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Abstract— The aim of the presented system is simplification
and speedup of the daily pathological examination routine.
The system combines telepathology with computer-aided
diagnostics algorithms. To the best of our knowledge, this is
the first approach proposing such a comprehensive method.
Our system is designed to accumulate knowledge through
a learning process during diagnostics. Our system targets
image acquisition and interpretation stages. The image
acquisition subsystem solves various problems related to
microscopical slide digitization such as biomedical image
registration, data representation, and processing. The in-
terpretation subsystem is based on Gabor filter texture
features as well as on color features. A support vector
machine classifier together with a feature selection is used
for computer-aided diagnostics. The system design allows
easy adaptation to a wide range of microscopical pathology
examinations. The system is easily deployed and scaled. It
has a low support cost and can aggregate a wide range of
existing hardware. The experimental validation of the system
is based on a database of more than three thousand samples.
During the experimental evaluation, the system exhibited
successful interaction with a pathologist.

Index Terms— computer-aided diagnostics, microscopical
telepatology, multiresolution analysis

I. INTRODUCTION

Many different pathologies can be detected by micro-
scopic examination of histological tissues. For example,
prostate carcinoma, breast cancer, etc are be identified
through such procedures. In this paper we describe a
system aimed at facilitating the diagnosis of such diseases.
We validate the system design and efficiency in the
diagnosis of prostate carcinoma.

Prostate carcinoma is the second most common cause
of cancer deaths among men in the United States. The
diagnostics of prostate carcinoma involves pathology
analysis of prostate tissue. Gleason grading [1] is the
most widely used grading system for estimating the level
of aggressiveness of the prostate carcinoma. The grading
has five levels of severity, corresponding to five different
architectural patterns formed by the prostate glands (see
Fig. 1). The routine for pathology analysis of prostate tis-
sue, widely accepted in hospitals, includes the following:

1) Obtaining a specimen from a patient.
2) Preparing the specimen (staining, sectioning, and

mounting on glass slides).

3) Microscopic examination of the prepared specimen
by a screener. At this stage, the screener locates and
marks suspicious regions on the slides.

4) Microscopic examination of the marked regions by
a pathologist. At this stage, the pathologist gives the
final diagnosis.

The classical routine of pathology analysis of the
prostate tissue has a number of shortcomings:

• The human factor may cause diagnostic inaccuracy.
• The heavy load on pathologists. A pathologist in a

typical laboratory analyzes many slides per day.
• Interobserver disagreement [2], [3]. The Gleason

grading system is subject to interobserver disagree-
ment.The final diagnosis for the same specimen
given by different pathologists may differ.

• Second opinion problem. For difficult cases, a second
opinion is often necessary, requiring physical transfer
of the slide. As a result, patients wait more time to
get a conclusive diagnosis.

Systems with computer-aided diagnostics and tele-
pathology capability will help to eliminate the shortcom-
ings of the classical pathology routine. Some diagnostic
tasks can already be reliably performed by computer.
For example, a system for automated Pap smear screen-
ing [4] achieves similar or higher accuracy compared to
the classical methods of examination. Several researches
have investigated computer-aided diagnostics of prostate
carcinoma, e.g., [5]–[7]. At the same time, advances
in computer networking now provide the possibility of
telepathology: distant diagnosis of specimens (e.g., [8]–
[15]).

We present a system combining the advantages of
computer-aided diagnostics, active learning algorithms,
and telepathology. Our system addresses the problems of
the classical routine. It automates detection of suspicious
regions on the microscopic slides, assists pathologists
in diagnostics, and, finally, provides an environment for
distant collaborative diagnostics.

The paper is organized as follows. In Section II, the
structure of the proposed system is explained. In Section
III, the experimental result are presented. Finally, we
conclude in Section IV.
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Prostate Glands
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Figure 1. Gleason grading of prostate carcinoma. Prostate glands (a) form patterns used for Gleason grading. Five Gleason grades of prostate cancer
correspond to five patterns formed by prostate glands (b).

II. SYSTEM STRUCTURE

The structure of our system for computer-aided mi-
croscopic pathology diagnostics is presented in Fig. 2(a).
Our system combines image acquisition and interpretation
phases(see Fig. 2(b) and 2(c)). It targets the last two
steps of the classical routine: microscopic examination
of the prepared specimen by a screener and microscopic
examination of the marked regions by a pathologist.

