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Abstract

One way to learn the function of an ob-

ject is by watching the object in use. As

an example, an observer might “see” a

knife being used to slice bread and learn

the function of cutting and the context
~in which it can be used.

This paper demonstrates that the func-
tion of an object can be inferred from
its motion. We show that the mo-
tion of an object, when combined with
information about the object’s shape,
provides strong constraints on possi-
ble functions that the object might be
performing. In further studies, cur-
rently in progress, we will demonstrate
that this approach can be used to learn
the functionality of an unknown object
by observing an image sequence that
shows the object performing an action
which accomplishes the function.

1 Introduction

Recognizing the functions of objects is often a
prerequisite to interacting with them. The func-
tionality of an object can be defined as the us-
ability of the object for a particular purpose
[Bogoni and Bajcsy, 1994].

There has been considerable recent research on
the problem of recognizing object functional-
ity; for a short survey see [Bogoni and Bajcsy,
1994]. The goal of this research has been to
determine functional capabilities of an object
based on characteristics such as shape, physics
and causation [Stark and Bowyer, 1992]. Lit-
tle attention has been given to the problem of
determining or learning the functionality of an
object from its motion. We believe that motion
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provides a strong indication of function. In par-
ticular, velocity, acceleration, and force of im-
pact resulting from motion strongly constrain
possible function. As in other approaches to
recognition of function, the object (and in our
case, its motion) should not be evaluated in iso-
lation, but in context. The context includes the
nature of the agent making use of the object
and the frame of reference used by the agent.

In this paper, we address the following prob-
lem: How can we use the motion of an object,
while it is being used to perform a task, to de-
termine its function? Our method of answering
this question is based on extraction of a few
motion descriptors from the image sequence.
These descriptors are compared with stored de-
scriptors that arise in known motion-to-function
mappings to obtain function recognition.

In Section 2 we briefly review related work. In
Section 3 we review preliminaries on motion and
image motion fields. Section 4 considers the
problem of determining the functionality of a
known object by analyzing an image sequence
showing that object performing the function.
The motion estimation machinery needed for
this task is developed in Section 5. In Section 6
we present experimental results demonstrating
that motion analysis can indeed be used in de-
termining functionality. In Section 7 we discuss
planned future work in this area.

2 Related Work

Motion and functionality have appeared in the
literature in several contexts. Early work on
functional recognition can be found in [Free-
man and Newell, 1971; Solina and Bajcsy, 1983;
Winston et al., 1983]. More recently, Stark
and Bowyer [1991a; 1991b; 1992; Stark et al.,
1993) used these ideas to solve some of the prob-
lems presented by more traditional model-based
methods of object recognition. This work deals
only with stationary objects; no motion is in-
volved.




In more recent work Green et al. [1994] discuss
the recognition of articulated objects, using mo-
tion to determine whether the object possesses
the appropriate functional properties.

Gould and Shah [1989] use motion character-
istics to identify important events correspond-
ing to changes in direction, speed and accelera-
tion in an object’s motion. Motion analysis for
recognition of activities was described by Polana
and Nelson [1993].

These approaches are not adequate for our pur-
poses since many objects can display similar
motion characteristics. An object model is nec-
essary to distinguish the functions of objects
from their motion characteristics. Our work is
based on segmenting the object into primitive
parts (see Section 4.1) and analyzing their mo-
tions.

3 Preliminaries

In this section we derive equations of motion
for observer-centered and object-centered coor-
dinate systems. We then derive projected mo-
tion equations for the weak perspective imaging
model [Ullman and Basri, 1991]. Finally, we de-
rive the relationship between the image veloci-
ties and the projected motion.

