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Abstract|
Object classi�cation needs to address not only the changes

resulting from various viewpoints but also the di�erent
shapes that can be classi�ed into the same category. We
present a new framework and its implementation for generic
object classi�cation from raw range images, combining
structural and functional concepts. The framework ad-
dresses low and mid level problems for the decomposition of
range images into primitive shape parts, presenting concepts
for the classi�cation of shape parts, and calculation of part
properties and relations. New concepts are described, ad-
dressing the di�erent aspects of generic class descriptions by
functional parts. A mapping of functionality (and functional
parts) to the primitive shape parts is presented, introducing
functional part recognizers. Our approach mainly supports
a top-level recognition process in which classes are veri�ed
using a veri�cation tree in which functional parts and their
realization hypotheses are explored. An algorithm for an
e�ective traversing of the veri�cation tree is presented, in
which probabilities of hypotheses and classes are estimated.
An experimental system applying our classi�cation concepts
to several classes was implemented and tested on a database
of real raw range images of objects.

I. Introduction

Most of the problems in computer vision involve an un-
derstanding of a scene described by visual information.
One of the most fundamental and challenging tasks in scene
understanding is the recognition of objects appearing in
that scene.
Much work has addressed the problem of 3-D object

recognition. Most of the work focused on the identi�cation
of objects, where one identi�es in an image a very spe-
ci�c object, one of a set of well speci�ed objects. Struc-
tural recognition approaches found in the literature (e.g.
[8], [17], [16], [3]) present an identi�cation model based
on a decomposition of objects into shape parts, motivated
by psychological Recognition-by-Components concepts [6].
Yet, these approaches are still con�ned to recognition prob-
lems in which the shape of the objects to be recognized is
well determined.
Little work has focused on the classi�cation problem,

where the imaged object is to be categorized and matched
to one of a set of classes of objects and not a speci�c known
object. It is apparent that di�culties described for the
identi�cation of objects are equally relevant to classi�ca-
tion. In addition to that, the input to a classi�er consists of
low-level visual information, whereas the categorization of
objects involves very high-level reasoning and understand-
ing of object purpose. This high-level reasoning is not re-
lated directly to shape: instances of the same class may
often look very di�erent from one another. The imaged
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objects are not actually known to the classi�er and there-
fore any straightforward matching techniques of the input
to a known database, which are feasible in identi�cation,
are not applicable. Therefore, one should obtain a set of
high-level criteria and properties which are general enough
yet distinct to describe a class of objects, and a means of
extracting such properties from the input images.

The need for \true" generic models for representing
classes of objects and of recognizing them, has given rise to
functional model approaches [24], [9], [20], [22], [21], [11],
[2], [19], [18], [23], [12].

The work presented here describes a generic classi�ca-
tion scheme from raw range images of objects, combining
structural and functional approaches: the functional con-
cepts are employed to describe classes of objects generi-
cally, whereas the structural concepts are used to acquire
a robust part representation of the input image.

II. Generic classification by functional parts

Our approach involves a classi�cation of an imaged ob-
ject through recognition by functional parts, thus combin-
ing part-oriented approaches with functional approaches.
Such a classi�cation involves a representation of classes by
their functional parts, and a classi�cation scheme in which
these functional parts are recognized in the input raw im-
age through a veri�cation process of the di�erent known
classes. The following sections will discuss our concepts
for functional parts, shape parts, mapping of functional
parts to shape, functional representation of classes, and
veri�cation of classes.

The nature of functional parts will be discussed in the
next section.

