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Abstract. The problem of logo recognition is of great in-
terest in the document domain, especially for document
databases. By recognizing the logo we obtain semantic infor-
mation about the document which may be useful in deciding
whether or not to analyze the textual components. Given a
logo block candidate from a document image and a logo
databasc, we would like to determine whether the region
corresponds to a Jogo in the database. Similarly, if we are
given a logo block candidate and a document database, we
wish to determine whether there are any documents in the
database of similar origin. Both problems require indexing
into a possibly large model space.

In this contribution, we present a novel application of
algebraic and ditferenual invariants to the problem of logo
recognition. By using invariants we have shape descriptors
for matching that are unique and independent of the point of
view. The algebraic invariants handle cases in which the
whole shape of the logo 1s given and it is easy to de-
scribe. The differenual invariants cover complex arbitrary
logo shape and handle situations in which only part of the
logo is recovered.

We outline o hierarchical approach to logo recognition
and define methods for page segmentation, feature extrac-
tion. and indexing. We demonstrate our approach and present
results on a database of approximately 100 logos.

Key words: Document understanding - Logos — Document
databases - Algebraic and differential invariants — Applica-
tion

1 Introduction

Logos typically appear as mixed text and graphic icons
Which, when recognized, trigger an association of the object
W0 which they are attached. with a given group or organiza-
tion. In the document domain, logos are a valuable device
for identitying the source of a document. By recognizing
the Jogo we can establish a link 10 a specific organization
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Fig. 1a—d. Examples from the logo database

or publication, and we may be able to make a high-level
decision as to whether the information in the document is of
potential interest and should be further analyzed.

In the document domain two analogous logo recognition
tasks are of interest. First, given a document which contains
a logo, classify the logo as one of a finite set of known
logos in a logo database or conclude that the logo is not
present in the database. Second, given a representative logo
(known or unknown), index into a database of documents
and extract all documents which contain that logo. Both of
these problems can be viewed as indexing into a possibly
large database (in one case logos and in the other documents)
based on features found in candidate logo regions.

Several examples of logos are shown in Fig. 1. Logos
typically consist of an iconic or graphic portion and possibly
some associated text. The iconic region may be as simple as
a combination of geometric shapes or as complex as a line
drawing.

In some cases a logo is composed of artistic text or text
arranged in a umque configuration. These text components
may correspond to either the name or an acronym of the
organization, and are thus a key which can be used to im-
mediately index into a database of known organizations. The
extraction of such keys is an important step in reducing the
number of possible matches.
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1.1 Previous work
[.1.1 Logo recognition

The problem of logo recognition has received very little at-
tention in the literature, but some publications which deal
with the tasks of Chinese seal identification and extraction
of text from trademarks have appeared.

In Oriental cultures seafs are used to identify the sources
ol documents, paintings and related objects in much the
same way as a signature is used in Western cultures. As
i many domains, the pattern may be unstable due to noise
in the imprints even from a single seal. Ueda and Nakamura
(1984) describe a system which attempts to align and verity
round sculs with limited success. Fan and Tsai (1984) use a
distance-weighted correfation on aligned skeletal represen-
tations of the seals to perform recognition. Their system 1s
restricted to square seals for alignment and cannot handle
occlusion. Lee and Kim (1989) apply graph matching to the
thinned seal under the assumption that the topology of the
seal 15 unique and remains constant. In a domain containing
only strokes such an approach may be valid. In the logo
domain a much wider diversity of patierns can appear.

In the trademark domain Brossman and Cross (1990)
describe the initial stages of the trademark reasoning and
retrieval system, which attempts to reason about the similar-
ity of trademarks for possible trademark infringement. The
portion of the system which they describe attempts to locate
and recognize characters which are embedded in the artwork.
They attempt to find characters which share strokes or char-
acters that are composed of stylized non-traditional stroke
features, such as bird wings. The difficulty is that many pat-
terns can appear as characters, even if the association is
never intended.

112 Algebraic and ditferenual invariants

The subject of viewpoint invariants in vision has developed
rapidly 1n recent vears. A simple projective, or viewpoint,
ivariant, namely the cross-ratio of four points on a line, was
introduced m vision by Duda and Hart (1973). However, its
domain of applicability was very limited. More general in-
variants were studied in the nincteenth century, and were
itroduced in the ficld of computer vision by Weiss (1988).
They are of two main types: (a) Algebraic invariants based
on a global description of the shapes by algebraic entities
such as Hines. conies and polynomials. Details of these meth-
ods can be tound in Grace and Young (1903) and Springer
11964, (b) Differennal invariants are based on describing
the shape by arbitrary differentiable functions. These meth-
ods were developed by Halphen (1830), Wilczynski (1906),
Cartan (1935) and Lane (1942).

These methods have been applied to various vision prob-
lems. The algebraic approach was used by Forsyth et al.
(1990) and Taubin und Cooper (1992) while differential in-
variants were used by Weiss (1988, 1992) and Bruckstein
and Natravali (1990). Each method proved to have advan-
rages and disadvantages. The algebraic method, while simple
and easy to implement. is quite limited in the kinds of shapes
that it can handle because maost shapes are not representable
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by simple tow order polynomials. The differential method is
more general because 1t can handle arbitrary curves. but 1t
relies on the use of local imformation such as derivatives (of
quite high orders).

This sitwation has led to the introduction of various kinds
of intermediate, or hybrid, methods that try to combine the
advantages ol the algebraic and differental methods but
hopefully not their disadvantages. Van Gool et al. (1991),
Barrett et al. (1991). and others introduced invariants that
contain both derivatives and reference points. Each refer-
ence point reduces the number of derivatives that one needs
in order to obtain vartants. Weiss (1992) used a “canon-
ical” coordinate system without curve parameterization to
obtain the same goal. This resulted in fewer derivatives and
in the capability of using feature lines in addition to points.
However, in all these methods the correspondence must be
established between the reference points of the two images
that are being matched.

