsned, the bandwidth should be increased as tirews to ensure
. . . YS! 9 at the curve does not escape the band in one iteration.
appropriate time step for each scale. Finally, since the method |

based on the AOS, which is a first-order approximation schemeﬁzlg' 4 shows multiple objects segmentation for a static color
. g . . image. Here we used a balloon force to propagate the contour
the numerical error grows linearly with the time step.

through the narrow passages between objects.

Fig. 5 presents an example of medical image application,
where the gray matter segmentation is performed on a single

As a simple example, the proposed method can be used &diee of a human head MRI image. The task is to detect a narrow
consistent, unconditionally stable and computationally efficiergyer of the brain bounded by two interfaces—the outer cor-
numerical approximation for the curvature flow. The curvaturical surface (cerebral spinal fluid(CSF)/gray matter interface)
flow, also known as curve shortening flow or geometric heaind the inner cortical sfurface (gray matter/white matter inter-
equation, is a well studied equation in the theory of curve evtace). The segmentation is performed by two active contours
lution. It is proven to bring every simple closed curve into a ciiinitialized inside the white matter regions. The negative balloon

V. EXPERIMENTAL RESULTS
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Fig. 6. Tracking a cat in a color movie by the proposed scheme. Top: Segmentation of the cat in a single frame and bottom: tracking the walking cat in the 50
frames sequence.

- ET L

Frame 2 Frame 21 Frame 38 Frame 59

Fig. 7. Tracking two people in a color movie. Top: curve evolution in a single frame and bottom: tracking two walking people in a 60 frame movie.

force coefficient is used to expand the contour toward the regi@he contour found in the coarse grid is used as the initial con-
boundary and the edge indicator functions are chosen to resptout at the fine grid.
only to the edge points corresponding to the characteristic intendtis possible to compute the inverse matrices of the AOS once
sity profiles of the CSF/gray matter and the gray matter/whifer the whole image, or to invert small submatrices as new points
matter interfaces respectively. This specific medical problem ianter or exit the narrow band. There is obviously a trade-off
troduces new challenging difficulties and possible solutions witletween the two approaches. For initialization, we have chosen
be reported elsewhere [16]. the first approach, since the initial curve starts at the frame of the
Figs. 6 and 7 show segmentation results for color movies witinage and has to travel over most of the image until it captures
difficult spatial textures. The tracking is performed at two reshe moving objects. While for tracking of moving objects in a
olutions. At the lower resolution we search for temporal edgesovie, we use the local approach, since now the curve has only
and at the higher resolution we search for strong spatial edgesadjust itself to local changes.
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