A. Representation by functional parts

A.1 Relating function to functional parts

Many objects in the real-world and especially man-made
objects have a purpose or a certain task they were de-
signed to participate in. This purpose is sometimes termed
([1], [7]) the primary function. Since this primary function
is often the basis for categorization of objects into basic-
categories, it provides a natural and generic representation
of classes (categories). For example: a chair is an object on
which a person sits; a cup is an object from which a per-
son drinks hot drinks. We note that the primary function
involves a very high-level understanding of the task and
scene in which the object is used. We therefore further an-
alyze the primary function and decompose it into several
lower-level functions. We thus de�ne derived functions as
low-level functions that realize the high-level primary func-
tion. We then relate these derived functions to functional
parts. A functional part is therefore, an area in the ob-



ject responsible for a well-de�ned set of derived functions.
These functional parts and the relations between them are
to satisfy the derived functions. In this level these func-
tional parts are related to shape only in the sense that
functionality of each part is realized by con�gurations of
shapes, yet, as already pointed out before, it may be re-
alized in many di�erent shape con�gurations. We demon-
strate the above functional analysis on the chair example:
The primary \sittability" function is decomposed into sev-
eral derived functions:
The object should provide a surface for a person to sit on.
The sitting surface should be placed stably at a sitting
height.
The object may optionally provide a support for the per-
son's back to lean on.
The object should provide room (proper clear space) for
the person's body.
Towards satisfying these derived functions we present the
previously mentioned decomposition into functional parts:
The chair-seat provides the sitting surface. The back-

support provides the support for the back. The support-

to-ground provides a stable support for the seat at the
speci�ed height. Required relations between the parts re-
fer to connections between them, clearance they provide,
stability that the support-to-ground provides for the seat,
etc.
We demonstrate this partitioning into functional parts,

as identi�ed on a chair, in �gure 1.

Back - support

Seat

Supporter-to-ground

Fig. 1. Identifying functional parts in a chair instance

Each functional part has several functional properties.
These properties may refer to simple properties such as
orientation or dimensions of the functional part (analyzed
in a functional context) or more high-level properties that
are more speci�c to the task involved, such as: graspabil-
ity for handles, stability for supporters etc. A functional
description of a class is thus, represented hierarchicly by
the primary function, its derived functions, and a list of its
functional parts (mapped to derived functions), constraints
on their properties and relations between the parts. This
description is demonstrated in �gure 2.

A.2 Generic functional parts

The previous section has introduced a framework in
which each class is analyzed functionally and its functional
parts identi�ed. This view might lead one to think that
the identi�ed functional parts are speci�c to each class,
and functional knowledge is not shared by di�erent classes.
However, a more generic approach can often be taken,
making use of the same functional knowledge for several

classes: having noted that several di�erent classes may still
share some low-level functions (derived functions), we claim
that generic functional parts can be de�ned, accounting
for functional parts of several classes. A generic functional

part would thus be a functional part for which several prop-
erties and constraints are parametric. The functional de-
scription of a speci�c class would consist of parts that are
mostly instantiations of these already de�ned generic parts
where the class-speci�c constraints are set upon. As an ex-
ample, we de�ne the following two generic functional parts:
The �rst is a \placeable" - being a at part on which objects
are to be placed (also requiring proper clearance above the
placeable). We keep for the placeable several constraints
as parameters: allowed dimension range, placed object size
and allowed deformation. The second generic part is a
\supporter-to-ground" - being a part designed to provide
a proper support for other parts at a speci�c height above
the ground. We now state that these generic parts can be
instantiated as the functional parts of many classes. In
particular, these generic parts are enough to account for
most of the furniture classes: chairs (where the placeable
accounts for both seat and back support), tables, beds,
benches, sofas, etc.

B. Relating class description to shape

The previous section has described how classes of objects
are described generically by functional parts. However, we
recall that the input at hand that we wish to classify is a
raw range image of an object and therefore involves a low-
level shape information. The following section will describe
how the functional descriptions are related to the low-level
shape description.

