
Preserving Hidden Data with an Ever-Changing Disk
Aviad Zuck

Technion – Israel Institute of Technology
aviadzuc@cs.technion.ac.il

Udi Shriki
Technion – Israel Institute of Technology

ujshriki@gmail.com

Donald E. Porter
The University of North Carolina at Chapel Hill

porter@cs.unc.edu

Dan Tsafrir
Technion – Israel Institute of Technology

dan@cs.technion.ac.il

ABSTRACT
This paper presents a storage system that can hide the pres-
ence of hidden data alongside a larger volume of public data.
Encryption allows a user to hide the contents of data, but not
the fact that sensitive data is present. Under duress, the owner
of high-value data can be coerced by a powerful adversary to
disclose decryption keys. Thus, private users and corporations
have an interest in hiding the very presence of some sensitive
data, alongside a larger body of less sensitive data (e.g., the
operating system and other benign files); this property is called
plausible deniability. Existing plausible deniability systems do
not fulfill all of the following requirements: (1) resistance to
multiple snapshot attacks where an attacker compares the state
of the device over time; (2) ensuring that hidden data won’t
be destroyed when the public volume is modified by a user
unaware of the hidden data; and (3) disguising writes to secret
data as normal system operations on public data.

We explain why existing solutions do not meet all these
requirements and present the Ever-Changing Disk (ECD), a
generic scheme for plausible deniability storage systems that
meets all of these requirements. An ECD stores hidden data
inside a large volume of pseudorandom data. Portions of this
volume are periodically migrated in a log-structured manner.
Hidden writes can then be interchanged with normal firmware
operations. The expected access patterns and time until hidden
data is overwritten are completely predictable, and insensitive
to whether data is hidden. Users control the rate of internal
data migration (R), trading write bandwidth to hidden data for
longevity of the hidden data. For a typical 2TB disk and setting
of R, a user preserves hidden data by entering her secret key
every few days or weeks.

CCS CONCEPTS
• Security and privacy→ Systems security;Database and
storage security;

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
HotOS ’17, May 08-10, 2017, Whistler, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $15.00
https://doi.org/10.1145/3102980.3102989

ACM Reference format:
Aviad Zuck, Udi Shriki, Donald E. Porter, and Dan Tsafrir. 2017. Pre-
serving Hidden Data with an Ever-Changing Disk. In Proceedings of
HotOS ’17, Whistler, BC, Canada, May 08-10, 2017, 6 pages.
https://doi.org/10.1145/3102980.3102989

1 INTRODUCTION
Preventing unwanted access to sensitive information is a sig-
nificant concern for many users. Whether it is users wishing to
protect private data on their mobile device, political activists
under an oppressive regime, or corporations wishing to pro-
tect their employees’ devices from industrial espionage, the
ability to protect data on storage devices—even if the devices
fall into the wrong hands—is a timely concern. One possible
solution is encrypting data using a key known only to the
storing user [8, 10, 16]. However, recently it has been demon-
strated that potent adversaries are capable of legally coercing
users into divulging the key or password to their protected
data [1, 14, 17].

A particularly salient limitation of using encryption alone
is that users cannot hide the presence of the high-value data.
Take, for instance, a human rights activist documenting various
human rights infringements in a country ruled by an oppressive
regime. Before the activist crosses the border, she could encrypt
her hard drive using a tool such as BitLocker [8]. However, the
fact that encrypted data is present on the hard drive will be
apparent upon inspection at the border. An intelligence officer
can then detain the activist until either the laptop’s encryption
is hacked, or even coerce the activist until the decryption key
or password is surrendered.

In the above example, the activist wants to hide the presence
of some data on the device, even if she is coerced into decrypt-
ing a primary volume with less sensitive data, such as a music
collection or benign personal photos. This property is called
plausible deniability.

