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After request completion, an I/O device must decide whether to minimize latency by immediately firing an

interrupt or to optimize for throughput by delaying the interrupt, anticipating that more requests will com-

plete soon and help amortize the interrupt cost. Devices employ adaptive interrupt coalescing heuristics that

try to balance between these opposing goals. Unfortunately, because devices lack the semantic information

about which I/O requests are latency-sensitive, these heuristics can sometimes lead to disastrous results.

Instead, we propose addressing the root cause of the heuristics problem by allowing software to explicitly

specify to the device if submitted requests are latency-sensitive. The device then “calibrates” its interrupts

to completions of latency-sensitive requests. We focus on NVMe storage devices and show that it is natural

to express these semantics in the kernel and the application and only requires a modest two-bit change to

the device interface. Calibrated interrupts increase throughput by up to 35%, reduce CPU consumption by as

much as 30%, and achieve up to 37% lower latency when interrupts are coalesced.
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1 INTRODUCTION

Interrupts are a basic communication pattern between the operating system and devices. While
interrupts enable concurrency and efficient completion delivery, the costs of interrupts and the
context switches they produce are well documented in the literature [7, 30, 67, 74]. In storage,
these costs have gained attention as new interconnects such as NVM Express™ (NVMe) en-
able applications to not only submit millions of requests per second, but up to 65,535 concur-
rent requests [18, 21, 22, 25, 76]. With so many concurrent requests, sending interrupts for every
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completion could result in an interrupt storm, grinding the system to a halt [40, 55]. Since CPU is
already the bottleneck to driving high IOPS [37, 38, 41–43, 46, 70, 77, 82, 83], excessive interrupts
can be fatal to the ability of software to fully utilize existing and future storage devices.

Typically, interrupt coalescing addresses interrupt storms by batching requests into a single
interrupt. Batching, however, creates a tradeoff between request latency and the interrupt rate.
For the workloads we inspected, CPU utilization increases by as much as 55% without coalescing
(Figure 15(d)), while under even the minimum amount of coalescing, request latency increases by
as much as 10× for small requests, due to large timeouts. Interrupt coalescing is disabled by default
in Linux, and real deployments use alternatives (Section 2).

This article addresses the challenge of dealing with exponentially increasing interrupt rates
without sacrificing latency. We initially implemented adaptive coalescing for NVMe, a dynamic,
device-side-only approach that tries to adjust batching based on the workload, but find that it still
adds unnecessary latency to requests (Section 3.2). This led to our core insight that device-side
heuristics, such as our adaptive coalescing scheme, cannot achieve optimal latency because the
device lacks the semantic context to infer the requester’s intent: Is the request latency-sensitive
or part of a series of asynchronous requests that the requester completes in parallel? Sending this
vital information to the device bridges the semantic gap and enables the device to interrupt the
requester when appropriate.

We call this technique calibrating1 interrupts (or simply, cinterrupts), achieved by adding two
bits to requests sent to the device. With calibrated interrupts, hardware and software collaborate
on interrupt generation and avoid interrupt storms while still delivering completions in a timely
manner (Section 3).

Because cinterrupts modifies how storage devices generate interrupts, supporting them re-
quires modifications to the device. However, these are minimal changes that would only require
a firmware change in most devices. We build an emulator for cinterrupts in Linux 5.0.8, where
requests run on real NVMe hardware, but hardware interrupts are emulated by interprocessor
interrupts (Section 4).

Cinterrupts is only as good as the semantics that are sent to the device. We show that the Linux
kernel can naturally annotate all I/O requests with default calibrations, simply by inspecting the
system call that originated the I/O request (Section 4.1). We also modify the kernel to expose a
system call interface that allows applications to override these defaults.

In microbenchmarks, cinterrupts matches the latency of state-of-the-art interrupt-driven ap-
proaches while spending 30% fewer cycles per request and improves throughput by as much as
35%. Without application-level modifications, cinterrupts uses default kernel calibrations to im-
prove the throughput of RocksDB and KVell [48] on YCSB benchmarks by as much as 14% over
the state-of-the-art and to reduce latency by up to 28% over our adaptive approach. A mere 42-
line patch to use the modified syscall interface improves the throughput of RocksDB by up to
37% and reduces tail latency by up to 86% over traditional interrupts (Section 5.5.1), showing how
application-level semantics can unlock even greater performance benefits. Alternative techniques
favor specific workloads at the expense of others (Section 5).

Cinterrupts can, in principle, also be applied to network controllers (NICs), provided the under-
lying network protocol is modified to indicate which packets are latency sensitive. We demonstrate
that despite being more mature than NVMe drives, NICs suffer from similar problems with respect
to interrupts (Section 2). We then explain in detail why it is more challenging to deploy cinterrupts
for NICs (Section 6).

1To calibrate: to adjust precisely for a particular function [53].
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Fig. 1. Storage hardware trends include changes in device interconnect and device media. The NVMe in-

terconnect exposes internal device parallelism, which increases maximum throughput of devices, and new

technologies such as Intel Optane decreases device latency when compared to traditional flash.

Fig. 2. NVMe requests are submitted through submission queues (SQ) and placed in completion queues (CQ)

when done. Applications are notified of completions via either interrupts or polling.