1.2 The approach

This paper describes the major componcents in our approach
for logo recognition. An overview ol the approach is pre-
sented 1n Fig. 2. To address the logo recognition problem,
several tasks must be considered, ncluding: (a) detection
and extraction of candidate logo regions from the document
image, (b) segmentation and extraction of meaningful fea-
tures for classification, and (¢) indexing into a large database
of logos or a database ol documents which may contain lo-
gos. More importantly, these tasks must be accomplished
quickly and in the presence of geometric transformation,
notse, and possible occlusion. Our approach is based on a
high-level process which attempts to match a candidate logo
by applying a sct of processes to prune the database using
different features at the different stages of the approach. The
use of nvariants is the major part of the process of handling
shape. In parallel we try to extract text from the logo and
proceed with OCR.
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In the first phase we try to select the logo in the page
and separate 1t from other graphic components. Section 2
describes how logo block candidates are extracted from a
documem image using a page segmentation algorithm. Sec-
tion 3 discusses the segmentation of the logo into text and
graphic features and describes the algorithms for text label-
ing and contour extraction. We extract text and the presence
of simple geometric shapes, such as circles and lines. The
process of extraction of the indexing features is described in
Sect. 4. To obtain index features, we apply OCR to the text
{Sect.4.1) and attempt to extract primitive shapes from the
contours (Sect. 4.2).

Depending on the uniqueness of the text and geometric
features. a more refined match may be necessary based on
the iconic components of the logo. We attempt to refine
the match using several geomerric invariants of contour and
shape features. Invariants are used rather than the contours
themselves to speced up searching and matching queries in
databases. Section 4.3.1 describes how algebraic invariants
are used for rapid pruning, and local, differential invariants
are used lo describe complex shapes and lessen the effects of
occlusion. Section 4 outlines the computation of the invariant
signatures which are used for matching.

To demonstrate our approach we have produced a data-
base of over 100 logos which are representative of logos
found on business correspondence. Section 5 describes the
organization of the database and the indexing techniques
used. Section 6 presents experimental results, and Sect.7
provides an overview of the approach and conclusions.

2 Logo detection

Logos appear on documents as “advertisements” for the
companies or publications which they represent. A Jogo
must be a unique. perceptually salient trademark that can
be quickly recognized by the reader. For this reason logos
are typically placed in a prominent position on the docu-
ment, are larger then mainline text, and are smaller then
other graphics or figures. Logos are typically confined to
compact regions and are located in isolated portions of the
document, and are not embedded in the text structures as
are other graphic or iconic figures. Thus, we can separate a
logo candidate {from other graphic components by its posi-
tion on the page and by using knowledge of the document
type (e.g. memo or letter vs. report) if this is known. Logo
block location hypotheses are generated as the output of a
page decomposition module

The general goal of document page decomposition is to
segment the page into meaningful components based on the
physical atributes of the region. In simple documents the
text, graphics and half-tones are examples of three com-
ponent classes which can be extracted with relatively high
confidence. Regions arc classified by their size, position, and
distribution of components.

We have found that with detailed analysis of a region a
finer classification can be obtained. Our system attempts to
segment an image into the main classes of text/graphics/half-
tones and then attach additional attributes to each region. In
the case of text, we can distinguish between handwritten
and machine-printed text bjocks by measuring variance in
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Fig. 3a,b. Results of page decomposition. A single logo candidate region
is generated

character height. For machine printed text we attempt to
identify the font. point size. and other attributes such as
style (bold, italic, etc.). For graphic regions we attempt to
achieve a classification into tables, charts and graphs, rule
lines, and logo/icons.

The page segmentation is based on the approach de-
scribed by Etemad et al. (1995). The algorithm implements
a layout-independent document image segmentation scheme
in which text, image, and graphics regions in a document im-
age are treated as three different “texture” classes. Feature
vectors based on multiscale wavelet packet representation
are used for local classification. Segmentation is performed
by propagating soft Jocal decisions made on small windows
across neighboring blocks and integrating them to reduce
their “ambiguities” and increase their “confidence” as more
contextual evidence is obtained from the image data. Local
votes propagate in a neighborhood, within and across scales,
and majorities of weighted votes give the final decisions.

In our experiments, small graphic regions (smaller than
750 % 750 pixels at 300dpi) are considered. Such blocks
(and all text which falls within it) are is extracted as logo
-candidates. Figure 3 shows an example of the results of
document segmentation. A single Jogo candidate region, cor-
responding to the Motorola logo, was identified.
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3 Logo segmentation

In this phase in-our approach we attempt to segment the logo
into text and graphics features. Basically the segmentation
is divided into two parts, text extraction and contour extrac-
tion. If textual components can be extracted, the recognized
strings are used to index into a keyword index. In the absence
of text or when text does not provide sufficient constraint,
contour features are used to compute shape signatures and
are qualitatively matched against contour signatures from the
database.

3.1 Texr extraction and text segmeniation

The inclusion of text in logo or trademark designs is com-
mon, because it provides an immediate association with the
acronym or name of the company or publication which the
logo represents. Since the logo itself is typically artistic in
nature, the text is often found printed in a fancy script, in-
verted on a dark background, or lying on a circular arc. In
the simplest case we find text regions below or horizon-
tally adjacent to the logo. If these regions are not part of
the initial logo block hypothesis, as in Fig. 3, they can be
analyzed for relevance to the logo region. A more difficult
task is extracting text which is embedded within the logo
boundaries.

[n our system, we attempt to isolate (a) standard text
(including banner text having size larger then 14 pts), (b)
inverse text, and (¢) text which lies on a circular arc. Other
configurations in which text occurs, but which are not con-
sidered here. include script, tapered text, which is fit within
geometric boundaries, such as ellipses, and text composed
of features which appear as part of the icon. Even a partial
match. which identifies selected characters, can be a valu-
able indexing tool. The remainder of this section describes
our approach to text extraction.

The original documents are scanned at 300 dpi and stored
as 8-bit gray-scale images. Since we are interested only in
a first estimate of the underlying text components, the logo
block image is thresholded by the following procedure: (a)
compute the gradient of the image using the Sobel operator.
(b) suppress pixels which have non-maximal gradient mag-
nitude in the gradient direction, and (c) use the mean gray
level of the remaining edge candidate pixels as a threshold.
We then extract connected components of the thresholded
image and compute properties of each component, includ-
ing its bounding box, height, width, centroid, and compo-
nent area/box area ratio. Using the histogram of component
heights, we group components which are approximately the
same height. Those components which correspond to text
must also satisfy collinearity properties (Fletcher and Kas-
turi 1988) as described below. We have found that text which
is all of the same height (e.g., block caps) is more common
then mixed upper/lower case text (Fig. 1). This provides sub-
groups from which we attempt to ideuntify phrases.