A plausible deniability solution (PDS) should satisfy three
requirements, necessary to make it more secure, as well as
practical and easy to use. In order to illustrate these points,
consider a simple PDS that uses free space to store hidden
data [15, 20]. The first requirement is that the overall layout of
the disk should appear innocuous and similar to a disk without
hidden data. In our example, hidden data should be encrypted
and all free blocks should be initialized with random data with a
comparable bit distribution to the ciphertext of hidden data. The
second requirement is resistance to multiple snapshot attacks,
where a potent adversary compares the state of the device
over time in order to detect telltale signs of data hiding. In
the prior example, a border agent may take a snapshot of the

https://doi.org/10.1145/3102980.3102989
https://doi.org/10.1145/3102980.3102989

disk on entry to the country and upon exit notice unexplained
changes to the free space on the device. In a multiple-snapshot-
resistant PDS, the adversary can collect an arbitrary number
of disk snapshots over time, and not discern the presence of
hidden data. The third requirement is preserving the integrity
of hidden data stored alongside publicly-visible data even when
the user accesses only public data. In the simple example of
storing hidden data in free space, if the hidden volume is not in
use, the PDS should either avoid allocating this space or migrate
the hidden data to another location. The underlying challenge
for not destroying hidden data is that the metadata tracking
the placement of hidden data needs to be hidden when not in
use, lest the presence of hidden data be revealed. In pursuit of
this goal, systems generally must expose this risk of hidden
data loss to users in some fashion. Some require users to reason
about the probability that a public write will destroy data [3]
or to try to avoid potentially damaging block allocations [15].
Thus, a subordinate goal is to expose a simple and intuitive risk
parameter to users.

Many existing plausible deniability systems do not fullymeet
the aforementioned requirements. For example, Mobilflage [20],
TrueCrypt [15], and StegFS [3] are not resistant to a multiple
snapshot attack and . Additionally, all three systems allow hid-
den data to be overwritten when the system is in public mode.
Other systems, such as HIVE [4] and DEFY [18], are resistant to
multiple snapshot attacks but do not sufficiently control hidden
data loss in public mode, since block allocation for public data
writes may unknowingly mistake blocks containing hidden
data for free blocks.

In this work we introduce the Ever-Changing Disk (ECD), a
new design for managing a PDS based on pseudorandom data.
Our design allows users to configurably control and meet the
aforementioned requirements without compromising the secu-
rity of hidden data. Like prior PDSes, an ECD also hides data
within a large volume of pseudorandom data. However, ECD
differs in that hidden and pseudorandom data are not static
even in periods when no new data (public or hidden) is written.
Instead, hidden and pseudorandom data blocks are constantly
relocated and modified to different locations in the system. In
other designs, any modifications between subsequent snap-
shots of the device can potentially undermine security. In the
ECD, hidden data security does not depend on data access pat-
terns, public data workloads, or careful system management.
The user need only reason about a single configuration param-
eter, R, that trades hidden data bandwidth for lifespan while
data is hidden. Instead, these modifications are easily excused
as the result of normal device operations.

The ECD design is not ideal. Without the secret key, data
relocations will eventually overwrite hidden data. However, in
other systems, the integrity of hidden data is either probabilistic,
or relies on careful choices by the file system running in public
mode. ECD exposes a simple, intuitive parameter whereby the
user can dynamically configure the frequency of automatic data
relocations (R), which makes trade-offs in throughput, device
lifetime, and frequency of entering the secret key. Ease of use
is an essential goal overlooked by prior designs.

2 EXISTING PLAUSIBLE DENIABILITY
SYSTEMS

Storing hidden data with plausible deniability in larger public
volumes is a long-standing problem. Note that we use the term
“public volume” to indicate that the presence of the volume is
public, not necessarily its contents; the contents of the public
volume may still be encrypted. We now detail some prominent
prior work.

TrueCrypt [15] stores an additional hidden file system in
the free space of a primary public file system. The free space is
filled with pseudorandom data when the system is initialized.
As a result, the distribution of values in the public volume’s
free space is comparable, whether the space is truly free or
storing hidden, encrypted data.

StegFS [3] is a file system that hides encrypted data in a large
volume of pseudorandom blocks. The location of hidden file
blocks is determined by the file name. Hidden data is replicated
to reduce the risk of being overwritten by updates to the public
volume.