3.1 Rigid Body Motion

To facilitate the derivation of the motion equa-
tions of a rigid body B, we use two rectangular
coordinate {rames, one (Ozyz) fixed in space,
the other (Cryygz1) fixed in the body and mov-
ing with it. The coordinates of any point P of
the body with respect to the moving frame are
constant with respect to time ¢, while the coor-
dinates X, Y, Z of the same point P with re-
spect to the fixed frame are functions of t. The
position of the moving frame at any instant is
given by tne position d, = (X, Y ZC)T of the
origin (', and by the nine direction cosines of
the axes of the moving {rame with respect to
the fixed frame. For a given position g of P in
C'ryy12 we have the position 7, of P in Ozyz:

7= (XY 2)T = Rp+ 4, (1)
where 2 is the matrix of direction cosines. The
velocity of 7, is then given by

P=0x (F-d)+ T
where & = (4 B ()7 is the rotational veloc-
ity of the moving frame; d, = (X. Y. ZC)T =

(' v W)T = T is the translational velocity of
the point (7. This can be written as

X 0 -C B X - X, U
Vo= ¢ 0 -4 vov. j+( v .
7 -B A 0 Z-Z. w

Let the rotational velocity in the moving frame
be &; = (A; B CI)T; we can write o = R,
and &, = RT3,

3.2 The Imaging Model

Let (X,Y, Z) denote the Cartesian coordinates
of a scene point with respect to the fixed camera
frame, and let (z,y) denote the corresponding
coordinates in the image plane. The equation of

the image plane is Z = f, where f is the foca]

length of the camera. The perspective projec-
tion is given by « = fX/Z and y = fY/Z. For
weak perspective projection we need a reference
point (X, Y., Z.). A scene point (X,Y,Z) is
first projected onto the point (X,Y, Z.); then,
through plane perspective projection, the point
X,Y,Z.) is projected onto the image point
z,y). The projection equations are given by

X Y
f—'Z“Cf’ y-zf- (3)
3.3 The Motion Field and the
Optical Flow Field

The instantaneous velocity of the image point
(z,y) under weak perspective projection can be
obtained by taking derivatives of (3) with re-
spect to time and using (2):

5 = f)tzcy:—zxz'J = f[-cgv-)'c)is(zézc)+av]zc—/\’w
g%fvl—c(y—yc)wth(gz;—l), (4)

i = fsfzcz.gyz'c :/[C(x~xc‘>—A(zZ—gzc)+vlzc—YW
= VLW o cr o) - fa(£-1) (5)

where (2.,y.) = (fXc/Zc, fY:/Z.) is the image
of the point . Let 7and j be the unit vectors in
the r and y directions, respectively; ¥ = £74 yJ
is the projected motion field at the point 7 =
T+ Y7

If we choose a unit direction vector 7, in the im-
age point 7" and call it the normal direction, then
the normal motion field at 7'is 7, = (711, )7, 1,
can be chosen in various ways; the usual choice
is the direction of the image intensity gradient.
Let I(z,y,t) be the image intensity function.
The time derivative of [ can be written as

dl 0ldz 0Idy 01
W T Gzt T aydt ot
= (L7+ L)) -(a0+9)+ I
= VI-F+1

where VI is the image gradient and the sub-
scripts denote partial derivatives.

If we assume dI/dt = 0, i.e. that the image
intensity does not vary with time {Horn and




Schunck, 1981], then we have VI . i+ I = 0.
The vector field @ in this expression is called
the optical flow. If we choose the normal direc-
tion 7, to be the image gradient direction, i.e.

n, = VI/||VI||, we then have

. e ~-I; VI
Un = (4 -7, )7, = H_\;TH—?— (6)

where 4, is called the normal flow.

It was shown in [Verri and Poggio, 1987] that
the magnitude of the difference between %, and
the normal motion field 7, is inversely propor-
tional to the magnitude of the image gradient.
Hence 7, ~ i, when ||VI| is large. Equa-
tion (6) thus provides an approximate relation-
ship between the 3-D motion and the image
derivatives. We will use this approximation
later in this paper.