The system comprises the following components: a
computer-aided diagnostics component, a slide scanner,
and a telepathology interface. Below we describe these
components in detail.

A. Computer-aided Diagnostics Component

This component analyzes the scanned slide and gener-
ates hypotheses about optimal magnification for analysis
and diagnosis of each slide region. The component uses
an active learning algorithm for knowledge accumulation
during primary learning. Feature selection algorithms are
used to eliminate redundant and irrelevant features. Dur-
ing diagnostics the component refines obtained knowledge
using the pathologists’ feedback. In the following section
we describe the implementation details of the component.

Multiresolution Analysis Traditionally, pathology
analysis of tissues is performed under several magnifi-
cation levels. Different characteristics of the examined
tissues are revealed under various magnifications. For
example, in Fig. 3(a) the morphology of prostate glands is
observed under ×40 magnification, while in Fig. 3(b) the
structure of cells’ nuclei is observed under ×100 magnifi-
cation. Our system allows multiresolution analysis via the
telepathology interface (see section II-C). In addition, the
system is designed to determine the optimal magnification
levels for the slide regions. This is done by classifying the
slide tiles into one of two categories: “suitable for analysis
under ×40 magnification” and “need better magnifica-
tion”. The classifications for initial training were provided
by the expert pathologist. The following sections provide
more details on feature extraction for the classifier and
building the classifier.

Feature Computation The Gleason system is based
on the architectural pattern of the glands of the prostate
tumor. According to [7], [16], the architectural pattern

(a)

(b)

Figure 3. The characteristic objects of the prostate tissue captured under
various magnifications. The characteristic objects are accented by white
arrows. Prostate glands are observed under magnification ×40 (a). Cell
nuclei are observed under magnification ×100 (b).

of the prostate glands is well modeled by texture de-
scriptors. Gabor filters are widely used in texture analysis
applications [17], including texture classification, texture
segmentation and image retrieval. The family of two-
dimensional Gabor functions is defined as

G(x, y) = e
− x′2

2σ2
x e
− y′2

2σ2
y cos(

2πx′2

λ
+ φ),
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Figure 2. The main system components and their interactions. The arrows denote information and control flow. High-level system overview (a).
Image acquisition scenario (b). Image interpretation scenario (c).

where{
x′ = (x−mx)cos(γ)− (y −my)sin(γ)
y′ = (x−mx)sin(γ) + (y −my)cos(γ)

• γ specifies the orientation
• φ specifies the phase offset
• (mx,my) specify the center of the receptive field in

image coordinates
• (σx, σy) determines the size of the receptive field
• 1

λ is the preferred spatial frequency of G

In our experiments we used a bank of Gabor filters with
six equidistant orientations and four spatial frequencies.
The bank of Gabor filters is presented in Fig. 4. Mean and
standard deviation of the response energies for each ori-
entation and scale of a Gabor filter in the bank constitute
texture features.

Prostate tissue subject to microscopic examination is
stained by the histochemical dyes hematoxylin and eosin.
Nuclei of cells are stained in various blue hues (ba-
sophilic stain) and surrounded by a pinkish background
(eosinophilic stain). We used values from the 10-bin hue
histogram as color features.

Classification For classification we used a Support
Vector Machine (SVM) algorithm. Support vector ma-
chines, a supervised machine learning technique, have
solid theoretical justification [18] and perform well in
multiple areas of biological analysis (see the survey of
SVM applications to biological problems in [19]). We

(a)

(b)

Figure 4. Bank of Gabor filters (six equidistant orientations and four
spatial frequencies). Odd filters in the spatial domain (a) and filter bank
in the frequency domain (b).

built the SVM classifier, determined its optimal param-
eters and estimated the classifier performance using the
method described in the next section.

Training-Validation Protocol A frequently employed
method to estimate the classifier’s performance is to split
the data into a training set and testing set. The training set
is used to construct the classifier. The testing set is used
to estimate the performance of the classifier on unseen
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samples. There are several popular methods for dividing
the data into training and validation sets. We choose the
cross-validation method [20], which provides an accurate
estimation for real-world problems [21].