B.1 Shape representation

We start by a de�nition of a more high-level shape rep-
resentation to be related to the functional description. Our
choice of high-level shape representation is a decomposition
of the imaged object into a collection of primitive shape
parts, motivated by the RBC concepts ([6]). These prim-
itive parts would provide \building blocks" for our func-
tional parts (in other words: each functional part would
be realized by several possible con�gurations of primitive
parts).
Our proposed primitive parts abstraction is a classi�ca-

tion of primitive shape parts into 3 basic classes: sticks,
plates and blobs (as can be found in [18]). A stick is a
part in which one dimension is considerably larger than
the others. A plate is a part in which two dimensions are
considerably larger than the third. A blob is a part in which
no dimension is considerably di�erent than the other). In
order to account for the variety of shapes in even simple
classes such as mugs, we also allow bending deformations
of these basic shape classes.
We address criteria for the structure of the part decom-

position, geometrical properties and functional constraints
for the primitive shape parts, by using several representa-
tions to describe each primitive part: a general assembly of
surface regions, a vertex representation of a part (consisting
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Fig. 2. Hierarchy of the functional representation

of several vertices on the deformed surface) and a �tting of
the part to a known volumetric surface (quadric surfaces:
cylinders, ellipsoids, cones or superquadrics) - if such a �t-
ting exists. We de�ne several properties of primitive parts
that are of interest: classi�cation of part, deformation level,
convexity of part, vertices of parts, orientation, pose and
dimensions. Relations of interest between such parts are:
nature of connections between parts and relative orienta-
tion.

B.2 Relating functional parts to shape

By specifying for each functional part (either generic or
class speci�c) how its functional criteria are realized by
con�gurations of primitive shape parts, we can identify the
existence of such functional parts in a decomposition of the
image into the primitive shape parts.

We note that mapping between functional parts to shape
parts is not a one-to-one mapping: a single functional part
may be realized in several di�erent shape con�gurations.
Nevertheless, all realizations conform to the same func-
tional properties de�ned for the functional part. For exam-
ple: the \placeable" generic functional part de�ned above
may be realized by a single plate or by a collection of plates
or sticks placed side-by-side in a speci�c orientation; how-
ever, they both conform to the \placeability" functional
properties and constraints.

We perform the mapping to shape by de�ning functional
recognizers (see �gure 3) for each of the functional parts
(generic when possible). Each recognizer receives as input
a set of primitive shape parts (being the part decompo-
sition of the raw image) and an optional set of cues con-
taining additional knowledge we have on the part. The
output of such a recognizer is a set of hypotheses for real-
izing the part by con�gurations of the input shape parts.
Each hypothesis is given a grade that speci�es how well the
hypothesis conforms to its functional requirements. The
given cues are, in fact, a set of additional constraints set
on the part that emerge from relations with other parts
and from class-speci�c constraints. These constraints al-
low a more e�ective recognition and reduce the number of
hypotheses found. By providing the supporter recognizer
with additional cues such as what is the ground direction or
what surface is to be supported, the recognition process be-

comes more robust, and many irrelevant hypotheses can be
avoided. The actual recognition process will be described
in detail in the sections to follow.
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Fig. 3. Functional Part Recognizer

C. Functional veri�cation

Having introduced the shape representation of the im-
age on the one hand, and class functional descriptions on
the other, as well as concepts for mapping between them,
we now describe concepts for the high level process of ver-
ifying the conformance of the shape representation to the
functional description of classes. This veri�cation process
is the basis for our recognition scheme.
We view the top level description of each class as a sim-

ple graph (�gure 4) in which each node represents a func-
tional part of the class, and the edges represent relations
between functional parts. Each functional part is mapped
to a \functional part recognizer" The additional knowl-
edge provided as cues to the recognizers of functional parts
is gathered throughout the veri�cation process where hy-
potheses for other parts have already been found. This
additional knowledge makes relations between parts ex-
plicit. Assuming we have class descriptions for several
classes, our classi�cation is achieved by performing a veri-
�cation of each class. This veri�cation process is performed
according to the following algorithm:
A functional part is chosen, and its realization hypothe-

ses are found.
Each hypothesis is explored by picking another func-

tional part and exploring its own possible realizations. We
note that the process is tree-based, where the nodes of the



tree are either functional parts to be explored or realization
hypotheses for functional parts.
After a path was found in the veri�cation tree, in which

valid hypotheses were found for all functional parts of the
class, a \whole object test" is performed. This test ac-
counts for the fact that there are relations that cannot
be e�ectively expressed in terms of cues provided by hy-
potheses and used by other recognizers, and are more nat-
urally expressed as tests performed when all hypotheses
are found. An example of a veri�cation tree is shown in
�gure 5.
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III. Description of the system