Mobilflage [20] is a PDS for mobile devices. Mobiflage uses
part of the disk to store random data. An additional hidden
volume may be stored within this special partition. Plausible
deniability stems from the idea that the random data may or
may not include a hidden volume.

HIVE [4], and more recently, DataLair [6], provide plausible
deniability by coupling I/O accesses with random data writes,
which hides the user’s true data accesses. When the user wishes
to store hidden data, the random data writes are substituted for
hidden data writes. This approach hides suspicious writes in the
“noise” of ongoing, random writes. Hidden data is located using
a special security construct combined with other in-memory
and on-disk mapping data structures.

Finally, DEFY [18] is a log-structured file system for flash that
provides plausible deniability. Each data chunk in the public
volume is encrypted with a chunk-specific key. The key for
each chunk is discarded when it is replaced by a newer chunk.
Hidden data is written to a segment that appears in the log as
an old, obviated chunk.

3 THE PROBLEM
Building a secure and efficient system for data hiding with
plausible deniability entails several challenges. We identify the
following as the most challenging and try to address them in
this work. Failure to meet these requirements does not formally
disqualify a PDS but makes it significantly less secure and
practical for users.

Threat Model. We assume the adversary has complete con-
trol of the device for periods of time when the device is out of
the physical possession of the user. The adversary is capable
of inspecting the physical contents of any persistent storage
or DRAM on the device, as well as the firmware. We assume
the adversary may be able to inspect the device at multiple
points in time, and look for correlation in changes across the
snapshots. We assume the adversary does not install malware
that continues inspection after the device leaves possession
of the user, which could presumably be detected by a trusted
boot solution. The adversary can destroy hidden data, say by
formatting the device or setting it on fire, but should not be

Plausible Deniability
System

Multiple Snapshot
Attack

Hidden Data
Overwrite Resistance

Faking Public Accesses
PDS Capability Hidden

from Adversary
TrueCrypt [15] - - - -
StegFS [3] - - - -
Mobiflage [20] - - - -
HIVE [4] + - - -
DEFY [18] + - - -
This Work + ± + -

Table 1: Important features of plausibly deniable systems. ECD overwrites hidden data only after a large, known, and
configurable period of time.

able to prove that hidden data exists or extract the hidden data
except by brute force. Finally, we assume the system being used
cannot always maintain a secure network connection. There-
fore, users must rely on a local, non-network based storage
solution to plausibly deny the existence of hidden data on their
device.

Multiple Snapshot Attacks. This attack involves an adversary
repeatedly accessing and checkpointing the device state, in-
cluding data, metadata, and any physical characteristics. The
adversary can then compare several snapshots and detect unex-
plained modifications. An example of such an adversary might
be the security officer in a corporate research lab who compares
the state of a visitor’s smartphone upon entry and exit to make
sure she did not store sensitive data during her visit.

Unaware Users Destroying Hidden Data. Plausible deniabil-
ity systems should be able to operate in “public-only” mode
without destroying the hidden data. In many designs, a user’s
secret key is an input to an algorithm that determines where
hidden data is stored. In a situation where the device may be
under the control of an adversary, such as when the device is
under inspection at a border checkpoint, the user will want
to purge the secret key and any metadata pertaining to the
hidden volume from memory. This can either be a manual pro-
cess or a periodic, automatic process, such as to protect against
disclosure if the device is misplaced.

When the device is under inspection by an adversary, it
should still work properly. For example, if the hidden data is
stored in the free space of the public file system, writing new
public file data may require allocating seemingly free blocks
that effectively contain hidden data. Once the user regains
possession of the device, the hidden data should still be present.