2 BACKGROUND AND RELATED WORK

Disks historically had seek times in the milliseconds and produced at most hundreds of inter-
rupts per second, which meant interrupts worked well to enable software-level concurrency while
avoiding costly overheads. However, new storage devices are built with solid-state memory which
can sustain not only millions of requests per second [25, 76], but also multiple concurrent requests.
Figure 1 shows how storage devices have become both exponentially higher throughput and lower
latency in the past decade. Higher throughput is supported through the NVMe specification [57],
which exposes underlying device parallelism to software by providing multiple queues, up to 64K
per device, where requests, up to 64K per queue, can be submitted and completed; Linux developers
rewrote its block subsystem to match this multi-queue paradigm [9]. Figure 2 shows a high-level
overview of NVMe request submission and completion.

On the other hand, lower latency is supported through a switch in device media from NAND
chips to technologies such as Intel Optane, whose Gen 1 devices can achieve latencies of 10 μs [23]
and Gen 2 devices can achieve latencies of 5 μs [24]. Numerous kernel, application, and firmware-
level improvements have been proposed in the literature to unlock the higher request rate of these
devices [13, 39, 46, 48, 60, 66, 83, 84], but they focus on increasing I/O submit rate without directly
addressing the problem of higher completion rate. These devices are capable of higher interrupt
rates that both occupy valuable CPU time and add noticeable latency to device latencies that are
approaching the order of microseconds.

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Fig. 3. As devices support higher throughput, the cost of an interrupt at the CPU, which is constant, becomes

a higher percentage of total I/O cost. In this experiment, a process submits reads at I/O depth 256 to varying

devices. The graphs compare the absolute and relative cost of an interrupt to the total I/O cost.

Fig. 4. As devices support lower latency (from 85 μs MLC NAND to 5 μ Intel Optane Gen 2), the latency

of handling an interrupt at the CPU becomes a higher percentage of total I/O latency. In this experiment,

a process submits a single read request at a time to varying devices. The graphs compare the absolute and

relative latency of an interrupt to the total latency of the I/O.

High Cost of Interrupts. Figures 3 and 4 show how interrupt completion overheads become a
significant portion of total IO time in new storage devices. Figure 3 shows results from running a
CPU-bound (throughput-sensitive) workload: a single process submits 4K block reads to the device
via libaio at an I/O depth of 256. Our experimental setup is described in Section 5.1. The left graph
of Figure 3 shows the total cost of an I/O request in CPU cycles, while the right graph shows the
relative cost of handling an interrupt with respect to total I/O cost.

Note that from the SATA device [65] to the NVMe devices [21, 23], the CPU can send many
requests in parallel, which makes the total cost of an I/O lower. Across all storage devices, the
cost of handling an interrupt remains constant, about 1,500 cycles, which accounts for the con-
text switch into interrupt handling code, running the interrupt handler, and context-switching
back to kernel code. Therefore, as shown in the right graph of Figure 3, as devices can handle
higher throughput, the relative cost of an interrupt increases, and is up to 24% in NVMe Optane
devices.

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Figure 4 shows results from running a device-bound (latency-sensitive) workload: a single pro-
cess submits a single 4K block read at a time. The left graph shows the total latency of the read, and
the right graph shows the percentage of this latency that is attributed to interrupt handling. As
with the previous experiment, the cost of an interrupt, around 740 ns, stays the same for varying
storage devices. However, the latency of the request at the device falls considerably in the switch
from NAND media [21] to Optane [23, 25]. Note that we do not change the interconnect (NVMe)
in this experiment to show that the latency difference comes solely from the underlying media
of the device. When the total request is 5 μs, as in Intel Optane Gen 2, the overhead of interrupt
handling is almost 15% of the total IO latency.

These two experiments show that, with current interconnect and device media trends, the cost
of a simple interrupt is now nontrivial.

Lessons from Networking. Networking devices have had much higher completion rates for a long
time. For example, 100 Gbps networking cards can process over 100 million packets per second in
each direction, over 200× that of a typical NVMe device. The networking community has devised
two main strategies to deal with these completion rates: interrupt coalescing and polling.

To avoid bombarding the processor with interrupts, network devices apply interrupt coalesc-
ing [75], which waits until a threshold of packets is available or a timeout is triggered. Network
stacks may also employ polling [16], where software queries for packets to process rather than
being notified. IX [7] and DPDK [33] (as well as SPDK [68]) expose the device directly to the ap-
plication, bypassing the kernel and the need for interrupts by implementing polling in userspace.
Technologies such as Intel’s DDIO [19] or ARM’s ACP [56] enable networking devices to write in-
coming data directly into processor caches, making polling even faster by turning MMIO queries
into cache hits. The networking community has also proposed various in-network switching and
scheduling techniques to balance low-latency and high-throughput [3, 7, 35, 49].

Storage Is Adopting Networking Techniques. The NVMe specification standardizes the idea of in-
terrupt coalescing for storage devices [57], where an interrupt will fire only if there is a sufficient
threshold of items in the completion queue or after a timeout. There are two key problems with
NVMe interrupt coalescing. First, NVMe only allows the aggregation time to be set in 100μs in-
crements [57], while devices are approaching sub-10μs latencies. For example, in our setup, small
requests that normally take 10 μs are delayed by 100μs, resulting in a 10× latency increase. Intel
Optane Gen 2 devices have latencies around 5 μs [24], which would result in a 20× latency increase.
The risk of such high latency amplification renders the timeout unusable in general-purpose de-
ployments where the workload is unknown.