Starting with the largest bin, we apply a Hough trans-
form on the centroids of the bounding boxes to detect linear
components and a Hough transform to detect circular com-
ponents. A threshold of four components is used to filter
out components which align by chance. If text candidates

are found, other components of similar sizes are checked
for inclusion in the phrase, and in the case of circular text
hypothesis the position of the center of the arc is checked
to determine whether it is in a reasonable position near the
center of the logo region. After a line or arc is identified,
other components, which may have been missed because of
size or association with other components, are included by
relaxing the size requirements. Figure 4 shows text extracted
from three logos in the database. (Only simple block text is
currently detected; merged, tapered, or script text is not yet
considered.)

Components which have a background/foreground ratio
greater than 2:1 are marked as candidates for reversed text.
To detect reverse text a background connected component
algorithm is applied to the region, and the components are
grouped as above.

3.2 Contour extraction

After text components are extracted, the graphic compo-
nents remain, along with banner or complex text compo-
nents which could not be classified by the above approach.
The contour features are used to extract primitive shapes
(Sect.4.2), and to compute shape signatures (Sects.4.3.1,
4.3.2) to further refine the match in the database.

As described in the previous section, edge candidates
for these remaining graphic components are identified by
areas of high gradient activity. A Sobel operator is applied
to the gray level image. From the resulting gradient images
step edges are computed. These edges are points of locally
maximal gradient magnitude; they are recorded with edge
angle and location information.

The edges are grouped into chains by starting with edges
having high gradient magnitudes and iteratively extending
their end points to include neighboring edges. The deci-
sion on whether to include a given edge is based on the
smoothness between the two edges. A similar definition of
smoothness for strokes 1s given by Doermann and Rosenfeld
(1993). Smoothness is a local measure of the confidence that
a given pair of edges kand [are portions of the same contour.
In general, we define smoothness, ¥, for a pair of adjacent
edges k and [ with n properties as

Uik, y=Fw,P.P) P=(p.p....0n)

= @ﬁb’rrl,fwz,(p/s:nL«plrn) (l)

m=1

where Py and P, are properly vectors computed from the
edges k£ and [, the f,,’s are smoothness functions derived
for each pair of properties, and w is a weight vector. The (&)
operator is a (possibly nonlinear) combination of the smooth-
ness parameters. The smoothness computation is based on
perceptual organization criteria involving the position, cur-
vature and feature consistency of the two edges.

The properties can be computed as follows: Recall that
for each edge, its position and orientation are computed
(Fig.5). For any pair of edge pixels, £ and [, the follow-
ing properties can be computed:
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Fig. 5. Smoothness parameters. Each edge point has a location and orien-
tation. ¢v, Oricntation of the first edge; 3. orientation of the second edge:
~. angle of the line segment connecting the two centers

bend = abs(5 — @)

total bend = abs(/7 — ) + abs(y — @) 2)
Abend = (5 — ) — (v — )
AX =k, — 1,
Y e

1k = VAX? % Y72
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A number of different smoothness functions can be de-
fined, as described by Doermann and Rosenfeld (1993). For
example, the function used 1n the experiments reported here
18

(j/

I

@(w. bend, Abend)
=1 — [wy # bend + w2 * abs(Abend)) (3)

which 15 maximum for a smooth transition between edges
and favors the straightest path hypothesis. In our experi-
ments the parameters w; and w> simply scale the smooth-
ness measurcs (o values between 0 and 1 (e.g. wy = /7 and
wy = 1/2m), but in general, they can be used to weight the
terms bascd on analytical experimentation.

Once chains are constructed, chains shorter than an em-
pirically obtained length are removed and the chains are
sorted by length. A simple logo tends to have a small num-
ber of long chains corresponding to the boundaries of the
graphic components.

4 Extracting index features

The results obtained from the logo scgmentation and fea-
lure extraction are passed to several processes. First, the
lext components resulting from text segmentation are passed
o OCR engine o provide a fast pruning of the database
(Sect. 4.1). Second, the nontext contours extracted from the
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logo are processed to attempt to identify primitive shapes
including circles, conics, and lines which allow us to in-
dex directly into the database (Sect. 4.2) Finally, if there are
still a large number of candidates, another process computes
geometric invariants from the contours to obtain additional
indexing features (Sect. 4.3).

4.1 OCR

The text components preprocessed and passed to an OCR
system, Text which lies on a horizontal or vertical line is
assumed to be upright. Text which is on a circle 1s cut com-
ponent by component, and rotated accordingly. The image
is passed to the Xerox ScanWorX Package for recognition.

4.2 Primitive shape identification

Lines and circles are common in logos; nevertheless, they
provide a meaningful way of pruning the database. Obvi-
ously, more complex configurations of features can be used
and will eventually uniquely identfy the logo. It may not,
however, be possible to extract them with the desired sim-
plicity or reliability.

Given the set of contours obtained above, each contour
is tested for circularity or linearity. To test {or line seg-
ments each contour is divided into approximately collinear
segments using Pavlidis® (1982) collinearity algorithm. The
length of each linear segment is compared with the overall
size of the logo. Segments which are long enough to corre-
spond to a border or a significant feature are used to prune
the database.

To test for circular arcs, a circle is fit to the contour
points and the mean-squared error of the fit is evaluated.
Both circular arcs and line segments are used to index into
the database. Note, however, that size and position, or in the
case of line segments orientation, cannot be used because
of possible translation, rotation, and scaling of the original
logo.

The next several sections focus on various issues in-
volved in the application of geometric invariants in a logo
recognition process. In view of the diversity of possible
document styles we must deal with logos under a varicty
of transformations including translation, scale, rotation, and
possibly skew. Rotation is less probable than the other trans-
formations since a logo is likely to be oriented consistently
with the text on the page. In the document domain output
from transformations which distort the shape of a logo are
recognized as different logos. In more general domains, such
as a warehouse with a vision system which identifies Jlogos
on boxes, a logo may also undergo perspective transforma-
tions.