4 Function from Motion

4.1 Primitive shapes and primitive
motions

Following [Biederman, 1985; Rivlin et al., 1994;
Rivlin et al., 1993] we regard objects as com-
posed of primitive parts. On the most coarse
level we consider four types of primitive parts:
sticks, strips, plates, and blobs, which differ in
the values of their relative dimensions. As in
[Rivlin et al., 1994] we let ai, ay, and ag repre-
sent the length, width, and height, respectively,
of a volumetric part. We can then define the
four classes as follows:

Stick : a1 a3 Kae3Vva a3 KayVa; ~ayLay (7)
Strip : a1 #£axAay #azAay #aj (8)
Plate . a1 =@y > az3VayxazPayVay~az»>ay (9)
Blob - a; ~ ay ~ a3 (10)

If all three dimensions are about the same, we
have a blob. If two are about the same, and the
third is very different, we have two cases: if the
two are bigger than the one, we have a plate,
and in the reverse case we have a stick. When
1o two dimensions are about the same we have
a strip. For example, a knife blade is a strip,
because no two of its dimensions are similar.

Primitives can be combined to create compound
objects. In [Rivlin et al., 1994] the differ-
ent qualitative ways in which primitives can be
combined were described—for example, end to
end, end to side, end to edge, etc. In addi-
ton to specifying the two attachment surfaces
Participating in the junction of two primitives,
we could also consider the angles at which they
o, and classify the joints as perpendicular,
oblique, tangential, etc. Another refinement
Would be to describe qualitatively the position
of the joint on each surface; an attachment can
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be near the middle, near a side, near a corner,
or near an end of the surface. We can also spe-
cialize the primitives by adding qualitative fea-
tures such as axis shape (straight or curved),
cross-section size (constant or tapered), etc.

Functional recognition is based on compatibil-
ity with some action requirement. Some basic
“actions” are static in nature (supporting, con-
taining, etc.), but many actions involve using
an object while it is moving. To illustrate the
ways in which one can interact v~{1th a prim-
itive, consider the action of “cutting” with a
sharp strip or plate. llere a sharp edge is inter-
acting with a surface. The interaction can be
described from a kinematic point of view. The
direction of motion of the primitive relative to
its axis defines the type of action—for example,
stabbing, slicing or chopping. These actions all
involve primitive motions, which we define to
be motions (translations or rotations) along, or
perpendicular to, the main axes of the primitive
object.! In this paper we will use the detection
of primitive motions of an object to infer the

object’s function.

4.2 Inferring Function from
Primitive Motions

Given a moving object as seen by an observer,
we would like to infer the function being per-
formed by the object. The object is given as
a collection of primitives. For example, a knife
can be described as consisting of two primitives:
a handle (a stick) and a blade (a strip). Given
this model, the system estimates the pose of
the object (as in [DeMenthon and Davis, 1995;
Rivlin et al., 1994]) and passes this information
to the motion estimation module. The model
and the results of the motion estimation enable
the system to infer the function that is being
performed by the object.

The function being performed by the objec,t de-
pends on the object’s motion in the object’s co-
ordinate system and on its relation to the ob-
ject it acts on (the “actee”; in [Kise et al., 1993;
Kitahashi et al., 1991], called the “functant”).
This information gives us the relationship be-
tween the direction of motion, the main axis
of the object, and the surface of the actee, and
these relationships determine the intended fupc-
tion. For example, we would expect the motion
of a knife that is being used to “stab” to be par-
allel to the main axis of the knife, whereas if the
knife is being used to “chop” we would expect
motion perpendicular to the main axis. In both
cases, the motion is perpendicular to the surface
of the actee. If the knife is being used to slice,

'It is interesting to note that motions along the main
axis of a primitive preserve “degencrate views” [Kender
and Freudenstein, 1987].




we would expect back-and-forth motion parallel
to its main axis and also paralle]l to the surface
of the actee.

5 Motions of Sticks and Strips
5.1 The Motion

Consider a moving object B. There is an el-
lipsoid of inertia associated with B. The cen-
ter of the ellipsoid is at the center of mass C
of B; the axes of the ellipsoid are called the
principal azes. We associate the coordinate sys-
tem Cryy;2z; with the ellipsoid and choose the
axes of C'z 9121 to be parallel to the principal
axes. Let 77 be the unit vector in the direction
of the longest axis [. (this axis corresponds to

the smallest principal moment of inertia); let &y
be the unit vector in the direction of the short-
est principal axis (this axis corresponds to the
largest moment of inertia); and let 7; be the unit
vector in the direction of the remaining princi-
pal axis with the direction chosen so that the

vectors (1.“1,]*1,131') form a right-handed coordi-
nate system.