Second, even if the NVMe aggregation granularity were more reasonable, both the threshold
and timeout are statically configured (the current NVMe standard and its implementations have
no adaptive coalescing). This means interrupt coalescing easily breaks after small changes in
workload—for example, if the workload temporarily cannot meet the threshold value. The NVMe
standard even specifies that interrupt coalescing be turned off by default [58], and off-the-shelf
NVMe devices ship with coalescing disabled.

Indeed, despite the existence of hardware-level coalescing, there are still continuous software
and driver patches to deal with interrupt storms through mechanisms such as fine-tuning of
threaded interrupt completions and polling completions [11, 47, 50]. Mailing list requests and
product documentation show that Azure observes large latency increases when using aggressive
interrupt coalescing to deal with interrupt storms, which they try to address with driver mitiga-
tions [26, 47]. Because of the proprietary nature of Azure’s solution, it is unclear whether their
interrupt coalescing is standard NVMe coalescing or some custom coalescing that they develop
with hardware vendors.

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Fig. 5. Hybrid polling is not enough to mitigate polling overheads. All experiments run on a single core.

(a) With a single thread of same-sized requests, hybrid polling effectively reduces the CPU utilization of

polling while matching the performance of polling. (b) With more threads, hybrid polling reduces to polling

in terms of CPU utilization without providing significant performance improvement over interrupts. (c) With

variable I/O sizes, hybrid polling has the same throughput and latency as interrupts for both I/O sizes while

using 2.7x more CPU. Labels show performance relative to IRQ.

Polling Is Expensive. μdepot [43] and Arrakis [61] deal with higher completion rates by resorting
to polling. Directly polling from userspace via SPDK requires considerable changes to the applica-
tion, and polling from either kernel-space or userspace is known to waste CPU cycles [42, 78, 83].
FlashShare only polls for what it categorizes as low-latency applications [83], but acknowledges
that this is still expensive. Cinterrupts exposes application semantics for interrupt generation so
that systems do not have to resort to polling.

Even hybrid polling [80], which is a heuristic-based technique for reducing the CPU overhead
of polling by sleeping for a period of time before starting to poll, is insufficient, breaking down
when requests having varying size [5, 41, 45].

Figure 5 compares the performance and CPU utilization of hybrid polling, polling, and inter-
rupts for three benchmarks on an Intel Optane DC P4800X [23].2 We note that in all cases, polling
provides the lowest latency because the polling thread discovers completions immediately, at the
expense of 100% CPU utilization. When there is a single thread submitting requests through the
read syscall (Figure 5(a)), hybrid polling does well because request completions are uniform. How-
ever, when more threads or I/O sizes are added, as in Figures 5(b)–(c), hybrid polling still has
1.5×–2.7× higher CPU utilization than interrupts without providing noticeable performance im-
provement. These results match other findings in the literature [5, 6, 41, 45].

Even though polling wastes cycles, it can provide lower latency than interrupts, which is desir-
able in some cases. As such, cinterrupts coexists with kernel-side polling, such as in Linux NAPI
for networking [15, 16], which switches between polling and interrupts based on demand.

Heuristics-Based Completion. vIC [2] tries to moderate virtual interrupts by estimating I/O com-
pletion time with heuristics. It primarily relies on inspecting the number of “commands-in-flight”
to determine whether to coalesce interrupts, also employing smoothing mechanisms to ensure
that the coalescing rate does not change too dramatically. To prevent latency increase in low-
loaded scenarios, vIC also eliminates interrupt coalescing when the submission rate is below a
certain threshold. vIC is a heuristic-based coalescing algorithm, similar to our adaptive algorithm
(Section 3.2). Consequently, vIC also lacks semantic information necessary to align interrupt
delivery.

NICs and their software stack are higher-performing and more mature than NVMe drives and
their corresponding stack. As with NVMe devices, NICs must balance two contradictory goals:
(1) reducing interrupt overhead via coalescing to help throughput-oriented workloads, while
(2) providing low latency for latency-sensitive workloads by triggering interrupts upon incom-
ing packets as soon as possible. Notably, NICs employ more sophisticated, adaptive interrupt coa-
lescing schemes (implemented inside the device and helped by its driver). Yet, in general-purpose

2See Section 5.1 for a detailed description of our experimental setup.
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Fig. 6. NICs employ adaptive heuristics that try to minimize interrupt overheads without unnecessarily

hurting latency. The inherent imperfection of these heuristics is demonstrated using Intel and Mellanox NICs

servicing the netperf request-response benchmark, which ping-pongs a message of a specified size. The labels

show the latency difference between the default NIC scheme and a no-coalescing policy, which minimizes

latency for this particular workload, but which harms performance for more throughput-oriented workloads.

settings that must accommodate arbitrary workloads, NICs are unable to optimally fire and coa-
lesce interrupts, despite their maturity.

Figure 6 demonstrates that heuristics in even mature devices cannot optimally resolve the in-
terrupt delivery problem for all workloads. Two NICs, Intel XL710 40 GbE [20] and Mellanox
ConnectX-5 100 GbE [72], run the standard latency-sensitive netperf TCP request-response (RR)
benchmark [34], which repeatedly sends a message of a specified size to its peer and waits for an
identical response. In this workload, the challenge for the NIC is identifying the end of the incom-
ing message and issuing the corresponding interrupt. The Intel NIC heuristic results in increased
latency regardless of message size, and the Mellanox NIC heuristic adds latency if the message
size is greater than 1,500 bytes, the maximum transmission unit (MTU) for Ethernet, because the
message becomes split across multiple packets.