4.3 Invariant computations

Given an image of a logo, we want to extract a unigue
invariant of the logo so that given another image of the
same logo, differing from the first by scale and rotation, for
example, we obtain the same invariant. To do this we must
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eliminate the effects of the transformations that gave rise to
the differences between the images.

There are several methods of eliminating transformations
between images. The simplest way is to perform every pos-
sible transformation of one image and see whether any of
the transformed versions matches the other image. For in-
stance, in template matching (Ballard and Brown 1982) it is
assumed that a template and an image differ only by trans-
lation, and the template is moved pixel by pixel over the
image until a match is found. However, when more com-
plicated transformations are involved, such as rotation or
projection, the search space becomes overwhelmingly large.

To reduce the search space “invariant features” can be
extracted. These are features in the image that stay invari-
ant under some transformation and can be matched directly
between the two images. For example, an edge remains an
edge, and edges can therefore be used for matching. The
problem here is that features such as edges are not distinc-
tive. Any edge in one image can match any edge in the other.
This leads to a correspondence problem, which can easily
lead to a combinatorial explosion. Invariant constraints on
edges (Grimson and Lozano-Pérez 1987) can be used, but
they still leave a very large search space.

The correspondence problem can be solved by using
more distinctive invariant descriptors, that is, descriptors that
are invartant only to the transformation that we are inter-
ested in and not to others. For instance, a descriptor of logo
A should be distinet from a descriptor of logo B, that is,
it should not be invariant to a transformation that maps the
shape of logo A into that of logo B. Edges are invariant to
such a mansformation since they can appear in both shapes.
In other words. they are “too™ invariant, that is, they are in-
vartant to too wide a set of transformations. Thus, we must
y to find features that are tnvariant only to the transforma-
tions that we want to eliminate and not to others, such that
they are distinctive enough to match without ambiguity.

This contribution deals only with purely geometric in-
variants, that is, ones that can be calculated from the shape
alone. Other logo properties, such as color, can also be con-
sidered as invariants in more general domains, subject to the
same considerations as above, but they are beyond the scope
of this paper.

The most desirable invariants for logo applications are
those which are mvartant to similarity transformations (trans-
lation, rotation, and scale). A simple example of an invariant
to Euclidean wansformations (translation, and rotation) can
be described using the length of a line segment. In a sim-
ple document consisting only of very few line segments we
can identily a particular scgment by measuring its length on
the image and comparing it to a database of lengths. The
line’s orientation is irrelevant and can be ignored. As an-
other example, when a 2-D curve is rotated or translated, its
curvature at each point does not change. Thus curvature is
an invariant of the Euclidean transformations. [t is common
to plot the curvature of such a curve as a tunction of its arc
length (which is tavariant up to a choice of starting point;
Guggenheimer 1963) to obtain a 2-D Euclidean invariant
representation of the curve.

There are two main kinds of invariants: algebraic, or
clobal, and differential. or local. The calculation of global
invartants requires knowledge of the entire shape. Because

the method is based on a global description of the shapes
by algebraic entities such as lines, conics, and polynomials,
it is simple and easy to implement, but, on the other hand,
quite limited in the kinds of shapes that it can handle (be-
cause most shapes are not representable by simple low-order
polynomials).

Differential invariants are based on describing the shape
by arbitrary differentiable functions. As such the method is
more general because it can handle arbitrary curves, but, on
the other, it relies on the use of local information such as
derivatives (of quite high orders). The differential approach
avoids the occlusion problem by performing the calculation
pointwise, in small neighborhoods around each point of a
visible contour of the shape. Below w describe some global
and local invariants under similarity transformations.

4.3.1 Global algebraic geometric invariants

We are interested in global shape descriptors that are in-
variant to similarity transformations. As mentioned above,
the calculation of global invariants requires knowledge of
the entire shape. For example, we need a whole contour
to find the area, which is a Euclidean invariant. Moments
and Fourier coefficients are also examples of global shape
descriptors with some invariant properties. As an example,
consider the moment of inertia. The (¢. j)th moment of an
image [ 1s defined by

My = E E zhyl I, y)
T y
The moment of inertia of [ around the origin g 1s

Z Z(.:L’2 + yz)[(.l:, Y) = o + M2
oy

It is clear that myg 1s invariant under rotation of [ about the
origin, that if [ is scaled by a factor of s, for example, myg 1s
scaled by s*. We can thus normalize I with respect to scale
by requiring my to be a constant. Similarly, a ratio of two
moments that have the same value of i + J {e.g., myo/mo)
is invariant to scale.

Other possible shape descriptors may include rounded-
ness and elongation, for example (for a survey of such de-
scriptors see Rosenfeld and Kak 1[982). Global invariants
are relatively easy to calculate but they are sensitive to oc-
clusion. That is, if part of the shape 1s missing from the
image or is occluded by another object, we obtain a totally
incorrect value for the descriptor.

Below we describe a set of possible global geometric
invariants (under similarity) and then describe a method of
obtaining local geometric invariants which avoids the occlu-
sion problem.

Algebraic invariants of similarities. In this subsection we
describe the similarity invariants of algebraic forms, such as
points, lines and conics, and their combinations. The simi-
larity transformation in the plane has four parameters: trans-
lation (in the = and y directions), rotation, and scaling. This
means that in most cases we neced to obtain more than four
quantities from the image. Four quantities are needed in the
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Fig. 6. A circle and a line: the distance-
radius ratio 4 is a global invariant
c

process of eliminating the similarity transformation, and the
remaining quantities are invariant. This argument is modified
for the case of a configuration in which the form is symmet-
ric with respect 1o one of the transformation parameters, as
we shall see below.