In this paper we consider only objects that are
approximately planar, straight strips and sticks.
For a planar strip the axis of the maximal mo-
ment of inertia is orthogonal to the plane of the
strip: if the strip is approximately straight, the
axis of the minimal moment of inertia is ap-
proximately parallel to the medial axis [, of the
strip. In the case of a straight stick, similarly, /.
corresponds to the longest principal axis of the
ellipsoid of inertia; the other two principal axes
are orthogonal to /. and can be chosen arbitrar-
ily. We assume that the motion of the stick or
strip is planar and that the plane is “visible” to
the observer.? When the object is a strip we as-
sume that the motion is in the plane of the strip;
the translational velocity is then parallel to the
plane of the strip and the rotational velocity is
orthogonal to the plane of the strip. When the
object is a stick the consecutive positions of the
stick define the motion plane; the translational
velocity lies in the plane and the rotational ve-
locity is orthogonal to the plane. In this case we
choose the axis of minimal moment of inertia to
be orthogonal to the plane of the motion.

We choose the center of mass C of a stick or
a strip B as the origin of the object coordinate
system (191 21; the coordinates of C expressed
in the fixed frame are (X, Y;, Z.). We choose
the unit vector 77 along /., with the orientation
chosen to be in the direction of the acting part

of the tool; we choose k1 to be orthogonal to
the plane of motion and pointing away from the

?The “visibility” constraint allows an oblique view as
long as the angle between the surface normal and the
z-axis of the camera is < 30° (say).
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observer (camera) so that k-k; > 0. We choose
the direction of jj so that Cziy12; is a right-
handed orthogonal coordinate system. Let I]

be the plane in which both the line I/, and j(the
unit vector in the direction of the y-axis of the
camera) lie; we can obtain II, by sliding a line
parallel to 7 along .. Also, let II,; be the plane
in which both the line I, and & (the unit vector
in the direction of the z-axis of the camera) lie;

we can obtain II, by sliding a line parallel to k
along /..

Let the angle between the plane II, and the Cy;
axis of the object be ¢. The rotation R (~)
around the Cz; axis of the object transforms
7; into j. (the unit vector parallel to II,) and
kq into k.. The orthographic image of I, in the
plane Z = Z,. is the line I, which is the intersec-
tion of the plane Z = Z. and II,; let the angle
between [’ and l. be ¢. The rotation Ry (—¢)
around an axis C'y, (passing through C and par-
allel to j.) transforms 7; into 7 (the unit vector
along I!) and it transforms k. into k£ (the unit
vector along the z-axis of the camera). Finally,
let the angle between the positive direction of
the z-axis of the camera and the direction 7,
be «. The rotation R.(—a) around the axis
C'z (passing through C and parallel to k) trans-
forms 7. into 7 and it transforms j; into 7. The
rotation matrix B = R.(—a)Ry. (—¢)Re, (=)
in (1) is then given by

cosa =—sina 0
R = sin a cosa 0 .
0 0 1

cosy 0 sing 1 0 0 .
0 1 0 0 cosy —smy
—siny 0 cosy 0 siny cosy

5.2 The Image Motion Field

By our assumption about the translational ve-
locity of the object and the choice of the object
coordinate system we have 7'} = (U; Wi O)T

and T = erl. The expression for the transla-
tional velocity in the fixed frame is given by

R U Ujcosyp + Vysinpsinyg
T= 1% = R:(—a) Vi cos ¢ .

w —U;psingp + Vy cospsiny
12)

(11}

Similarly, for the rotational velocity we have
b1 = 01131. The expression for El in the Ozyz
frame is Rk;. We have from (11)
cos o sin  cos P + sin asin ¥ Nz .
R;l = ( sin a sin p cosy — cosasiny > = ( Ny > =N

COs @ Ccos Y

The expression for the rotational velocity in the
fixed frame is given by

S=(AB O =C Rk =CN. (13)




We now consider the term (Z — Z.)/Z; for the
points on the object B. The equations we de-
rive are valid for points in the plane in which [,

lies; the unit vector & is normal to this plane.
The equation (in the Ozyz frame) of the plane

orthogonal to N = Rk, in which the point
(X.,Y., Z.) lies is given by

(X =X )N+ (Y = YO)N, + (2 - Z)N, = 0.
Multiplying by f(Z.N,)™! and using (3) we ob-
tain

5% = —(z = z)No /N, = (y — yo)Ny/N.. (14)

This is an exact formula for thin planar strips;
in the case of sticks this formula is exact for an
occluding contour.