Faking System Activity. Hidden data is typically stored along-
side public data. To maintain plausible deniability, the system
should make updates to hidden data on disk appear to an ad-
versary as if there is a plausible reason for the change, other
than updating hidden data. First, hidden data must appear se-
mantically similar to public data. Modern PDSes often encrypt
hidden data so that it semantically fits in a large (often pre-
existing) volume of pseudorandom data in the system. Second,
data layout following the hidden data I/O workload should also
appear to be the result of plausible system activity, such as
updating or deleting a file in the public volume. Some systems,
such as HIVE, require the user to offset writes to hidden data
with updates to public data, creating “cover traffic”. In such
cases, many users may find it difficult at times to easily concoct

a public write workload to match the hidden one such that the
resulting modified state of the system appears to be the out-
come of plausible user behavior (e.g., not writing some random
content file). This feature is related to the multiple snapshot
attack, as well as to usability; ideally, users should not have to
be extremely familiar with system internals in order to reliably
fake system activity.

Prior work. Prior work does not address all of these chal-
lenges. We summarize the properties of these systems and ECD
in Table 1.

Many existing works consider only a weaker threat model
where the adversary is only capable of taking a single snapshot
of the device being used for storing hidden data [3, 15, 20].
In these systems modifications to hidden data result in unex-
plained changes to the system’s state, which undermines the
system’s resistance to a multiple snapshot attack. HIVE [4] is
resistant to this attack since I/O accesses must be accompa-
nied by additional writes to “k random, distinct hard disk block
indices.”. DEFY [18] provides deniability following a multiple
snapshot attack by attributing “undecryptable blocks to old
versions of data or metadata, the frequency of which would
rely entirely on the user’s usage patterns”

To protect against a multiple snapshot attack, systems often
require users to fake system activity. HIVE’s design requires
users to couple every k random writes with a public data write
to provide “cover traffic” for hidden data [4]. It is unclear how
convincing the resemblance of the required cover traffic is to
system activity, and many users may find it difficult to concoct
such plausible activity. DEFY [18] claims to avoid this impedi-
ment by attributing modifications to the state of the system to
writing and deleting new public data. We note however that
typical user activity is not composed of writing and deleting the
same data. Thus, at some point these undecryptable blocks and
resulting data layout may raise the suspicion of an adversary
if they are not accompanied by sufficiently innocuous public
write activity.

Most PDSes do not reveal any metadata pertaining to hidden
data when operating in “public only” mode. Instead, hidden
data is treated as invalid public data [4, 15, 18, 20] to avoid
divulging the presence and size of hidden data stored in the
system. As a result, hidden data may be overwritten when
allocating space for newly-written public data. Hidden data
overwrites are partially mitigated in StegFS [3] by replicating
hidden blocks.

One open and difficult challenge is that it is hard to hide
evidence that a PDS is installed. In other words, if a border agent

sees a PDS installed on the system, she may be unmoved by the
argument that a purported free or random-content set of blocks
really doesn’t contain more hidden volumes. Worse, the user
can no longer prove that she has revealed all of the volumes
under coercion (for simplicity, many systems implement a
single hidden volume; in practice, a system may offer multiple
hidden volumes, and the more plausible question is whether,
after revealing n hidden volumes, there is one more). Failing
to meet this challenge is common to all systems, including the
ECD, and is very difficult to avoid.

4 THE SOLUTION: AN EVER-CHANGING
DISK

In this section, we present the design of an ECD, a new so-
lution for hiding data with plausible deniability. Our design
allows users to configurably control and meet the following
requirements: (1) resisting multiple snapshot attacks; (2) ensur-
ing hidden data integrity; and (3) disguising hidden data writes
as part of normal system operation. The ECD does so without
compromising the security of hidden data and ease of use. We
envision ECD being implemented primarily in device firmware
so that the public volume appears as the normal logical block
address (LBA) space, and the capacity of the device is simply
reduced by some factor for hidden data. Figure 1 illustrates a
simple example of the ECD design.

An ECD partitions the storage space into two parts. The
first part contains the public data volume and the second con-
tains the hidden data volume, hereby referred to as Vp and
Vh respectively. For simplicity of explanation, we assume that
each volume manages 50% of the system’s storage space. The
firmware manages physical placement, and, when the user en-
ters the secret key, a second volume is visible to the system.
When the hidden volume is unmounted, the key is flushed from
any memory in ECD, and any related metadata is encrypted.
Both volumes appear as contiguous LBA ranges.