We can differentiate among the following cases

— Two lines: These have only four parameters and, by the
general guideline above, we might expect no invariants.
However, therc exists one similarity invariant: the angle
between the lines. The reason is that the two lines are
symmetric (or invariant) with respect to scaling. If we
magnify the two lines (keeping the origin at the inter-
section point). the magnified configuration is identical to
the original one. Therefore we do not need to eliminate
scaling in this case; we only need to eliminate the three
Euclidean parameters. The angle between the two lines:

ayr+ay =1
1}|.l' + Zl:v{/ =1
is calculated using the scalar product:

(1 l)] + (l:g’)j

v (zf +7§ \/ /)% + 07

l

i

— Three points: With six parameters (wo of the angles of
the trangle formed by these points are independent in-
variants. Equivalently. two of the ratios of the sides of
the triangle are mvariants.

= A conic: With five parameters a general conic has one
similarity invariant, its cceentricity. However, a degen-
crate case such as the circle has only three parameters
and no invariants.

= A circle and a poinr: This system has five parameters
and one ipvariant. the ratio of the radius to the distance
between the point and the circle’s center. The distance
of a point vy, y, from a line a7+ a2y = 1 is given by:

A+ axl

\/(zf + (1%

= A circle and a line: With five parameters there is one
independent invariant: the ratio between the radius and
the distance of the circle’s center from the line. Figure 6
shows the major contour extracted from logo 25 and the
parameters used to compute the global invariant.

= Two circles: Six parameters yield two independent in-
variants. One is the ratio between the radii: the other is
the ratio between a radius and the distance between the
two centers.
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Other simple examples can be generated in a similar way.
In addition, combinations of simpler configurations provide
additional joint invariants. For example, if we add a line
to a conic, we can easily find two invariants in addition to
the eccentricity. These are formed by extending the (say)
major axis of the conic to meet the line and looking at the
appropriate angle and ratio of distances. Two conics can be
treated similarly.

Global geometric invariants give us the ability to index
more accurately into the database. In addition to the ex-
istence of the basic features which are used, they provide
more information since these invariants characterize the rel-
ative positions of the basic features. As such, they are more
meaningful as indexing features.

4.3.2 Local differential geometric invariants

Local invariants avoid the occlusion problem by performing
the calculation pointwise, in small neighborhoods around
each point of a visible contour of the shape. For example, it is
quite common to plot the curvature of a contour with respect
to the arclength, that is, the length along the contour from
some starting point to some given point. Local invariants
allows us to deal with “incomplete” queries, in which part
of the information expected in the query is missing due to
occlusion, but there is still enough nformation to retrieve
the desired record. Denoting the curvature and arclength by
/ and s respectively, we obtain a x(s) curve representing the
visible contour. Both arclength and curvature are invariant to
Euclhidean transformation, and thus we obtain an “invariant
signature” that can identify the curve. This curve can be
stored 1n a database: it matches the signature of a similar
logo (contour) presented as a query. even if the query logo
is translated or rotated with respect to the logo originally
stored 1n the database.

To obtain a local signature we use a shape descriptor
which remains unchanged under similarity transformation
and can be extracted from a partial contour representation
of a logo. The result 1s a similarity invariant signature of the
image which can be matched against the signatures extracted
from a database of known logos.

Our method of obtaining local projective and affine in-
variants is described and illustrated by Rivlin and Weiss
(1995). Being local. the invariants are much less sensitive to
occlusion than are global invariants. Computation of the in-
variants is based on a normalization method. This consists of
defining a canonical coordinate system in terms of intrinsic
properties of the shape, independently of the given coordi-
nate system. Since this canonical system is independent of
the original one, 1t is invariant, and all quantities measured
in it are invariant.

Our method 1s as follows:

1. We repeat the following steps for each pixel that belongs

to the logo:

— Define a window around the pixel and fit an implicit
polynomial curve to it. We use a guartic:

,
[l y) = ap+ayxz+ ary+ azx” + asxy

2 3 2 2
+asy” +agT + arry + agry
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+(lgy3 + (l[().’E4 + a“xSy + a12m2y2

+apry +auyt =0 @
Once the curve order and window size have been
chosen, the fitting itself can be done by standard
methods. Simple least square fitting is quite ill condi-
tioned because of the relatively large number of un-
knowns. The singular-value decomposition method
is very successful in overcoming this problem, and
we obtain a quite reliable fit.
The following stages are performed analytically.

— Derive a canonical, intrinsic coordinate system based
invariantly on the properties of the shape itself, inde-
pendently of the given coordinate system. By doing
s0 we eliminate all the unknown quantities of the
original system (e.g., the similarity parameters). To
accomplish this: define an “auxiliary curve” which
osculates the original fitted curve with a known or-
der of contact. The canonical system is defined so
that in it the osculating curve has a particularly sim-
ple, predetermined form.

— Transform the original fitted curve to this new sys-
tem. Since the system is canonical, all shape descrip-
tors defined in it are independent of the original coor-
dinate system and are therefore invariants. Pick two
invariants that are independent of the window size or
the order of the fitted curve, and depend only on the
shape itself.

2. We plot one invariant against the other to obtain an in-
variant signature curve.

. If an invariant it is needed, we repeat the previous steps,
1.e.. redo the curve fitting in the new canonical system,
and iterate until convergence.

(OS]

Below we describe the steps performed to obtain the
canonical system and then use it to obtain the affine invari-
ants.

Euclidean canonizarion. First we detail the Euclidean can-
onization stage. As a convention, we denote the new co-
ordinates after each canonization step by %,y and drop the
bars before going to the next step, and similarly for other
quantities.

The first step is translation, moving the origin to our
curve point. Our initially chosen pixel xg, yo does not nec-
essarily lie on the fitted curve, but is close to it. Thus, we
find a point zy. 35 which does lie on the curve, i.e. we solve
Eq. 4 for ;. given ry. This is easily accomplished using
Newton's method because yg is a close initial guess. We
then trunslate the origin to xg. y;. (We could simplify the
solution by first translating so that xyp = 0 and then solv-
ing for y;.) We drop the star from y*. We then transform
the curve coefficients to the new system and obtain new a;.
This is done by expressing the old coordinates in terms of
the new, X = X + Xy, substituting in Eq. 4 and rearranging.
[n this new system we have @y = 0 which can be seen by
simply substituting the point (0,0) in Eq. 1.