From (4)-(5) and (14) we obtain the equations
of projected motion for points on B under weak
perspective:

i = Y52 Oy —y)N: - Cy -

[(z — 2. )NaNy /N + (y — y.) N2 /N, (15)
= K%}vl +Ci{z —x )N, +Cy -

[(z — 2 )NZ/N. + (y — ye) N2 Ny /N]. (16)

.
I

Equations (15)-(16) relate the image (pro-
jected) motion field and (z.,y.) to the scaled
translational velocity Z71T = Z7Y(U V W)T,
the rotational parameter (', and the normal to
the strip N = (N; N, NZ)T.

Given the point 7 = z7+ yj and the normal
direction 7 = n,7+ n,J we have from (15)-(16)
the normal motion field

-

el = ngl+nyy
= n.flU/Z. + (2] f) CleNy/Nz]
~nga(W/Z. + CiN.N,/N.)
_nr(y - yc)CI(Nz + Nyz/Nz)
+ny, fIV/Z. - (yc/f)CINrNy/NZJ
—nyy(W/Z. — CiN.N,/N,)
+ny(z — 2. )C1(N; + NZQ/NZ) (17)
Let
a) ngf
22 —nz_(zr—ryc)
a= ai = nyf
as —nyY
ag ny(z ~ xc)
(18)
cy U/Zc+(rc/f)clNrNy/Nx
s W/Ze+ CiN:N,/N,
c=| e _ Cy(N. + N2/N,)
cy - VIZe— (ye/f)CINzNy/N:
cs W/Ze— CiN:Ny/N,
6 C1(N. +N3/Nz)

Using (18) we can write (17) as

7 -i=alc. (19)

Column vector a consists of observable quanti-
ties only, while column vector ¢ contains quan-
tities which are not directly observable from im-
ages. To estimate ¢ we need estimates of #, - i
at six or more image points.

5.3 Estimating the Motion
Parameters from Normal Flow

If we use the spatial image gradient as the nor-
mal direction 7, = VI/||VI|| = n; 7+ n, ], and
assume that %, ~ u,, we can obtain an ap-
proximate equation by replacing the left hand
side of (19) by normal flow —1,/||VI]]. In this
way we obtain one approximate equation in the
six unknown elements of ¢. For each point
T, ¥i), ¢ = 1,...,m of the image at which
IV I(z;,y;,t)|| is large we can write one equa-
tion. If we have more than six points we have an
over-determined system of equations Ac = b;
the rows of the m x 6 matrix A are the vec-
tors a;. and the elements of the m-vector b are
—(01(zi, yi, 1)/ 01) IV I (i, y:, )|

We seek the solution for which ||b — Ac|| is min-
imal. This solution is the same as the solution
of the system AT Ac = ATb = d. We solve the
system AT Ac = d using the Cholesky decom-
position. Since the matrix ATA is a positive
definite 6 x 6 matrix there exists a lower tri-
angular matrix L such that L LT = ATA. We
then have L LTc = d. We solve two triangu-
lar systems Le = d and LT ¢ = e to obtain the
parameter vector c.