Vp is mounted and managed as a normal volume. Vh is
treated differently. On initialization, Vh is filled with pseudo-
random data. For simplicity, Vh is maintained over a separate,
physically-consecutive portion of the storage space. Writes to
Vh are handled in a log-structuredmanner, andVh is partitioned
into N segments.

ECD maintains the invariant that all live data is in the active
(Si) or most-recently-active (Si−1) segment. Data is always
written to the current active segment (Si).

What makes an ECD unique is that, in addition to servicing
I/O requests, the device periodically copies data from segments
containing valid hidden data to the currently active segment Si .
Specifically, data is copied from Si−1 to Si at a predetermined
rate, R. Later in this paper we explain the importance of R and
its implications for various aspects of ECD operation.

Incoming hidden data write requests are buffered in a FIFO
queue in the on-board RAM of the storage device. Writes are
issued in 4KB increments at regular intervals. Before append-
ing new data to Si ’s head, the ECD waits for a write timeout
expiration as dictated by R. For example, for R = 20MB/s, the
ECD will wait for 195us before a new 4KB write is performed
in Vh . When that timeout expires, ECD must write data to the
next available block in Si after encrypting it using a special

secret key Khid known only to the hiding user.
There are three types of data that the ECD writes: (1) re-

encrypted existing hidden data; (2) newly written hidden data;
and (3) pseudorandom data. We note that re-encryption of
existing hidden data is necessary to hide any correlations be-
tween multiple versions of the same content on disk. To avoid
re-using the same encryption key ECD uses a composite key
Khid , c , where c is a global counter whose value is incremented
on every active segment transition. The counter’s value can
easily be saved and restored using the first page of Si .

To decide which type of data to write to the current head of
the log in Si , the ECD does the following:

(1) Check in-memory metadata (§5) to determine whether
the block at the same offset in Si−1 contains valid data.
If yes, read the block, re-encrypt, and write.

(2) If the queue contains buffered write requests, pop the
queue’s head, encrypt it, and write.

(3) Otherwise, write new pseudorandom data.
Once the write is completed, the ECD updates any relevant

mapping data structures in RAM (See §5) to indicate the lo-
cation and validity of newly written data, and invalidates the
relevant block in Si−1.

4.1 ECD Features
The ECD avoids multiple snapshot attacks by periodically mod-
ifying the state of the device. The timing of hidden data over-
writes is not a function of if data is hidden or accessed; rather,
a simple, public parameter R controls the bandwidth to the
hidden volume area. Therefore, users do not have to concoct
innocuous public workloads as cause for hidden writes. Sim-
ilarly to HIVE [4], the ECD assumes that hidden reads do not
modify the state of the system and need not be disguised.

ECD users may occasionally operate the device without en-
tering the secret key, i.e., with only the public volume accessible.
Since ECD continues to move data regardless of the device op-
erating mode, operating in public mode may eventually result
in hidden data overwrites. R determines Tpub , the maximum
possible time period that a device can operate in public mode
without ECD overwriting hidden data with pseudorandom data.
Tpub can be summarized in the following equation:

Tpub =
SIZE (Vh)

R
·
N − 1
N
,

which is the time it takes for an ECD to copy/overwrite all N
segments, except the last segment of the hidden volume (Vh)
that was active before entering public mode. This segment will
contain the latest version of each hidden sector. This implies
that the user should keep the device in hidden mode for a time
period within which the active segment can be scanned, and
potentially copied, at least once for every ECD copy cycle. For
example, assuming a 2TB SSD configured with R = 3 MB/s
and N = 20 segments, Tpub = 3.84 days of non-stop operation,
or a week of operating half the day. Hidden data may still be
eventually, and inadvertently, overwritten in ECD, like in other
systems. However, it is straightforward to calculate when data
will be overwritten, and enter the key within that interval.

Tpub can also be extended by using a smaller R and reducing
the throughput ofVh . For example, a user who is about to enter
a country controlled by an oppressive regime can simply halve

publicQ
volume

1 2 30

active
segment

oldQdataQ
(hidden)

psuedo
randomQ

newQdata
(hidden)

...