The training protocol (see Fig. 5) delivers, given a train-
ing dataset, an estimate of L̂A for the best achievable error
of learning algorithm A. To this end, the training dataset
S is randomly permuted and partitioned into Nfolds sub-
sets of equal size S1, . . . , SNfolds

. Nfolds training/testing
datasets are constructed as follows: Si

test = Si constitutes
a testing partition and Si

train = S\Si constitutes a
training partition (i = 1 . . . Nfolds). Then the classifier is
constructed for the training partition, and its performance
is evaluated on the testing partition. As the SVM classifier
with an RBF kernel is a parametric classifier, the process
of classifier construction for each testing partition involves
optimization of the RBF kernel parameters to maximize
the classifier performance. To achieve this, the testing
partition is randomly divided into Nval subsets of equal
size, and Nval training/validation partitions V j

train, V j
test

are constructed in a similar manner (j = 1 . . . Nval).
Then, for each feasible hyper-parameter vectors θ ∈
Θ, a classifier is constructed on the training partition
V j

train and the performance L̂A(i, j, θ) is evaluated on
the corresponding testing partition V j

test. Then the error
L̂med

A (i, θ) is computed as the median of L̂A(i, j, θ)
and, finally, the best hyper-parameters are selected θ∗i =
argminθL̂

med
A (i, θ). The hyper-parameters θ∗ are used

to construct the classifier for the training set Si
train.

Thereafter, the classification error L̂A(i) is evaluated on
Si

test. Eventually, the classification error is calculated as
mean of all classification errors L̂A(i), i = 1 . . . Nfolds.

Feature Selection Some features may be irrelevant
or redundant. Large amounts of irrelevant features affect
learning algorithms at three levels [22]. First, most learn-
ing problems do not scale well with the growth of irrel-
evant features. Second, classification accuracy degrades
for a given training set size. The third aspect concerns
the run time of the learning algorithm. Following Wolf et
al. [22], we select feature subset providing the best cluster
arrangement of the data points in the feature space. The
selected subset is fed to the classifier.

Primary Learning Usually, in order to train a classi-
fier, a significant representative set of labeled samples is
required. Therefore, a pathologist should label a signifi-
cant number of sample regions. However, in most cases
the total area occupied by irrelevant and normal regions
is much larger compared to the area taken up by suspect
regions. Thus, the probability of running across a diseased
region is low. A pathologist may screen hundreds of im-
ages without coming across an area that requires special
investigation. In order to boost the primary learning, we
use the active learning algorithm described in [23]. Only
images whose grading improve the expected performance
of the SVM classifier are provided to a pathologist. After
each iteration a new SVM classifier is built, according to
the protocol described in Fig. 5, and the sample selection
continues.

Require: 1) A labeled dataset S = {(xi, yi)}m
i=1

2) A learning algorithm A(θ)
3) A set Θ of feasible hyper-parameter vectors
4) Nfolds = number of folds
5) Nv = number of validation folds

Ensure: An estimate L̂A for the best achievable error
of the learning algorithm A trained on a set of size
|S|(1− 1/Nfolds).

1: Randomly permute and partition S into Nfolds

subsets of equal size; denote these subsets by
S1, . . . , SNfolds

these subsets
2: Construct Nfolds training/test partitions

(Si
train, Si

test)
Nfolds

i=1 such that Si
train = S\Si

and Si
test = Si

3: for 1 ≤ i ≤ Nfolds do
4: for all θ ∈ Θ do
5: Randomly permute and partition Si

train into
Nval subsets of equal size; denote these subsets
by V i

1 , . . . , V i
Nval

these subsets.
6: Construct Nval train/test partitions

(V i,j
train, V i,j

test)
Nval
j=1 such that V i,j

train =
Si

train\V i
j and V i,j

test = V i
j .

7: for 1 ≤ j ≤ Nval do
8: Compute L̂A(i, j, θ) = L̂A(V i,j

test|θ, V i,j
train)

9: end for
10: Compute the median L̂med

A (i, θ) of
{L̂A(i, j, θ)}Nval

j=1

11: end for
12: Let θ∗i = argminθL̂

med
A (i, θ)

13: Compute L̂A(i) = L̂A(Si
test|θ∗i , Si

train).
14: end for
15: return 1

Nfolds

∑
i L̂A(i)

Figure 5. Experiment protocol for estimation of the classification error.

B. Slide Scanner

The slide scanner component digitizes an analyzed
slide. The digitization includes capturing sub-images (ad-
jacent regions of slides), registering them, and, finally,
slide tiling. The following section describes the imple-
mentation details of the slide scanner component.