The previous section has introduced several generic clas-
si�cation concepts. These concepts were related to several
levels of the classi�cation problem: shape descriptions of
raw images by shape parts, description of classes by func-
tionality: class-speci�c and generic functional parts, rela-
tion of shape to function, etc. We now present a system
that applies these concepts. The system takes as input a
raw image of an object and outputs a classi�cation result.
The proposed classi�cation system is based on a high-level
top-down process of class veri�cation (as described before)

in which it is tested if a decomposition of the input image
into primitive shape parts conforms to any of the known
class descriptions. The part decomposition of the image is
acquired by a low level phase in which the image is seg-
mented into regions and a mid level in which regions are
collected and classi�ed into primitive shape parts. The fol-
lowing sections will describe in detail the low, mid, and
high-level phases of the system.

A. Low-level processing

The low-level phase of the system involves the initial pro-
cessing of the input images. The input to this phase is a
raw range image represented as a point cloud (a collection
of 3-D points). The output of this phase is a segmenta-
tion of the point cloud into regions, where a region refers
to a collection of image points having similar geometrical
properties focusing on surface parameters.
Based on the concepts found in the literature [14], [4],

[5], [10], [13], [15], several segmentation techniques were in-
vestigated throughout our research. The majority of these
techniques were con�ned to the segmentation of polyhedral
objects in which regions could be represented as planar
surfaces. We chose to employ in our system a rough seg-
mentation technique, as described below, for both curved
and polyhedral objects. In the rough segmentation, we de-
compose the image into patches of size n�m image points
(in the current implementation this size is adjusted accord-
ing to typical object dimensions). We �t these patches to
a surface, computing the surface parameters and a mea-
sure of �t. We then collect these patches into regions by
a region growing process. We currently �t each patch to
a planar surface (represented by: P n̂ + d = 0). The sur-
face parameters are therefore n̂ and d and are found by a
simple least-squares �tting. In the region growing process
we add patches to the current region by comparing patch
parameters with the current seed, setting a relatively high
tolerance for similarity of parameters, and therefore curved
regions are also made possible. Boundaries between regions
conform to local jump in d or n̂ or to patches with bad grade
of �t. We also tried to �t patches to quadrics, but we found
that this �tting could not provide robust and stable results
for small patches. A quadric �tting was therefore left to a
higher-level phase as described in the following section.

B. Mid-level processing

At this phase, the initial segmentation of the image into
regions is further processed to produce a decomposition
of the image into primitive parts. Towards a part-based
decomposition, several steps are taken, as described next.
We start with region re�nement, then we build a re-

gion connectivity graph in which nodes are mapped to the
regions (that were found in the low level) and edges are
mapped to relations between regions. The graph is built by
classifying the region-to-region connection to one of the fol-
lowing classes: 1) disconnected, when the regions that have
no common boundary; 2) occlusion, when the two neigh-
boring regions (having a common boundary) that are not
connected and therefore, one occludes the other (i.e. there



is a jump in depth between the two regions); 3) connection
- a relation that was not classi�ed as disconnection or occlu-
sion is considered connection. We classify the connection

relation into 3 sub-classes: smooth, concave and convex.
The classi�cation into these sub-classes is performed using
the mean jump in the normals along the boundary between
regions.
Next we partition into primitive parts. We represent

each part as a collection of regions. We traverse the con-
nectivity graph and form collections of regions that are
connected smoothly or convexly to each other. Each such
collection (being a sub-graph of the connectivity graph) is
mapped to a single primitive part.
Having found an initial partitioning into parts, we turn

to their classi�cation. In the current implemented system,
we classify a part into a stick (with allowable deformation)
or a plate (allowing deformations on the plate). We �t the
deformed plates to a quadric to achieve a more compact
and high-level representation. We then represent the de-
formed plate, in addition to the vertices representation, by
a quadric and a classi�cation of the quadric to a known
quadric class (cylinder/ellipsoid) (using the eigenvalues of
the matrix representing the quadric), if such exists.
At this level of the problem we choose to regard a blob