N-1

VhQWrite
Queue

{hiddenQvolumeQsegments

t1

t2

t3

t4

t5

headQofQ
log

t1

t4

t6 deletedQfrom
queue

time
t1 t2 t3 t4 t5 t6

Figure 1: Illustration of an ECD. For simplicity, data is copied in time t=1,2,3, etc. Valid hidden data is copied from
segment 2 to segment 3, the current active segment. Blocks that contain pseudorandom data are not copied. Instead,
valid hidden data fromVh ’s write queue is inserted. If the write queue is empty (e.g., at time t=5), new pseudorandom
data is written to the head of the log. Future writes (t=6) will be committed whenever possible.

R (thus doubling Tpub) and restore it to its original settings
after leaving the country.

5 IMPLEMENTATION
We propose to implement ECD as part of an SSD firmware
for several reasons. First, flash random access latencies are
similar to those of sequential accesses. Second, due to the in-
herent asymmetry between flash write and erase units [11],
SSD firmware usually adopts log-structured designs (not unlike
the ECD itself). Third, HDDs have a single mechanical head;
concurrently accessing partitioned physical space in HDDs
can significantly disrupt performance for the public volume by
seeking between the volumes, whereas SSDs can more easily
apportion a fraction of the bandwidth to the hidden volume.We
do note that unlike flash, lifespan of HDDs does not necessarily
depend on the amount of writes issued to the device. Therefore,
HDDs may better tolerate the additional writes of the ECD.
Emerging SMR technology [12] is inherently log-structured,
and may also serve as a useful substrate for the ECD in future
work.

Another advantage of using an SSD to implement the ECD
is that flash pages inherently contain an out-of-bound spare
area, in addition to the page data area. It is standard practice for
SSDs to use this spare area to store metadata that helps recover
and reconstruct volatile firmware metadata structures. In an
ECD, the additional hidden volume metadata mostly includes
standard SSD data structures such as a logical-to-physical map-
ping table [2] and the active segment’s page validity bitmap
to improve the performance of segment copying [5, 9]. In the
ECD this metadata will also be encrypted and stored on flash
using the hidden volume key.

6 IMPLICATIONS AND COST
ECD design and underlying storage media have several impor-
tant implications. In this section we analyze some of these
implications and various tradeoffs resulting from the ECD’s
unorthodox design.

6.1 I/O Performance
Write requests to ECD’s hidden volume are buffered in a queue,
and are serviced at the next scheduled internal data copying

timeout. Therefore, ECD’s maximum hidden write I/O through-
put is known and determined by R. Read requests for hidden
data that is still queued on the disk may be stalled, depending
on the use of disk I/O scheduling optimizations such as NCQ.
Even so, read throughput is at worst constrained by R, and at
best by the device’s baseline (public) read throughput.

Public data I/O throughput remains high but is also partially
affected by ECD operations. The higher R is, so are the resulting
overhead and amortized delay for public I/O operations. The
tradeoff is that R is configurable; users control its effect and
can modify it according to their needs. For example, consider a
user with a modern consumer-grade SSD capable of performing
random write I/O at a maximum throughput of 200 MB/s. For
R = 20 MB/s, the added overhead slows public I/O throughput
by ∼10%. To improve public data throughput the user can slow
R down by half to R = 10 MB/s, which will increase public I/O
throughput by 5%. Users should take into account that such
adjustments may raise the suspicion of attackers capable of
snapshotting the device before and after the user adjusts R.

The ECD uses 4KBwrite increments. It is possible to optimize
the ECD to access the underlying device in larger sequential
batches, at the cost of increasing latency and buffering uncom-
mitted writes in a large non-volatile memory. In future work,
we will explore trade-offs between hidden volume efficiency
and write latency.