Knowledgeable users with admin privileges may manually configure the NIC to avoid coalescing,
which helps identify message boundaries and thus yields better results for this specific workload.
But such a configuration is ill-suited for general-purpose setups that must reasonably support
co-located throughput-oriented workloads as well.

Exposing Application-Level Semantics. Similar to [39, 79], and [83], cinterrupts augments the
syscall interface with a few bits so applications can transmit information to the kernel. Cinterrupts
further shares this information with the device, which is only also done in [83], which shares with
the device SLO information used to improve internal device caching.

3 CINTERRUPTS

3.1 Design Overview

The initial design of cinterrupts focused on making NVMe coalescing adapt to workload changes.
Our first contribution captures this intuition with an adaptive coalescing strategy to replace the
static NVMe algorithm (Section 3.2).

While our adaptive coalescing strategy improves over static coalescing, there are still cases
that an adaptive strategy cannot handle, such as workloads with a mix of latency-sensitive and
throughput-sensitive requests. The adaptive strategy also imposes an inevitable overhead from
detecting when a workload has changed.

This observation led to the core insight of cinterrupts: without prior knowledge about applica-
tion behavior, device-level heuristics for coalescing will always fall short due to a semantic gap

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Fig. 7. NVMe coalescing with its current 100-μs granularity (top row) causes unusable timeouts when the

threshold is not met (c9). Even if the timeout granularity were smaller (middle row), NVMe coalescing cannot

adapt to the workload. For bursts of requests, the smaller timeout will limit the throughput with interrupts

(c1 − c8), while bursts that do not meet the threshold must still wait for the timeout (c9). Note that idle

periods occur when the CPU is done submitting requests, but is waiting for the device to complete I/O.

between the requester and the device, which sees a stream of requests and cannot determine which
requests require interrupts in order to unblock the application. To bridge the semantic gap, the
application issuing the I/O request can inform the device when it wishes to be interrupted. Cinter-
rupts takes advantage of the fact that this semantic information is easily accessible in the storage
stack and available at submission time.

Note on Methodology. The results throughout this section are obtained on a setup fully described
in Section 5.1. We use an Intel Optane DC P4800X, 375 GB [23], installed in a Dell PowerEdge
R730 machine equipped with two 14-core 2.0-GHz Intel Xeon E5-2660 v4 CPUs and 128 GB of
memory running Ubuntu 16.04. The server runs cinterrupts’ modified version of Linux 5.0.8 and
has C-states, Turbo Boost (dynamic clock rate control), and SMT disabled. We use the maximum
performance governor.

All results are obtained with our cinterrupts emulation, as described in Section 4.2.1. Our em-
ulation pairs one dedicated core to one target core. Each target core is assigned its own NVMe
submission and completion queue. All results in this section are run on a single target core.

3.2 Adaptive Coalescing

Ideally, an interrupt coalescing scheme adapts dynamically to the workload. Figure 7 shows that
even if the timeout granularity in the NVMe specification were smaller, it is still fixed, which
means that interrupts will be generated when the workload does not need interrupts (c1−c8), while
completions must wait for the timeout to expire (c9) when the workload does need interrupts.

Instead, as shown in the bottom row of Figure 7, the adaptive coalescing strategy in cinterrupts
observes that a device should generate a single interrupt for a burst, or a sequence of requests
whose interarrival time is within some bound.

Algorithm 1 shows the adaptive strategy. The burst detection happens on Line 6, where the
timeout is pushed out by Δ every time a new completion arrives. In contrast, NVMe coalescing
cannot detect bursts because it does not dynamically update the timeout, which means it can only
detect bursts of a fixed size. To bound request latency, the adaptive strategy uses a thr that is
the maximum number of requests it will coalesce into a single interrupt (Lines 14–15). This is
necessary for long-lived bursts to prevent infinite delay of request completion. With Algorithm 1,
a device will emit interrupts when either it has observed a completion quiescent interval of Δ
or thr requests have completed. In Section 5, we explain how device manufacturers and system
administrators can determine reasonable Δ and thr configurations.

Comparison to NVMe Coalescing. The adaptive strategy outperforms various NVMe coalescing
configurations, even those with smaller timeouts, across different workloads. We compare the
adaptive strategy, configured with thr = 32, Δ = 6, to no coalescing (default), nvme100, which
uses a timeout of 100 μs, the smallest possible in standard NVMe, nvme20, which uses a theoretical

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Fig. 8. Adaptive strategy has better performance for both types of workloads regardless of how NVMe co-

alescing is configured. (a) Latency of a synchronous read request. (b) Throughput of an asynchronous read

workload with high iodepth. (c) Interrupt rate for async workload. Labels show performance relative to

default.

ALGORITHM 1: Adaptive coalescing strategy in cinterrupts

1 Parameters: Δ, thr

2 coalesced = 0, timeout = now + Δ;

3 while true do

4 while now < timeout do

5 while new completion arrival do

/* burst detection,update timeout */

6 timeout = now + Δ;

7 if ++coalesced ≥ thr then

8 fire IRQ and reset;

/* end of quiescent period */

9 if coalesced > 0 then

10 fire IRQ and reset;

11 timeout = now + Δ;

timeout of 20 μs, and nvme6, which uses a theoretical timeout of 6 μs. All NVMe coalescing
configurations have threshold set to 32.