The next step is to rotate the coordinates so that the z
axis is tangent to the curve. It is easy to see that in the rotated
system we must have iy = 0 because df(x,y)/dr = 0. To

" -

satisfy this condition we again express the old coordinates
in terms of the new, with the rotation factor u,:
T+ Uy 7 — urk
Now ¢y is transformed to
a; =ayp — UpQy

To make this term vanish we thus have to rotate by the
amount

U = a1/

Since translation and rotation generate the Euclidean trans-
formations, we have reached a Euclidean canonical system.
All quantities defined in it are Euclidean invariants. The cur-
vature at Xo is now simply the second derivative, d?y/dxz’.
The arclength is |dx| since dy = 0.

Obtaining similarity invariants. For the Euclidean case we
used the tangent to obtain a canonization process that met
our requirements of invariance and locality. We can gener-
alize this method by using an oscilating curve, which is a
generalization of the tangent. A tangent is a line having at
least two points in common with the curve in an infinitesi-
mal neighborhood, 1.e., two “points of contact.” This can be
expressed as a condition on the first derivative. Similarly, a
higher order oscilating curve has more independent contact
points, and the condition on the derivatives can be written
as

k
de®
with f* being the oscilating curve, f the given curve, and
n the order of contact. Since the derivatives vanish, this
condition Is invariant to the parameter ¢. We will derive
the oscilating curve without this parameter. Since it has a
geometric interpretation in terms of points of contact, the
condition 1s also projectively invariant, and since it is ex-
pressed as derivatives, it is also local. The derivatives are
calculated analytically from f.

In the following we use an oscilating implicit curve f*
satisfying the above condition. This curve is chosen as the
simplest one that meets our needs; its shape is thus known.
Thus it is easier to handle than the original f, which can be
any function that fits. According to our needs we find either
a cubic or a conic which oscilates our fitted curve. We then
transform the coordinates so that this cubic or conic takes on
a particularly simple, predetermined form, t.e., we eliminate
all its coefficients. In this new canonical system all quantities
are invariants, and we pick the ones that best suit our needs.

Of the four parameters of the general similarity transfor-
mation we have already eliminated three by translation and
rotation, so that our oscilating curve should have at least one
coefficient, while passing through the origin and being tan-
gent to the x axis. We also need two independent invariants.
Therefore we choose a conic with three parameters:

(f@y— fayy=0,  £=0,..n ©

[ =t eyt oy +y=0 (7)

To go further, we need to calculate the derivatives
d™y/dx" of the fitted curve. This is done analytically from
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f(z, ). To do it we use the fact that all the total derivatives
of f vanish, since f vanishes identically (Eq. 1). The first
derivative, for example, is

g _of ofdy
de ~ Oz Oydr

This is a linear equation for dy /dzx. It is superfluous because
we have already uscd its vanishing (tangency). However,
each successive differentiation gives one linear equation for
one higher »"’, in terms of lower derivatives.

Setting a> = 1 and denoting d,, = % 2;3{(0) we have:
dy = —as (8)
dy = —ag — daay )

Given these derivatives we find the coefficients ¢, of the
conic:

cg= -do (10)
¢ = ﬁzﬂ:{;d; (11)
;= —& (12)

To climinate the scaling we choose a scaled canonical system
in which the sum of the coefficients in the new canonical
. - . ol ol . . .
system is 1, i.e. ¢+ ¢y +¢3 = 1. This is done by scaling the

7.y coordinates by the-factor:

. 2.2, 22

Spy =g+ cy+c3)

This scaling transtorms the ¢, to new ones:
[8s} @] (&)

60:—7. E]Z—* (_,'3: -
&

tay Sy Sry

These quantities are local similarity invariants because we
have reached a similarity-invariant canonical system. We
have used all possible similarity transformations (transla-
tion, rotation and scaling) to eliminate all the possible sim-
iarity transformation factors and arrive at the above form
of the conic: thus the remaining independent coefficients are
uniquely defined regardless of which system we started with.
In Fig. 7 the logo on the left was processed, and the signa-
ture was extracted from the bounding curve of the internal
shape (middle). The signature is on the right.

4.3.3 Scale space of invariants under similarity

Another robust method that we use for logo indexing is based
on extraction of scale space of invariants. This method was
developed by Bruckstein et al. (1995). 1t consists of defin-
ing an invariant arclength (using the lowest possible order
of derivatives in given schemes) and then defining invariant
finite differences using this arclength. These differences re-
place the higher order derivative in the traditional invariants.
The differences are not necessarily small and do not tend to
zero. Rather, their variable size creates the “scale space.”
We briefly describe here an illustrative example of the
method. Given a curve, with the Euclidean invariance in
mind, we start from a point (1) on the curve, and we want
to find invariants there. We choose an interval size A and
find two points on the curve, P*(7+A), P~ (1 — A), located

81

at distances +A and —A (measured on the curve) from the
point P(7) at which we want to calculate the invariants.
Given these three points, we can calculate any Euclidean in-
variant involving them, such as the area A(7) of the triangle
formed by them. A(7) is then a new type of invariant signa-
ture. This is much more robust than a derivative, if A is not
too small. In this way we reduce the number of derivatives
needed without needing any fixed reference points or their
correspondence. The scale parameter A can now be varied
to obtain a whole range of scale dependent invariants. In
this way we obtain whole ranges of invariants at each point
rather than single values. The signature functions for the
curves then become signature vectors or even continua of
values, i.e., surfaces or hypersurfaces. Matching them is ro-
bust because it is less sensitive to peculiarities that may exist
at some fixed pre-set value of the locality (scale) parameters.

Below we give an example of an extraction of scale-
space invariants under the similarity group of transforma-
tions from a logo.

As was pointed out by Bruckstein et al. (1990, 1993),
the similarity invariant arclength parameter is given in this
case by

' (" — 2"y dt

@)+ ')

After the curve is reparametrized by the invariant arclength
we can call upon several types of scale-dependent similarity
invariants. Here we plot the angle [P(t —A) P(HP{t+A4)] =
wa(7) as a function of 7.