6.2 Capacity
Public data capacity in an ECD is directly derived from the
user-configured partitioning of the storage space into public
and hidden portions. Our design makes a trade-off between the
space capacity of the hidden volume, and the time at which
hidden data will be destroyed (Tpub). In the current ECD design,
users can only write one segment’s worth of hidden data; other
segments can be overwritten in “public” mode without losing
data. Thus, Vh/N is the maximum hidden data capacity. For a
2TB SSD where Vh occupies 50% of the disk and N = 20, the
hidden data capacity is 50GB. In principle, one could increase
capacity of the hidden volume by either increasing segment size
or keeping live data on more than one segment, but lowering
the time until hidden data would be lost.

6.3 Endurance and Persistence
As previously mentioned, for performance reasons, the ECD
is optimally implemented using an SSD with limited lifetime.
Even after employing unified wear-leveling policies [2, 11] over
the blocks of Vh and Vp , the SSD’s lifetime may be depleted
earlier than expected due to the ECD’s continuous writes. Yet,
ECD users can safely use an SSD to hide data for sufficiently long
periods of time. For example, consider an ECD implemented
over a 2TB SSD that is constantly powered. We further assume
that the SSD can endure a conservative total of 1000 complete
device writes [13, 19]. In this setup, even with a fast R = 25
MB/s, we can expect that the entire hidden volume will be
dynamically relocated and copied once a day over the course
of three years until it reaches the vendor’s guaranteed lifetime
limit. This rate allows ECD users to avoid wearing out the
device, while having little effect on the performance of the
public volumeVp . We note that if the device is powered on only
for part of the day, its lifetime will increase proportionally.

6.4 Energy
SSDs operate a large array of multiple flash packages in parallel.
Therefore, the power consumption of SSDs mostly depends on
that of the underlying flash chips. SSDs save power by entering
idle state when the entire flash memory part is inactive [7]. An
ECDwould employ only a few chips concurrently at a relatively
slow rate, preventing the SSD from entering idle mode. As a
result, the energy consumption of an ECD may be up to 5x
higher than in an SSD.

To conserve power, users can decrease R, allowing for longer
idle periods. ECD should attempt to schedule public volume
maintenance operations [11, 21] together with hidden volume
operations.

7 CONCLUSIONS
Users’ privacy concerns and commercial needs require systems
capable of storing sensitive data in a hidden volume so that
the user can plausibly deny the existence of this volume and
that its related blocks contain hidden data. Existing solutions
do not fully meet many important requirements. Therefore,
better solutions must be devised, both in terms of security and
usability. We consider this work a step in this direction and
plan to implement it as part of an SSD firmware to verify our
design and its performance characteristics.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful com-
ments on earlier drafts of the work. This research was sup-
ported by Grant 2014621 from the United States-Israel Bina-
tional Science Foundation (BSF), by Grant CNS-1526707 from
the United States National Science Foundation (NSF), VMware,
and the Zeff fellowship.

REFERENCES
[1] 2010. Youth jailed for not handing over encryption password. The Register

http://www.theregister.co.uk/2010/10/06/jail_password_ripa/. (2010).
[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance.
In USENIX Annual Technical Conference (ATC).

[3] Ross Anderson, Roger Needham, and Adi Shamir. 1998. The Steganographic
File System. In Information Hiding. Lecture Notes in Computer Science,
Vol. 1525. Springer Berlin Heidelberg, 73–82.

[4] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu.
2014. Toward Robust Hidden Volumes Using Write-Only Oblivious RAM.
In Proceedings of the SIGSAC Conference on Computer and Communications
Security (CCS). ACM. https://doi.org/10.1145/2660267.2660313

[5] Evgeny Budilovsky, Sivan Toledo, and Aviad Zuck. 2011. Prototyping a
High-performance Low-cost Solid-state Disk. In Proceedings of the Annual
International Conference on Systems and Storage (SYSTOR).

[6] Anrin Chakraborti, Chen Chen, and Radu Sion. 2017. DataLair: Efficient
Block Storage with Plausible Deniability against Multi-Snapshot Adver-
saries. In Proceedings of the Privacy Enhancing Technologies Symposium
(PETS).