Sub-image capturing Time spent for sub-image cap-
turing is the bottleneck of slide digitizing. The motion
of the mechanical microscope stage is the most time con-
suming part of sub-image capturing. In order to minimize
the overall time of microscope stage travel, we use the
boustrophedon scanning route [24]. The scan direction of
consecutive scan bands are alternated.

The white point of the captured images differs from the
computer monitor’s white point. In addition, each pixel
has a different white point. This difference is introduced
by the microscope lamp, the optical path, and also the
digital camera. Since the parameters of the microscope
lamp, the microscope optical path, and the camera do not
change during the slide digitization, we can assume that
each pixel has an individual independent color aberration
model. The color models for each pixel are computed
from the captured images of the empty slide regions
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once per hardware adjustment. To this end, we take the
median of pixel values in XYZ color space and adjust the
white point to match the D50 white point (X = 0.9642,
Y = 1.000, Z = 0.8249) – the white point of a correctly
calibrated monitor (see the example of color correction in
Fig. 6).

(a)

(b)

Figure 6. Example of color correction for a captured image. Before color
correction (a): white does not correspond to the white color of a correctly
calibrated monitor. After color correction(b): white corresponds to the
white color of a correctly calibrated monitor.

Sub-image registration The mechanical precision of
the motorized microscope stage is limited. Therefore,
image processing techniques should be used to regis-
ter the adjacent sub-images. We register each image to
its right and bottom neighboring sub-images. Sufficient
overlapping of the registered sub-images is the necessary
condition for registration. We use a phase correlation
technique for image registration due to its reliable work
on relatively small overlapping regions and good time
performance.

Due to the properties of the microscopic stage moving
mechanism and microscope optics, the transformation
between two adjacent sub-images is limited to translation.
We successfully verified this hypothesis experimentally. If
f2(x, y) is a translated replica of f1(x, y) with translation
(x0, y0), then f2(x, y) = f1(x − x0, y − y0). According
to the Fourier translation property, the Fourier transforms
of f1(x, y) and f2(x, y) are related by

F2(ξ, η) = e−2πi(ξx0+ηy0)F1(ξ, η).

The cross-power spectrum of the two images f1 and f2

is defined as:
F1(ξ, η)F ∗2 (ξ, η)
|F1(ξ, η)F2(ξ, η)| = e−2πi(ξx0+ηy0)

The inverse Fourier transform of the cross-power spec-
trum results in an impulse function

F−1{e−2πi(ξx0+ηy0)} = δ(x + x0, y + y0)

Ideally, the peak value of the impulse function should be
equal to 1.0. However, due to the presence of noise and

dissimilar parts in the sub-images, the delta function de-
grades. Therefore, the translation parameters are estimated
by

(x0, y0) = arg max{F−1{e−2πi(ξx0+ηy0)}}.
We follow the method described in Keller et al. [25] to
obtain sub-pixel registration accuracy.

To achieve better time performance of the registration
we adopt a multiresolution approach. First, a coarse
registration is performed on images scaled down by 0.2.
Second, the sub-pixel registration accuracy is achieved by
registering only the intersecting parts of the images.

Require: 1) A set of captured sub-images Iij .
2) Transformations Ti1j1 − Ti2j2 between adjacent

sub-images Ii1j1 and Ii2j2

Ensure: Tiles: ideally aligned non-overlapping images
covering the whole slide area.

1: Detect connected components on the scanned slide
2: for all connected components do
3: Calculate global transform for all captured sub-

images relating to the origin of the central image
of the connected component.

4: Calculate the coordinates of the tiles relating to
the origin of the central image of the connected
component.

5: Build the tiles from the corresponding images
6: end for

Figure 7. Algorithm of tiles construction from the captured sub-images.

Slide tiling The resulting size of microscopic slides
digitized under×100 magnification is in tens of giga-pixel
range. Such a volume of data causes technical difficulties
for storing and accessing the images. The digitized slides
are accessed via a computer network, so to make the data
transfer efficient we divide the whole slide into relatively
small tiles. The tiles are ideally aligned non-overlapping
images covering the whole slide area.

Due to the large volume of the resulting digitized slide
it is impractical to construct the whole slide and then to
divide it into tiles. Instead, we construct the tiles directly
from the captured sub-images and the transformation
between the adjacent sub-images. The tiles construction
algorithm is presented in Fig.7.