After estimating ¢ we can use (18) to obtain

T‘/ZC and Cy: Let ¢z = (¢c3 — ¢5)/2; we then

have

ToC7

f b

W cy+c¢
7= 2—2——5, Cy = sgn(cg)\/cace — 2

where sgn is the sign function.
We will next show how U;/Z, and V1 /Z. can be
estimated from (U/Z.,V/Z.,W/Z.). From (12)

we have

=cq4+

S

Z-—l

[

Vicos
~Uysing + V) cospsin g

Uz, d
:Rz(a)< vz ) = ( d )
W/Z. d3

< Uicosp+ Visinpsiny )

(20)




and by rearrangement we obtain

v B U1/2, _
icosw = dy, < (Vi/Z.)sin > -

cos@ —sing d;

sing  cos@ ds }°
To estimate Uy/Z., V1/Z., ¢, and 1 we need
at least four equations, but (21) provides only

three. However, by our assumption about the
slant of the plane of the motion relative to the
image plane, /(kq,k) is at most 30°. The first
and the second rotations in (11) are in orthog-
onal planes; it follows (from the fact that in a
right triangle the longest side is the hypotenuse)
that both ¢ and ¢ must be smaller than 30°.

Since we have four variables and only three
equations we seek ¢ and @ for which || + ||
is minimal. From (21) we have

dytaniyp =

(21)

dysin+ dycos

JEB+ & sin (o - wo). (22)

where ¢y = — arctan(ds/dy). The value of ¢
which satisfies (22) and minimizes || 4 |¢] be-
longs to the interval [0, o] (the interval can be
cropped if it exceeds the 30° bound). Each value
of ¢ corresponds to one value of ¥». Because of
the convexity of the constraint the solution to
min{|p| 4+ |¢|} can be found using simple search
through all ¢ € [0,¢g] and corresponding s.
The values of ¢ and ¢ can then be used in (21)
to find Uy/Z. and V4 /Z,.

i

6 Experiments

This section illustrates how our methods can be
applied to real Image sequences. In each se-
quence, we observed the motion of a tool (a
knife) performing a task. The vision system
took images at 25 frames per second for 5 sec-
onds, yielding 125 images per experiment. After
cach image sequence was recorded, a represen-
tative sampling of the 125 images was used for
further processing. Eleven evenly spaced sam-
ples, each composed of three consecutive im-
ages, were used.® This resulted in 33 images
for each experiment.

In our experiments we assumed a table-top sce-
nario, with a stationary observer on one side of
the table. Based on this assumption we used a
coordinate system that was fixed to the center
of the image, with the X axis horizontal and
pointing toward the right side of the image, the
¥ axis pointing upward, and the Z axis chosen
to vield a right-handed coordinate frame (point-
ing toward the scene). All measurements were

“For instance, samples 1 and 2 in any given experi-
ment used images 0-2 and 10-12, respectively.
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made relative to this coordinate system. The
focal length f of the camera was 550 (pixels).

In Section 6.1 we describe the method which we
use to estimate the direction of the medial axis
a and the center of mass (z, y.) of the image of
the knife; we also define the parameters used to
describe the motion of sticks and strips. In the
remaining subsections we illustrate how motion
can be used to discriminate between different
functionalities of a knife.

6.1 Parameterizing the Motion of a
Stick or Strip

We have assumed that an approximate direc-
tion (right, left, up, down) of the acting part of
the tool (the knife blade) is known. The exact
direction of the medial axis is found using the
following algorithm:

1 - Make a sorted (circular) list of all edge
elements (sorted by their orientations
modulo 7) for which the normal flow
is computed.

2 - Find the shortest segment [v;,y2] such
that more than 3/4 of the orientations
in the list are contained within it.

3 - Find the median orientation a in the
sorted sublist chosen in the previous
step.

4 - I o does not agree with the general
direction of the tool (right, left, up,
down) then o — a4+ 7.

5 - Use « as the orientation of the medial
axis.

We estimated (z.,y.) — the image position of
C (the reference point and the center of mass of
the object)—as the average of the coordinates
of all edge points for which the normal flow was
computed.
We define 3 as the angle between the vector
(U; Vi 0)T and the Cz; axis of the tool coor-
dinate system; thus
- W
B = arctan —.
1
We define 6 to be the total rotation angle as a
function of time:

1
0— / C1dt.
0

We use the triples (a, 3, 6) to parameterize the
motions of sticks and strips.

(23)

(24)

6.2 Recognition of Stabbing,
Chopping, and Slicing

Three simple functions performed by knives are
stabbing, chopping, and slicing. We now show
how motion can be used to differentiate between
the three.