[7] Seokhei Cho, Changhyun Park, Youjip Won, Sooyong Kang, Jaehyuk Cha,
Sungroh Yoon, and Jongmoo Choi. 2015. Design Tradeoffs of SSDs: From
Energy Consumption’s Perspective. Transactions on Storage 11, 2, Article 8
(2015), 24 pages. https://doi.org/10.1145/2644818

[8] Microsoft Corporation. 2009. Windows BitLocker drive encryption
frequently asked auestions. http://technet.microsoft.com/en-us/library/
cc766200%28WS.10%29.aspx. (2009).

[9] Niv Dayan and Philippe Bonnet. 2015. Garbage Collection Techniques for
Flash-Resident Page-Mapping FTLs. CoRR abs/1504.01666 (2015). http:
//arxiv.org/abs/1504.01666

[10] Disk 2017. Disk encryption in Arch Linux. (2017). http://wiki.archlinux.
org/index.php/disk_encryption.

[11] Eran Gal and Sivan Toledo. 2005. Algorithms and Data Structures for
Flash Memories. Computing Surveys 37, 2 (June 2005), 138–163. https:
//doi.org/10.1145/1089733.1089735

[12] Garth Gibson and Milo Polte. 2009. Directions for shingled-write and
twodimensional magnetic recording system architectures: Synergies with
solid-state disks. CMU-PDL-09-014 (2009).

[13] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. The Bleak Future
of NAND Flash Memory. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST).

[14] Key 2017. Key disclosure law. Wikipedia http://en.wikipedia.org/wiki/Key_
disclosure_law. (2017).

[15] Open 2017. Open Crypto Audit Project. http://opencryptoaudit.org/. (2017).
[16] OS 2015. OS X Mavericks: Encrypt the information on your disk with

FileVault. http://support.apple.com/kb/PH13729. (2015).
[17] Password 2012. Password case reframes Fifth Amendment rights in con-

text of digital world. Denver Post http://www.denverpost.com/news/ci_
19669803. (2012).

[18] Timothy M Peters. 2014. DEFY: A Deniable File System for Flash Memory.
Master’s thesis. California Polytechnic State University.

[19] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Relia-
bility in Production: The Expected and the Unexpected. In Proceedings of
the 14th USENIX Conference on File and Storage Technologies (FAST).

[20] Adam Skillen and Mohammad Mannan. 2013. On Implementing Deniable
Storage Encryption for Mobile Devices.. In The Network and Distributed
System Security Symposium (NDSS).

[21] Chengen Yang, Hsing-Min Chen, TrevorN. Mudge, and Chaitali Chakrabarti.
2014. Improving the Reliability of MLC NAND Flash Memories Through
Adaptive Data Refresh and Error Control Coding. Journal of Signal Process-
ing Systems 76, 3 (2014), 225–234. https://doi.org/10.1007/s11265-014-0880-5

http://www.theregister.co.uk/2010/10/06/jail_password_ripa/
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1145/2644818
http://technet.microsoft.com/en-us/library/cc766200%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc766200%28WS.10%29.aspx
http://arxiv.org/abs/1504.01666
http://arxiv.org/abs/1504.01666
http://wiki.archlinux.org/index.php/disk_encryption
http://wiki.archlinux.org/index.php/disk_encryption
https://doi.org/10.1145/1089733.1089735
https://doi.org/10.1145/1089733.1089735
http://en.wikipedia.org/wiki/Key_disclosure_law
http://en.wikipedia.org/wiki/Key_disclosure_law
http://opencryptoaudit.org/
http://support.apple.com/kb/PH13729
http://www.denverpost.com/news/ci_19669803
http://www.denverpost.com/news/ci_19669803
https://doi.org/10.1007/s11265-014-0880-5

	Abstract
	1 Introduction
	2 Existing Plausible Deniability Systems
	3 The Problem
	4 The Solution: An Ever-Changing Disk
	4.1 ECD Features

	5 Implementation
	6 Implications and Cost
	6.1 I/O Performance
	6.2 Capacity
	6.3 Endurance and Persistence
	6.4 Energy

	7 Conclusions
	References