We run two single-threaded synthetic workloads with fio [4]. In the first workload, the thread
submits 4-KB read requests via read, which blocks until the system call is done. In the second
workload, the thread submits 4-KB read requests via libaio in batches of 16, with iodepth=512.3

Figure 8(a) reports the latency of the read requests for the synchronous workload. As expected,
the default strategy has the lowest latency of 10μs, because it generates an interrupt for every
request. All coalescing strategies add exactly their timeout to the latency of each read request (c9

in Figure 7). Because they have the same timeout, nvme6 and adaptive have the same latency, but
nvme6 pays the price for this low timeout in the next workload.

Figure 8(b) reports the read IOPS for the second workload and shows that if there are enough
requests to hit the threshold, the timeout adds unnecessary interrupts (c1 − c8 in Figure 7). The

3iodepth represents the number of in-flight requests.
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Fig. 9. Completion timeline for multiple submissions. The adaptive strategy can detect them as part of a

burst, but only after the delay expires. Cinterrupts explicitly marks the last request in the batch. Idle periods

occur when the CPU waits for I/O to complete.

default strategy’s throughput is limited because it generates too many interrupts, as shown in
Figure 8(c).

The workload has enough requests in flight that waiting for the threshold of 32 completions
does not harm throughput. However, nvme20 and nvme6 must fire an interrupt every 20 μs or 6μs,
respectively: Figure 8(c) shows that nvme20 generates 1.7× more interrupts than adaptive, and
nvme6 generates 4.2× more interrupts than adaptive, explaining their lower throughput.

The adaptive strategy can accurately detect bursts, although it adds Δ delay to confirm the end of
a burst; without additional information, this delay is unavoidable. Figure 9 shows how cinterrupts
addresses this problem by enhancing adaptive with two annotations, Urgent and Barrier, which
software passes to the device. We now describe both annotations.

3.3 Urgent

Urgent is used to request an interrupt for a single request: the device will generate an immediate
interrupt for any request annotated with Urgent. The primary use for Urgent is to enable the device
to calibrate interrupts for latency-sensitive requests. Urgent eliminates the delay in the adaptive
strategy.

To demonstrate the effectiveness of Urgent, we run a synthetic mixed workload with fio with
two threads: one submitting 4-KB read requests via libaio with iodepth =16 and one submitting
4-KB read requests via read, which blocks until the system call is done. In cinterrupts, the latency-
sensitive read requests are annotated with Urgent, which is embedded in the NVMe request that
is sent to the device (see Section 4.1.1). Results are shown in Figure 10.

Without cinterrupts, the requests from either thread are indistinguishable to the device. The de-
fault (no coalescing) strategy addresses this problem by generating an interrupt for every request,
resulting in 2.7× more interrupts than cinterrupts (Figure 10(d)).

On the other hand, with Urgent, cinterrupts calibrates interrupts to the latency-sensitive read
requests, enabling low-latency without generating needless interrupts that hamper the through-
put of the asynchronous thread. This results in both higher asynchronous throughput and lower
latency for the synchronous requests. The adaptive strategy is unable to identify the latency-
sensitive requests and in fact tries to minimize interrupts for all requests, resulting in higher asyn-
chronous throughput but a corresponding increase in read request latency (Figure 10(c)).

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Fig. 10. Effect of Urgent. Synthetic workload with two threads running a mixed workload: one thread sub-

mitting synchronous requests via read, one thread submitting asynchronous requests via libaio. Cinterrupts

achieves optimal synchronous latency and better throughput over the default (no coalescing). The adaptive

strategy achieves better overall throughput, at the expense of synchronous latency. Labels show performance

relative to cinterrupts. Note that cinterrupts achieves lower total throughput than the adaptive strategy,

which we explain in Figure 21.

Fig. 11. In a mixed workload, increasing the coalescing threshold increases the latency of synchronous re-

quests proportionally to the coalescing rate. Labels show performance relative to cinterrupts.

In fact, the more aggressive the coalescing, the more unusable synchronous latencies become.
Figure 11 shows the same experiment with higher iodepth (iodepth = 256), which drives enough
load to the device for coalescing to be beneficial. As the target coalescing rate increases, there is
a corresponding linear increase in the synchronous latency. On the other hand, the purple line in
Figure 11(c) shows that Urgent in cinterrupts makes synchronous latency acceptable. This latency
comes at the expense of less asynchronous throughput, as shown in Figure 11(a), but we believe
this is an acceptable tradeoff.

3.4 Barrier

To calibrate interrupts for batches of requests, cinterrupts uses Barrier, which marks the end of
a batch and instructs the device to generate an interrupt as soon as all preceding requests have

ACM Transactions on Storage, Vol. 18, No. 1, Article 3. Publication date: February 2022.
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Fig. 12. Effect of Barrier. Each process submits a batch of 4 requests at a time, submitting a new batch after

the previous batch has finished. Cinterrupts always detects the end of a batch with Barrier. Note that when

there is CPU idleness, adaptive always adds Δ delay to the latency. Labels show performance relative to

cinterrupts.

finished. The semantic difference between Urgent and Barrier is that an Urgent interrupt is gen-
erated as soon as the Urgent request finishes, whereas the Barrier interrupt may have to wait if
requests are completed out of order.