not as a primitive shape but as a collection of deformed
plates (to be investigated in the higher-levels).
As a �nal phase in the part decomposition, we perform

merging of parts. This involves a high-level test to check
if two classi�ed parts can be merged together to form one
part. This may account for over-segmentation in the low-
level phase and occlusion of parts. In the currently imple-
mented system, the merging involves only the merging of
small close sticks to one stick.
After the �nal decomposition has been set, we �nd

the relations between parts. We classify the connec-
tion relation (disconnection, occlusion, smooth-connection,
concave-connection, convex-connection) in a similar way to
the procedure performed on the regions.

C. High-level processing

As discussed in section II, in order to verify if a shape-
part decomposition of an image conforms to a known class,
one should acquire functional representations for known
classes, using generic and class-speci�c functional parts.
This section describes our application of these concepts to
several classes, and our implementation of the high-level
veri�cation phase.

C.1 Generic functional parts

Here we present our de�nition and application of sev-
eral generic parts. These parts are then used to represent
the functional parts of many classes (described in the next
section). We describe each functional part by a textual de-
scription of its functionality, properties of the part, the set
of constraints on it, a description of how the part is realized
in terms of shape, and how it is recognized in an image.
Placeable: a functional part providing a surface on which
other objects are placed.

� Parametric constraints for the placeable part:
1. Allowed range for the placeable dimensions
2. Maximum level of deformation
3. Direction of placing surface
4. Clearance volume (speci�cation of volume, relative to
the placeable, that should be clear of any obstacles).
� Main properties of a placeable:
Placeable surface (which in itself includes dimensions of
surface, center, orientation etc.)
� Shape realization of placeables:
In our current implementation, a placeable may be realized
in two ways:
1. By a single plate (deformed or non-deformed)
2. By a collection of close sticks or plates, placed one next
to the other in the same orientation, forming a single non-
continuous surface.
A schematic view of placeable realizations is shown in �g-
ure 6.
Recognition of placeables is performed by identifying

such plates or stick/plates collection in the mid-level rep-
resentation of the image, and testing if they conform to
the parametric constraints (clearance, surface direction, di-
mensions, deformation level).

Fig. 6. Possible placeable realizations

Supporter to ground: a functional part that provides a
stable support to the ground for other parts.
� Parametric constraints:
1. Shape part to be supported
2. Direction of ground
3. Allowed range for supporter height

� Main properties:
1. Height(as a function of part to support)
2. Supports Part(as a function of part to support)

� Shape Realization
In our current implementation, a supporter-to-ground may
be realized in several ways:
{ Collection of legs (3 or 4 legs)
{ 1 leg + base support, where \base-support" in itself
may be realized by a plate connected to the leg in its center,
or n sticks connected to the leg.
{ a blob.
A schematic view of supporter-to-ground realizations is
shown in �gure 7.

4-legged 1-legged + base-support(2)1-legged + base-support(1)3-legged blob support

Fig. 7. Several possible supporter-to-ground realizations

We also point out that a \leg" as used in the de�nitions
above, is a stick or a collection of several sticks joined to-
gether.
Recognition process of supporters-to-ground involves

identi�cation of sticks in the primitive parts collection.



Then, possible con�gurations of sticks forming 3/4/1-
legged hypotheses are tested with the parametric con-
straints of height and stability. The stability constraint
is checked by performing two tests. The �rst test �nds the
polygon de�ned by the connection points of the supporter
to the part, and then checks if the center of the supported
part is within this polygon (in the case of 1-legged sup-
porter - this test actually checks if the leg is connected to
the center of the part). The second test �nds the projec-
tion of the part on the ground, and then checks that a large
enough portion of that projection lies within the polygon
de�ned by the supporter ground tips.
By de�ning a leg as a collection of sticks, we overcome

over-segmentation problems in which a single stick in the
image was over-segmented and decomposed into several
sticks. In such a case, the system will also consider a
hypothesis in which these sticks form a single leg, thus
handling correctly the recognition of the over-segmented
supporter. Another common problem in recognition of
supporters is occlusion. In many views of objects having
supporters-to-ground, the legs are partly occluded by the
supported part. We address this occlusion problem by test-
ing hypotheses in which the actual connection of each leg
is not explicitly seen in the image but is inferred by the
seen part of the leg.
In a similar way we de�ne other functional parts like

handle, container, etc...