Each slide may include several disconnected tissue
parts. This problem is addressed by detecting connected
components using the transformations between adjacent
sub-images. To accomplish this we build an undirected
graph representing registration results. The vertices of
the graph are the origins of the sub-images. The edges
of the graph connect vertices corresponding to adjacent
sub-images, if the registration between these sub-images
was successful. This graph may contain several connected
components corresponding to disconnected fragments of
the tissue. Once we identify the connected components,
tiles are constructed for each component separately.

We take the origin of the central image of each com-
ponent as a global origin. Then we calculate the global
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Figure 9. Application screen-shot. The main controls (image markup, labeling tools and magnification control), a digitized slide, and the regions
marked on the slide are denoted by arrows.
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Figure 8. (a) Image registration. Images are captured with intersection.
Sub-image (0,0) denotes the central image. Ti−j is the transformation
between the origins of sub-images I and J . (b) Tile construction. The
constructed tile is denoted by the bold line. Rj and Rk are the centers of
the sub-images. X is a tile pixel. The dashed line is the border between
the Voronoi cells corresponding to Rj , Rk .

transform of each sub-image of this connected component
in a breadth-first search (BFS) order starting from a
central sub-image. For some sub-images several variants
of the global transform may be calculated. For example,

the global transform for sub-image (1, 1) in Fig. 8(a))
may be calculated as

T 1
(0,0)−(1,1) = T(1,0)−(1,1)T(0,0)−(1,0)

T 2
(0,0)−(1,1) = T(0,1)−(1,1)T(0,0)−(0,1).

In such cases, the resulting global transform for this sub-
image is taken as average:

T(0,0)−(1,1) =
T 1

(0,0)−(1,1) + T 2
(0,0)−(1,1)

2
After calculating the global transform for each sub-

image, we build tiles of the connected component. First,
the tiles are positioned to cover the whole connected
component, and the tile coordinates are calculated. Then,
we build Voronoi diagram on the centers Ri of the sub-
images and use it for efficient calculation of the nearest
sub-image for the tile pixels (see Fig. 8(b)).

C. Telepathology Interface

The telepathology interface provides a convenient
multi-user environment for interaction with our system.
To enable fast system adoption by pathologists, the inter-
face was build to resemble the microscopic environment
(see the screenshot of the telepathology interface appli-
cation in Fig. 9). To this end, a pathologist may browse
digital slides using the client software by fast panning
(simulates movement of the microscope stage), zooming
in/out to/from arbitrary selected regions up to a predefined
resolution (simulates magnification changes).

In addition, to provide pathologists a means of commu-
nicating with the system and with each other, the interface
allows image labeling by selecting a digital slide region
and assigning a diagnosis and an arbitrary comment.
All interesting/suspicious regions detected by the CAD
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TABLE I.
EXPERIMENTAL DATABASE CONTENTS.

×40 magnification ×100 magnification
Normal or Non-Relevant 863 2304
Gleason 3 59 329
Gleason 4 10 37
Gleason 5 0 139
Need Better Magnification 111 NA

TABLE II.
CLASSIFICATION ACCURACY ESTIMATED BY FIVE-FOLD CROSS-VALIDATION METHOD.

Classification categories Accuracy
×40 magnification vs. ×100 magnification 93%
“Normal or Non Relevant” vs. “Attention Required” under ×40 magnification 95%
“Low Gleason” (i.e., Gleason 3) vs. “High Gleason” under ×40 magnification 98%
“Low Gleason” (i.e., Gleason 3) vs. “High Gleason” (i.e., Gleason 4 and Gleason 5) under ×100 88%

component are presented at relevant magnification in
order to speedup the diagnosis process. Comments and
labeling are stored in a database along with the slide
and can be viewed by all authorized users. Moreover,
the final diagnosis is provided to the CAD system in
order to improve classification results. The features of
the user interface allow convenient communication and
discussion of difficult cases within a wide audience of
pathologists and provide the option for a second opinion
in timely manner and without physically having to transfer
the slide.

The telepathology interface was built using the client-
server architecture. Since the Internet is a common and
affordable data transfer infrastructure, we chose it to
be the communication layer between the client and the
server. The implemented interface uses the Secure Socket
Layer provided by a standard library to ensure encrypted
communication between the client and the server. The
server side is responsible for storing the digitized slides
database. The database consists of

• the digitized slides tiles
• the regions, created by pathologists using the slide

labeling tool and by the system as a result of
computer-aided diagnostics

• the slides’ meta-information

The server side is based on open-source free domain
software. We selected MySQL 5.0 for the database engine.
All communication between the user interface application
and the database is implemented over the HTTP protocol,
and an Apache HTTP server handles the HTTP requests.
Both MySQL and the Apache HTTP server are scalable
and exist in a wide range of platforms. This makes our
system easily deployable and scalable. The system has a
low support cost and can aggregate wide range of existing
hardware.