Barrier minimizes the interrupt rate, which is always beneficial for CPU utilization, while en-
abling the device to generate enough interrupts so that the application is not blocked. For example,
in the submission stream s1−s4 in Figure 9, the last request in the batch, s4, is marked with Barrier.

To demonstrate the effectiveness of Barrier, we run an experiment with a variable number of
threads on the same core, where each thread is doing 4-KB random reads through libaio, submitting
in fixed batch sizes of 4. The trick is determining the end of the batch without additional overhead,
which is only possible in cinterrupts: we modify fio to mark the last request in each batch with a
Barrier. Figure 12 shows the throughput, latency, CPU utilization, and interrupt rate.

Single Thread. When there is a single thread, the default (no coalescing) strategy can deliver
lower latency than cinterrupts. This is because there is CPU idleness and no other thread running.
However, the default strategy generates 4.4× the number of interrupts as cinterrupts, which results
in 1.32× CPU utilization. The default strategy can also process some completions in parallel with
device processing, whereas cinterrupts waits for all completions in the batch to arrive before pro-
cessing. On the other hand, the Δ delay in the adaptive algorithm is clear: the latency of requests
is 29 μs, compared to 22 μs with cinterrupts.
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Fig. 13. Completion timeline for two threads submitting request batches. The adaptive strategy experiences

CPU idleness both because of the delay and because it waits to process any completions until they all arrive.

On the other hand, due to Barrier, cinterrupts can process each batch as soon as it completes.

Two Threads. When there are two threads in the experiment, the advantage of the default strat-
egy goes away: the 3.4× interrupts taxes a saturated CPU. On the other hand, cinterrupts has the
best throughput and latency because calibrating interrupts enable better CPU usage.

Figure 13 shows that the adaptive strategy exhibits highest synchronous latency due to CPU
idleness, which comes from waiting for completions and the delay used to detect the end of the
batch. This idleness is eliminated in the next experiment, where there are enough threads keep the
CPU busy.

Four Threads. With four threads, the comparison between cinterrupts and the default NVMe
strategy remains the same. However, at four threads, the adaptive strategy matches the perfor-
mance of cinterrupts because without CPU idleness, the delay is less of a factor. Although the
adaptive strategy does well in this last case, we showed in Section 3.3 that this aggregation comes
at the expense of synchronous requests.

Note that Figure 13 is a simplification of a real execution, because it conflates time spent in
userspace and the kernel, and does not show completion reordering. The full cinterrupts algorithm
addresses reordering by employing the adaptive strategy to ensure no requests get stuck.

3.5 Out-of-Order Urgent

The full cinterrupts interrupt generation strategy is shown in Algorithm 2. Requests are either
unmarked or marked by Urgent or Barrier. Unmarked requests are handled by the underlying
adaptive algorithm and can of course piggyback on interrupts generated by Urgent or Barrier.

We noticed that Urgent requests sometimes get completed with other requests, which increases
their latency because the interrupt handler does not return until it reaps all requests in the inter-
rupt context. To address this, cinterrupts implements out-of-order (OOO) processing, a driver-level
optimization for Urgent requests. With OOO processing, the IRQ handler will only reap Urgent
requests in the interrupt context, which enables faster return-to-userspace of the Urgent requests.

Unmarked requests will not be reaped until a completion batch consists only of those requests,
as shown in Figure 14. The driver also does not ring the CQ doorbell until it completes a contiguous
range of entries. thr ensures non-Urgent requests are eventually reaped, even if there is a continu-
ous stream of Urgent requests. For example, suppose in Figure 14 that thr = 9. Then an interrupt
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Fig. 14. OOO Urgent processing. Grayed entries are reaped entries. Urgent requests in an interrupt context

(first interrupt) are processed immediately, and the interrupt handler returns. The other requests are not

reaped until the next interrupt, which consists only of non-Urgent requests. After the second IRQ, the driver

rings the completion queue doorbell to signal that the device can reclaim the contiguous range.

ALGORITHM 2: cinterrupts coalescing strategy

1 Parameters: Δ, thr

2 coalesced = 0, timeout = now + Δ;

3 while true do

4 while now < timeout do

5 while new completion arrival do

6 timeout = now + Δ;

7 if completion type == Urgent then

8 if ooo processing is enabled then

/* only urgent requests */

9 fire urgent IRQ;

10 else

/* process all requests */

11 fire IRQ and reset coalesced;

12 if completion type == Barrier then

13 fire IRQ and reset coalesced;

14 else

15 if ++coalesced ≥ thr then

16 fire IRQ and reset coalesced;

/* end of quiescent period */

17 if coalesced > 0 then

18 fire IRQ and reset coalesced;

19 timeout = now + Δ;

for the non-OOO requests will fire as soon as 9 entries (already reaped or otherwise) accumulate
in the completion queue.

The tradeoff with OOO processing is an increase in the number of interrupts generated and an
increase in latency for non-OOO requests. Figure 15 reports performance metrics from running
the same mixed workload as in Figure 11. OOO processing generates 2.4× the number of interrupts
in order to reduce the latency of synchronous requests by almost half. The impact of the additional
interrupts is noticeable in the reduced number of asynchronous IOPS.