C.2 Functional description of classes

In the following section we will apply our representation
concepts to the functional representation of several classes
that were tested by our system. We describe the decompo-
sition of these classes into functional parts (each part being
an instance of one of the generic functional parts described
before), and then present functional criteria for these parts
and for relations between them.

Chairs

� Functional parts (as shown in �gure 8): seat, seat-
ground-support, back-support (optional)
1. seat ::= placeable(sitting size, seat max deforma-
tion,[ground z])
2. back-support := placeable(back size, back max defor-
mation, ? seat-direction)
3. seat-ground-support ::= supporter-to-ground([seat],
[ground z], sitting height)

support
back-

support
groundseat

Fig. 8. Chair functional parts

� Relational criteria:
1. seat is perpendicular to back-support

2. ground-support provides a stable support for seat
3. seat is connected to back-support
4. ground-support is connected to seat
5. combination of: seat + back-support + ground-
support provides seating and room-for-legs clearance.

A table is similar to a chair but with di�erent dimensions,
without a back-support and the placeable must be non-
deformed.
Similarly we de�ne a mug as having a mug-container con-

nected to a mug-handle which can be grasped by a person.
In a similar way we de�ned more classes using our de�ned

generic functional parts. Those include: glass, bowl, pot,
bed, shelf, etc...
Each class was denoted a \class-veri�er" - a module re-

sponsible for verifying if the input imaged object is a valid
instance of the class. The class-veri�er thus includes the
functional parts and their constraints, a recognizer for each,
probability and work weights, a \whole-object-test" and a
common knowledge repository. The high-level implemen-
tation of the classi�cation of an imaged object applied the
class-veri�ers to the data in probabilistic order.

IV. Experimental Results

We have tested the implemented system, described in
section III, on an image database consisting of various
range images of real objects, scanned by a Cyberware laser-
based range scanner. Several kinds of objects have been
scanned and added to our input database: objects that are
instances of classes known to the system, objects that are
functionally non-valid instances of the known classes (i.e:
a chair that is unstable, a mug that is not graspable, etc.),
and �nally: objects that are instances of classes that are
unknown to the system (boxes, hand-tools etc.). Through-
out the tests, we have veri�ed that the low and mid-level
phases, as well as the high-level classi�cation, were per-
formed correctly. Examples for intensity images of some
tested objects are shown in Figure 9. Summary of tests per-
formed on real objects containing our supported functional
parts, is presented in Table 1. The table shows that almost
all the tested objects were segmented and then classi�ed
correctly (valid and non-valid instances of known classes
and instances of unknown classes). Only a few (15 ob-
jects) were segmented but could not be classi�ed because
they consisted of realizations of functional parts that were
not yet implemented.
We now present several examples for these tests. Fig-

ure 10 demonstrates the classi�cation of a standard valid
chair having all three functional parts (a seat, a back-
support and a supporter-to-ground). The mid-level phase
has segmented the image correctly into 2 plates and a col-
lection of 4 sticks + a few dummy sticks (due to over-
segmentation). In the high-level phase the �rst part chosen
to be elaborated was the chair seat. Two hypotheses for
seat placeables were found. The �rst seat hypothesis was
further explored: the next part chosen to be elaborated
was chair back support. One hypothesis was found. The
next chosen part was chair support to ground. Several hy-
potheses were found (due to several possible combinations



Fig. 9. Intensity images of some tested objects

Class Tested objects

valid chairs 15
valid mugs 12
valid glasses 7
valid tables 7
valid plates 3
non-valid chairs 8
non-valid mugs 17
non-valid glasses 3
non-valid tables 5
non-class 23
segmented, not-classi�ed 15
total tested 115

TABLE I

Summary of tests

of legs). The correct combination passed the \whole object
test" and the image was veri�ed successfully as a chair.