(b)

Figure 1: (a) Flow vectors for Stabbing. (b)
Stabbing motion.

6.2.1 Stabbing

Stabbing is defined as the cutting motion of a
knife in which « (the angle between the pro-
jection of [, onto the plane Z = Z. and the
Oz axis) is close to either —7/2 or 7/2, G is ap-
proximately 0, and 8 is small and approximately
constant.

Figure 1 shows the flow vectors taken from the
6th sample and a composite image of the knife
taken from the 1st, 6th and 11th samples of the
stabbing experiment. Figure 2 shows a plot of
the triple (@, 3,6) with respect to time (frame
numbers). We see that as was expected, the
values of « are very close to —7/2, 3 is close to
0, and 8 is close to 0.

6.2.2 Chopping

Chopping is defined as the cutting motion of a
knife in which o (the angle between the projec-
tion of [, onto the plane Z = Z. and the Oz
axis) is close to either 0 or m, 3 is close to /2
@ % 7)or —x/2 (when a ~ 0), and 8 is small
and approximately constant.

Flgure 3 shows the flow vectors taken from the
6th sample and a composite image of the knife
taken {rom the 1st, 6th and 11th samples of the
chopping experiment. Figure 4 shows a plot of
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Figure 2: Angles «, 3, and 8 for Stabbing. «
is given by a dashed line, 8 is given by a solid
line, and 8 is given by a dash-dot line.

the triple (a, 3,6) with respect to time (frame
numbers). We see that, as was expected, the
values of a are very close to 0, § is close to
—n/2, and 8 is close to 0.

6.2.3 Slicing

Slicing is defined as the cutting motion of a knife
in which « is approximately 0 (or < 7/2), § os-
cillates between approximately 0 and approx-
imately m, and 6 is small and approximately
constant.

Figure 5 shows the flow vectors taken from the
6th sample and a composite image of the knife
taken from the 1st, 6th and 11th samples of the
slicing experiment. (The mass of vectors at the
left end of Figure 5(a) come from the motion of
the hand, which is visible in the images.) Fig-
ure 6 shows a plot of the triple (a,,B,H; with
respect to time (frame numbers). We see that,
as was expected, the values of « are very close to
0, and that § oscillates between approximately
7 /2 and approximately —37/2 (note that the
two approximate values differ by 7).

7 Concluding Remarks

Perceiving function from motion provides an
understanding of the way an object is being
used by an agent. To accomplish this we com-
bined information about the shape of the object,
its motion, and its relation to the actee (the ob-
ject it is acting on). Assuming a decomposition
of the object into primitive parts, we analyzed
a part’s motion relative to its principal axes.
Primitive motions (translation and rotation rel-
ative to the principal axes of the object) were
dominating factors in the analysis. We used a
frame of reference relative to the actee. Once
such a frame is established, it can have major
implications for the functionality of an action.

Several image sequences were used to demon-
strate our approach. In the three sequences




Figure 3: (a) Flow vectors for Chopping. (b)
Chopping motion.

shown in Section 6, motion was used to discrim-
inate between three cutting actions: stabbing,
chopping, and slicing. In other sequences, not
shown here [Duric et al., 1996], we used motion
information to differentiate between two differ-
ent functionalities of the same object: scooping
and hitting with a shovel, and hammering and
tightening with a wrench.

Natural extensions of this work include the anal-
vsis of more complex objects. Complexity can
be expressed in terms of either the shapes of
the parts or the way in which the parts are con-
nected.  An interesting area is the analysis of
articulated objects. The different types of con-
nections between the parts constrain the pos-
sible relative motions of the parts. A pair of
pliers or a pair of scissors is a simple case, with
only a single articulated connection (one degree
of freedom in the relative motion of the parts).
Work is in progress in which the methods devel-
oped in this paper are used to demonstrate how
to fearn the functionality of an unknown object
by observing image sequences in which the ob-
ject is performing actions which accomplish its
function.

1444

Figure 4: Angles a, (3, and 8 for Chopping. a
is given by a dashed line, 3 is given by a solid
line, and 6 is given by a dash-dot line.
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