The client side application is written in Java to provide
high compatibility with a wide range of platforms. The
interface provides the possibility of a low magnification
slide overview and a high magnification study of the
possible diagnostic details. To ensure high responsiveness

of the telepathology interface, the digital slides are com-
pressed after scanning and tiling.

At the first step of slide compression algorithm, a Gaus-
sian pyramid of the slide image is built for bandwidth-
efficient presentation of the slide at different magnifica-
tion levels. Then each level of the pyramid is divided
into small sub-images of dimension 256 × 256 pixels in
size. These sub-images are stored in the database after
compression using a JPEG compression algorithm [26].

This method allows that only data relevant to the
current resolution and position to be transferred to the
client. This is an important feature of the system, because
the requirement of storing (and potentially presenting)
the whole digitized slide leads to huge data volumes.
For example, the ×100 scanning magnification implies
a resolution of approximately 100000× 500000 pixels or
approximately 10Gb raw data per slide.

To utilize all available bandwidth, the client application
is designed to transfer simultaneously a number of these
sub-images. The sub-images neighboring to currently
viewed region are downloaded in background. The combi-
nation of the image storing and caching techniques makes
the scheme low bandwidth consuming and responsive.

III. EXPERIMENTAL RESULTS

The hardware part of our system consists of a Nikon
Eclipse E600 microscope equipped with a motorized
stage, a Point Grey CCD camera and a Xeon 2.4GHz
based computer. We experimented with histological slides
of prostate tissue samples, sectioned into five micron thick
slices and stained by the histochemical dyes hematoxylin
and eosin. The slides contained all types of tissue, from
normal tissue to Gleason 5. The tile dimensions were
1024×1024 pixels. To establish ground truth and to train
the computer-aided diagnostics component, a number of
tiles were graded by an expert pathologist according to the
Gleason method. The tiles were classified as: “Normal or
not relevant”, “Gleason 3”, “Gleason 4”, “Gleason 5”,
and “Need better magnification”. A tile was classified
as “Need better magnification” if the pathologist had
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difficulties in grading the tile under ×40 magnification.
The ground truth for the optimal magnification level and
diagnosis was provided by an expert pathologist for 3852
tiles (see Table I).

The classifiers ensuring the lowest classification error
were built using the protocol described above (see Fig. 5).
The learning algorithm A is SVM, the set Θ of feasible
hyper-parameters is the set of radial-based function kernel
parameters, sampled by the grid search method. Finally,
Nfolds = 5, and Nv = 5.

The classification results are presented in Table II.
The accuracy of correct magnification detection allows
the pathologist to rely on the system for choosing the
correct resolution for diagnosis verification. The classifi-
cation accuracy between different grades of cancer and
normal tissue allows the system to assist pathologists in
diagnostics.

The Receiver Operating Characteristic (ROC) curve
of the classifiers are presented in Fig. 10. From the
ROC curve for “Normal Tissue” vs. “Attention Required”
(Gleason 3, Gleason 4, Gleason 5) we see that it is
possible to achieve a high true positive rate while keeping
the false positive rate relatively low.

IV. CONCLUSIONS

In this paper we presented a system for computer-
aided multiresolution microscopic pathology diagnostics.
To the best of our knowledge, this is the first approach
combining the principle of telepathology with computer-
aided diagnostics algorithms. The telepathology interface
makes a second opinion available fast, without the actual
need to physically transfer the slide. The system design
implies that a diagnosis is approved by an expert patholo-
gist in accordance with the hospital’s standard procedure.
Therefore the system can be gradually introduced into
pathology departments. Consequently, the load placed on
pathologists should be noticeably reduced due to the
automatization of the routine work. This, in turn should
diminish the risk of errors and interobserver diagnostic
disagreement. The software implementation of the system
is based on platform-independent and scalable software.
The system is easily deployed and scalable. The system
has a low support cost and could aggregate a wide range
of existing hardware. The system design and efficiency
was validated on diagnostics of prostate carcinoma. The
successful experimental validation of the system is based
on a database of more than three thousand samples.
During the experimental evaluation, the system exhibited
successful interaction with a pathologist and diagnostics
speedup.
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