Figure 11 demonstrates the classi�cation of a stool - a
3-legged chair without a back-support. We also note that
the seat, unlike the standard chair is heart-shaped and de-
formed plate.

The Classi�cation of a a blob supporter-to-ground in a
couch is demonstrated in Figure 12. The mid-level seg-
mented the image into several plates conforming to the
chair itself and a collection of plates and sticks (deformed
and non-deformed) due to over-segmentation and clutter.
The high-level phase chose to start with the seat (due to
utility considerations) and found several valid hypotheses,
then found a valid blob supporter-to-ground only for one

intensity range segmented

Fig. 10. A standard valid chair with a back-support

intensity range segmented

Fig. 11. A classi�cation of a valid 3-legged chair

of them. The image was veri�ed correctly as a valid chair.

intensity range segmented

Fig. 12. A classi�cation of a couch having a blob supporter-to-ground

Figure 13 demonstrates the correct classi�cation of a
valid 3-legged chair in a neighborhood consisting of other
\non-class" objects (pencils and a piece of chalk). Clutter
due to the other objects did not a�ect the functional valid-
ity of the \real" chair and therefore the image was veri�ed
correctly as a valid chair.

intensity range segmented

Fig. 13. A correct classi�cation of a valid chair in a cluttered envi-
ronment

The classi�cation of a valid non-cylindrical mug with an
over-segmented decomposition into parts is demonstrated
in Figure 14: The mid-level phase has segmented the im-
age correctly into 2 deformed plates (not cylindrical but
still convex and concave with an aperture contour). An
over-segmented collection of sticks conforming to the han-
dle were also found. The high-level phase found a valid con-
tainer (in terms of volume and clearance) and then found
several hypotheses for a handle (conforming to di�erent
possible combinations of sticks from the over-segmented
handle).
The classi�cation of a non-valid chair is demonstrated

on a chair missing one of its legs (Figure 15). The high-



intensity range segmented

Fig. 14. A classi�cation of a valid non-cylindrical and over-segmented
mug

level process found a valid seat and a back support. Yet,
among supporter-to-ground hypotheses, none was found to
provide a stable support for the seat.

intensity range segmented

Fig. 15. A classi�cation of a non-valid chair, missing one of its legs

In Figure 16 we demonstrate the classi�cation of a mug
that is not valid due to a non-graspable handle. The
high-level phase found a valid container and then found
several hypotheses for handles, yet, all were ruled out. The
\real" handle had correct grasping dimensions but did not
have grasping clearance. Therefore, the veri�cation of mug

failed.

intensity range segmented

Fig. 16. A classi�cation of a co�ee mug having an obstacle in its
handle

In the above examples, we have demonstrated how over-
segmented parts are handled in the high-levels (the legs
of a chair supporter-to-ground or the handles of mugs are
found even if they are constructed of several connected de-
formed sticks). We also note that in all the chair examples,
the legs were partly occluded. Nevertheless, the high-level
phase has considered hypotheses where the legs \could" be
connected to the seat and provide a stable support.

V. Conclusions

In this paper we have addressed the problem of object
classi�cation from raw range images. A new framework
has been presented addressing the low and high-levels of
the problem by combining structural and functional ap-
proaches. An experimental system applying our frame-
work has been implemented and tested on over a hundred
range images of real objects. We have presented in the pa-
per several results of these tests, demonstrating the part de-
composition of di�erent shaped objects and the classi�ca-
tion of instances of several classes, thus proving the feasibil-

ity of our approach and its robustness to over-segmentation
and cluttered scenes.
Future research includes the de�nition of some additional

generic functional parts, thus enabling the classi�cation of
many more classes, and the generalization of the shape-
to-function mapping by implementing more realizations to
the existing functional parts. The introduction of new
classes is to be generalized by adding learning algorithms
to the classi�cation process. We expect to learn various
realizations of existing generic functional parts, as well as
high-level representation of classes by these parts.
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