Figure 8 shows a logo from our database before and af-
ter transformation. The multi-valued signature for the curve
which represents the letters Kell is presented in Fig.9. The
invariant arc length is represented by the horizontal axis
which represents position along the reparametrized curve.
The vertical-axis represents the values of the scale parame-
ters A. In the example each image contains 20 different sig-
natures for 20 different parameter values. For each signature
different As were used. For a constant vertical value one ob-
tains single-valued signatures for the curve. The gray level
encodes the similarity invariant for a particular arclength
and parameter value. The full display represents an “invari-
ant signature surface.” For each curve the starting position
is marked by a white square. Due to the different starting
position one multivalued signature is shifted relative to the
other. To check for a match between two signatures one
should match one multivalued signature to the other while
shifting it in a cyclic manner. One can see that a match Is
achieved when one of the signatures is shifted.

dr =

Signatures for indexing. The invariant signature for each
logo is simply the set of points in the space defined in
Sect.4.3. As described in the next section, indexing is ac-
complished by a pointwise matching procedure between sig-
patures.

5 Recognition
5.1 Database organization

The database currently contains approximately 100 logos.
Each entry in the database consists of the contour and text




Fig. Ta—¢. A logo and its simitarity invariant signature. a The logo was pro-
cessed and the signature extracted from the bounding curve of the internal
shape (b). ¢ The signature

Fig. 9. The multivalued signature for each of the curves extracted from
the lTogo (taken from the four letters Ke/l). The horizontal axis represents
position along the reparametrized curve. Signatures for 20 different param-
eter values are displayed along the vertical axis. The starting position for
cach curve is marked (white square). A malch is achieved when one of the
signatures is shifted

information from the original logo, as well as a set of key
fields for associated attributes (see Fig. 10). The logo can-
didate 1s represented as a set of extracted contours, their
signatures, and a set of text strings extracted from the logo.
We have tound that logos rarely differ in only minute de-
tails, so we can ignore many of the very small or fractalized
contours. and consider only long, stable contours. Once fea-
tures are extracted from the candidate logo, we prune the
database by climinating logos which do not contain the ex-
tracted features.

5.2 Indexing

Feature-based indexing into a database is difficult because
of the possibility of missing the correct entry because of
an error in feature extraction. Searching for basic features
such as circles, long lines. and recognized text components
minimizes the possibitity of misidentifying features and at-
tempting to index on featurces which do not exist in the orig-

Text

apple, computer,
inc, corporation

Primative Shapes

circle, line,

triangte

Global Invariants
circle-line 1.3

Signatures
<signature data>

Fig. 8. A logo before and after transformation (scaling and rotation) The
logo was processed as five different curves

Fig. 10. Database organization

inal logo. Depending on the composition of the database,
using basic features can reduce its size significantly before
attempting to match signatures.

Since the database 1s assumed to be complete and accu-
rate, if a logo candidate has a matching logo in the database,
the features extracted from the candidate logo must be a sub-
set of the features of the logo in the database. For example, if
a candidate contains a circle feature, its match must contain
at least one circular arc, and all logos which are known to
contain no circle features are eliminated. The opposite, how-
ever, is not true since we cannot guarantee that we extract
all features correctly from each candidate logo. Our goal is
to avoid false positives at the expense of failing to identify
meaningful features.

Since the task of logo indexing can follow any page de-
composition process, we cannot assume a perfect segmenta-
tion. We must thercfore assume that although a logo block
hypothesis has been generated. portions may be missing,
regions may be corrupted, or additional nonlogo compo-
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nents may be present. “Partial match”™ and “not present in the
database™ may be valid interpretations of the hypothesized
logo region.

Our approach to matching consists of two stages. In the
first stage we use simple shape properties and text indexing
to prune the database. In the second stage we use geometric
invariants (Weiss 1988) to generate a logo hypotheses. Both
text and shape indexing are completed before the signatures
are matched.

5.2.1 Text indexing

Recall that text regions are extracted and recognized in the
original fogo region, and only text which is recognized with
a high confidence 1s passed on 10 avoid false positives. A dic-
tionary entry is created a priori for each unique string which
is associated with a logo in the database. Each text frag-
ment or substring extracted from a candidate logo is matched
against the dictionary. Although standard techniques exist to
speed up substring matching. they often require nontrivial
preprocessing of the dictionary (Knuth 1973).

For our system a brute force algorithm for string match-
ing is sufficient given the number of items in the database.
A substring match produces a list of all Jogos which contain
it. When a logo candidate contains multiple substrings, say
n of them, a hit percentage is also produced for each partial
match. The hit percentage is computed for each logo as the
percentage of the n substrings which match it. Clearly, the
higher the hit percentage is. the more likely that we have
identified the logo correctly.

There is currently no restriction on the read ordering of
the strings or on the orientation of a matched substring in
the original image.

&

—

5.2.2 Shape indexing

For each shape feature computed (Sect. 4.2) the database
contains either a logical or a numeric attribute field indicat-
ing the existence of the feature or its number of occurrences,
respectively. 16 a logo candidate contains n occurrences of
a given feature, then all logos which contain fewer than n
occurrences are pruned.

Our current implementation deals with circular arcs, el-
lipses, rectangular blocks, triangles, and long line segments.

2.3 Global invariants

_Fl'om the shape features we compute the appropriate global
Invariants as described in Sect. 4.3.1. For example, in Fig. 12¢
111}'66 global invariants can be extracted (two from the linc
(Clrcle pairs and one from the circle/circle pair). These global
Mvariants maintain the relative positioning of the shapes in-
volved and are thus more powerful then local methods with
Tespect to preserving spatial relationships.

i1a 11b 11c
11d 1te 111
% ~
n
No (@/@

Features N

12a 12b 12¢c

e

12d 12e 12f

Fig. 11a—. Thrce test logos and the “long™ contours

Fig. 12a—{. The candidatc text. line and circle features from the logos in
Fig. 11 (a—¢) and the resulting contour signatures (d-)

5.2.4 Local and scale space invariants: signature matching

Having found some candidate logos we want to compare
their signatures and verify a match. For cach logo we ob-
tain its local similarity invariant signature according to the
procedure described in Sect.4.3.2. Usually the logo contour
is given as a set of contours, and the procedure is repeated
for each contour segment. The signature for the logo is the
collection of all the contour segments.