Incidentally, these additional interrupts, as well as the interrupts in the default strategy, act as
an inadvertent tax on the asynchronous thread. If we instead limit the number of asynchronous
requests, the need for these additional interrupts goes away. In the second row of Figure 15, we
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Fig. 15. Mixed workload. Out-of-order (OOO) driver processing of Urgent requests enables lower latency at

the expense of more interrupts. Limiting the number of async requests (bottom row) reduces this overhead.

Labels above bars indicate performance ratio compared to cinterrupts.

throttle the asynchronous thread with the blkio cgroup [10] to its throughput in the default sce-
nario (green bar in the first row). In this case, OOO cinterrupts only generates 23% more interrupts,
and its synchronous latency matches that of the default strategy while using 30% less CPU.

OOO processing is turned on by default in the cinterrupts NVMe driver but can be disabled with
a module parameter.

4 IMPLEMENTATION

4.1 Software Modifications

4.1.1 Kernel Modifications. It is software’s responsibility to pass request annotations to the de-
vice. To minimize programmer burden, our implementation includes a modified kernel that sets
default annotations. Table 1 summarizes how the kernel sets these defaults, which naturally derive
from the programming paradigm of each system call: any system call that blocks the application,
such as read and write, is marked Urgent, and any system call that supports asynchronous submis-
sion, such as io_submit, is marked Barrier. System calls in the sync family are blocking, so they are
marked Urgent. By following the programming paradigm of each system call, cinterrupts can be
supported in the kernel with limited intrusion; the changes to the Linux software stack described
in this section total around 100 LOC.

The cinterrupts kernel propagates annotations from the system call layer through the filesystem
and block layers to the device. In the system call handling layer, cinterrupts embeds any bits in the
iocb struct. The block layer can split or merge requests. In the case of request split—for example,
a 1M write will get split into several smaller write blocks—each child request will retain the bit
of the parent. In the case of merged requests, the merged request will retain a superset of the bits
in its children. If this superset contains both Urgent and Barrier, we mark the merged request as
Urgent for simplicity. This is not a correctness issue because the underlying adaptive algorithm
will ensure that no request gets stuck.
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Table 1. Summary of Storage I/O System Calls and the Corresponding Default

Bits Used by the Kernel

System call Kernel default annotations

(p)read(v), (p)write(v) Urgent if fd is blocking or if write is O_DIRECT
preadv2, pwritev2 If RWF_NOWAIT is not set, use Urgent
io_submit Barrier on the last request
(f)(data)sync, syncfs Urgent
msync With MS_SYNC, Barrier on the last request

For cases in which these defaults do not match application-level semantics, we expose a system
call interface for applications to override these defaults. We leverage the preadv2/pwritev2 system
call interface [63], which already exposes a parameter that accepts flags:

ssize_t preadv2(int fd, const struct iovec *iov,
int iovcnt, off_t offset, int flags)

We create two new flag types, RWF_URGENT and RWF_BARRIER, which the application can
use to pass bits as it sees fit. The application can explicitly ask for a request to be unmarked by
passing both flags. We explain how applications can use this interface in the next section.

4.1.2 Application Case Studies. Ultimately the application has the best knowledge of when it
requires interrupts, so cinterrupts enables the application to override kernel defaults for even better
performance, using the syscall interface described previously. We modified RocksDB to use these
flags.

RocksDB Background Tasks. Flushing and compaction are the two main sources of background
I/O in RocksDB. We modify RocksDB to explicitly mark these I/O requests as non-Urgent. Since
RocksDB already isolates the environment for interacting with files, our changes were minimal
and involved replacing the calls to pread/pwrite with preadv2/pwritev2, creating a new file option
to express urgency of I/O for that file, and modifying the Flush and Compaction jobs to explicitly
mark I/O as non-Urgent, which totaled around 40 lines of code. We show in Section 5.4.1 that these
manual annotations especially help RocksDB during write-intensive workloads.

RocksDB Dump. RocksDB includes a dump tool that dumps all the keys in a RocksDB instance to
a file [1]. Typically, this tool is used to debug or migrate a RocksDB instance. As it is a maintenance-
level tool, dump requests do not need to be Urgent, so we manually modify the dump code to mark
dump read and write I/O as non-Urgent. In this way, dump I/O requests are completed when inter-
rupts are generated by the underlying adaptive coalescing strategy. On top of the RocksDB changes
described in the previous paragraph, marking dump requests as non-Urgent only required two
lines of code. We show in Section 5.5.1 that modifying the dump tool can increase the throughput
of foreground requests by 37%.

4.2 Hardware Modifications

Cinterrupts modifies the hardware-software boundary to support Urgent and Barrier. The key
hardware component in cinterrupts is an NVMe device that recognizes these bits and implements
Algorithm 2 as its interrupt generation strategy. Device firmware, which is responsible for inter-
rupt generation, is the only device component that must be modified in order to support cinterrupts.
Device firmware is typically a blackbox, so we chose to emulate the interrupt generation portion
of cinterrupts while leveraging real NVMe hardware for I/O execution.

4.2.1 Firmware Emulation. To emulate interrupt generation in cinterrupts, we explored using
several existing aspects of the NVMe specification, all of which were insufficient. We considered
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Fig. 16. Cinterrupts emulation: The dedicated core polls on the NVMe completion queue of the target core

and sends IPIs for any completion. IPIs emulate hardware interrupts of a real device that supports cinterrupts.