A method for automatic matching of the signatures was
successfully used by Wolfson (1990) in the Euclidean case
(curvature vs. arclength): draw a circle of radius ¢ around a
point in one signature, and measure how much of the other
signature enters inside that circle. This gives a measure of
the local overlap between the two signatures, taking into
account the noise level ¢. Then move the circle along the
signature and repeat the process for each point. Add up the
local similarity measurements to obtain a global measure of
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similarity. We used a similar approach to compare two sim-
ilarity signatures. The program is given the radius e around
the curve and computes the percentage of the pixels within
the circle in the matched curve.

For the scale space signatures we check a match in the
following method. The two signature surfaces are shifted
horizontally with respect to each other by an unknown
amount, due to the different starting point of the parameter-
ization of the curves. We can deal with the problem in two
ways. In the simple, but more expensive way, we shift one
surface relative to the other by an increasing amount, trying
to match the surfaces for each shift until the best match is
found. In the second way, we eliminate the shift constant by
differentiation (or differencing). If the surface is denoted as
z(x,y), the shift is along a constant y. For each constant y
we can invert the function as w(z,y), and take the deriva-
tive d.v/dz. This eliminates any additive constant in the x
direction. Plotting this derivative as a (possibly multivalued)
function of z, we obtain a signature which is invariant to the
horizontal shift.

6 Experiments and discussion

Experiments were conducted using rotated, scaled and trans-
lated logos from the database. (The database is available
via ftp from documents.cfar.umd.edu.) For each logo the
indexing for text, circles, lines, local invariant signatures,
and global invariants were performed independently. In most
cases the text. shape, and global invariant features reduced
the search space significantly. (We attempted to match the
signatures on all 100+ logos. Even for very large databases,
the number of candidates should be only one or two dozens
as a result of the pruning.) In any case, the results of the in-
dexing can be combined to produce an ordered list of logos
tor verification.

Figure 1la—c shows logo candidate regions, and contours
which are used to compute properties for indexing into the
database (Fig. 11d-f). The results of text extraction, circle
identification and line extraction are shown in Fig. 12a—c.
The individual characters in the string can be matched, and
we attempt to identify a logo which contains a superset of
the symbols.

The extracted contours were used to produce local geo-
metric invariants. The signatures of the three candidate logos
are shown in Figures [2d-f. These signatures were matched
to the database. In the cases where text or primitive shape
information was present the size of our database resulted
in only two or three candidates. From these candidates the
signature matching picked the best match.

6.1 Local signature matching

To evaluate the power of signature matching more realisti-
cally (i.e., in a scenario where the pruned database contains
on the order of 60-80 logos), we tested the system using
only the local invariant signatures for matching. The three
best matches for the signatures are presented in Fig. 13. The
top candidates are fed to the scale space signature matching
whose results are described in the next section.

Table 1. A set of ten randomly chosen logos, and their top four matches in
the database

Trial  Actual logo  Match | Match 2 Match 3 Match 4

1 1 I 36 50 35
2 3 3 17 48 57
3 t1 1 93 69 25
4 25 25 54 It 2
5 32 32 105 21 87
6 33 33 39 87 24
7 59 59 51 57 60
8 89 &9 53 68 74
9 94 94 22 37 41
10 95 95 57 48 28

[n all queries the correct logo was among the top three.
Since the logo is given by the segmentation process as a set
of contours, each contour is treated as an individual feature,
and the spatial relationship between any pair of features in
not preserved. The breaking therefore increases the number
of false positives. Even when false positives are present, the
signature computation prunes a large portion of the database
and leaves us with a relatvely small number of possible
candidates.

6.2 Scale-space signature matching

To illustrate the use of the scale-space signatures we took
a logo from our database (Fig. 14) and obtained its multi-
valued signature before and after it went through scaling
and rotation. As mentioned above, each image contains 20
different signatures for 20 different parameter values. For
each signature different As were used. For a constant Y
value one obtains single-valued signatures for the curve.
The gray level encodes the similarity invariant for a particu-
lar arclength and parameter value. The results are presented
in Figs. 15 and 16. The shape is symmetric, and only one
of the two curves comprising it (the lower) was processed.
The processed curve was itself symmetric. One can see the
symmetry in the shape from the structure of the signature. A
good match is achieved when one of the signatures is shifted
(Fig. 17). In Fig. 18 we compared two scale-space signatures
of the two logos presented. The signatures were checked for
a match. No match was found.

Matching signatures in the scale space method is much
more expensive than a checking for a match in the other
method that we used. This is because it involves construction
and matching of surfaces rather than curves. Table 1 shows
the scale space matching results of ten additional logos.

7 Conclusions

The problem of logo recognition is of great interest in the
document domain, especially for document databases. The
recognition process and subsequent association can be used
to determine the need for further processing of a document.
A similar situation can be imagined in a warchouse where
decisions about storage can be made based on identification
marks such as logos.

We have presented a hierarchal approach to logo recog-
nition which uses text and contour features to prune the
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Fig. 13. Signature miatching restuls for the three candidate logos in Fig. 11

Fig. 15, The lower curve and its signature. One can see the symmetry of
the shape from the structure of the signature

Fig. 17. Shifung the lower curve™s multivalued signature to the right gives
the highest correlation value, and achieves a mateh

database. and similarity invariants to obtain a more refined
match. We have outlined the recognition process from page
segmentation and feature extraction through index computa-
tion and matching. The recognition process was tested with a
databuse of more than a hundred logos and very good results
were obtained.

The strength of our approach lies in the fusion of ap-
proaches to matching. The combination of text, shape. and
lfk‘al and global invariants adds robustness to the recogni-
lon process. We have provided new techniques for signature
computation and shown their value to dealing with matching
m large databases.

Future work will include testing the system on a larger
Qmabasc and tmproving the local signature computation to
nclude affine and projective invariants.

18

Fig. 14. An input logo from the database. Only the lower curve is processed
Fig. 16. The lower curve after scaling and rotation

Fig. 18. The multivalued signature from Jogo 27 was compared to the
multivalued signature from the Kellogg's logo (logo 301 No match was
achieved
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