The target core submits requests normally to hardware by writing to the NVMe submission queue.

using the urgent priority queues to implement Urgent. While this would have worked for Urgent,
there is still no way to implement Barrier or Algorithm 2. Furthermore, in NVMe devices, while it
is possible to have a dedicated urgent priority queue, hardware queues are still limited in NVMe de-
vices; Azure NVMe devices have eight queues that must be shared across many cores [26], while
Intel devices have 32-128 queues [17, 71]. By labeling individual requests, cinterrupts is explic-
itly designed to work in a general context where queues cannot be differentiated due to resource
limitations.

We also considered using special bogus commands to force the NVMe device to generate an inter-
rupt. The specification recommends that “commands that complete in error are not coalesced” [57].
Unfortunately, neither device we inspected [22, 76] respected this aspect of the specification.

Instead, we prototype cinterrupts by emulating interrupt generation with a dedicated sidecore
that uses interprocessor interrupts (IPIs) to emulate hardware interrupts. We implement this em-
ulation on Linux 5.0.8.

Dedicated Core. Our emulation assigns a dedicated core to a target core. The target core func-
tions normally by running applications that submit requests to the core’s NVMe submission queue,
which are passed normally to the NVMe device. The dedicated core runs a pinned kernel thread,
created in the NVMe device driver, that polls the completion queue of the target core and gener-
ates IPIs based on Algorithm 2. Cinterrupts annotations are embedded in a request’s command
ID, which the polling dedicated core inspects to determine which bits are set. When the target
core handles the completion entry, it clears any cinterrupts bits in the command ID, returning it
to the original blk_mq tag so that the block subsystem can complete the correct request. Finally,
to support OOO Urgent, the driver allocates the third most significant bit as a “completion” flag,
which is used to prevent already-reaped Urgent requests from getting completed in future inter-
rupt contexts.

In a hardware-level implementation of cinterrupts, Urgent and Barrier can be communicated in
any of the reserved bits in the submission queue entry of the NVMe specification [57].

To faithfully emulate the proposed hardware, we disable hardware interrupts for the NVMe
queue assigned to that core; in this way, the target core only receives interrupts iff ideal cinter-
rupts hardware would fire an interrupt. Figure 16 shows how our dedicated core emulates the
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proposed interrupt generation scheme. Importantly, we still leverage real hardware to execute the
I/O requests, and the driver still communicates with the NVMe device through the normal SQ/CQ
pairs, but we replace the device’s native interrupt generation mechanism with the dedicated core.
Section 5.1 shows that this emulation has a modest 3–6% overhead.

4.3 Discussion

Other I/O Requests. We initially did not annotate requests generated by the kernel itself, for ex-
ample from page cache writeback and filesystem journaling. But because filesystem journaling
is on the critical path of write requests, non-Urgent journal transactions caused a slight increase
in latency of application-level requests. Hence, by default, we mark journal commits as Urgent.
Because journaling does not generate a large interrupt rate for our applications, marking these
requests tightened application latency without adding overhead.

On the other hand, our applications did not see significant benefit in marking writeback requests.
As such, we rely on the application to inform us when these requests are latency-sensitive, for
example page cache flushes will be Urgent when they are explicitly requested through fsync.

Other Implementations. The Barrier implementation can be strict or relaxed, where a strict ver-
sion only releases the interrupt if all requests in front of it in the submission queue have been
completed. A relaxed Barrier is equivalent to Urgent and works well assuming that requests do
not complete too far out of order; it does not require the interrupt generation algorithm to record
any additional state. The cinterrupts prototype evaluated in this article uses a relaxed Barrier,
which already enjoys significant performance benefits. We have retained a separate flag because
Barrier is semantically different to the application and to enable future implementations to choose
to implement strict Barrier.

The strict Barrier requires more accounting overhead to keep track of which requests have com-
pleted: we explored a preliminary implementation of the strict Barrier in our emulator but its
overheads were larger than its benefit. We suspect firmware implementations of a strict Barrier
will be more efficient. Alternatively, this strict ordering could be enforced in the kernel: the driver
can withhold completions from userspace until all other requests have completed. Such an imple-
mentation might be efficient by piggybacking on the accounting mechanisms in the block layer of
the Linux kernel.

Urgent Storm. If all requests in the system are marked as Urgent, this can inadvertently cause
an interrupt storm. To address this, cinterrupts has a module parameter that can be configured to
keep the interrupt rate below a fixed value, similar to NICs, enforced with a lightweight heuristic
based on Exponential Weighted Moving Average (EWMA) of the interrupt rate.

Figure 17 shows an experiment where four processes are submitting 4-KB reads in a loop via
pread. Because all the processes are using a blocking system call, all these requests will be anno-
tated with Urgent by the kernel.

Without storm protection, the core receives 150K interrupts per second, which is noticeable in
the saturated CPU, as shown in Figure 17(d). Cinterrupts storm protection is parameterized with
two values: the maximum acceptable interrupt rate, and the weight of the EWMA algorithm (λ).
The maximum acceptable interrupt rate is exposed to the user as a configurable module parameter.
λ is not currently exposed as a module parameter, but this can easily be done.

The storm protection algorithm uses the EWMA of the interrupt rate to modify the threshold
(thr ) and Δ values of the cinterrupts adaptive algorithm to target the configured maximum in-
terrupt rate. Generally, any interrupt rate less than 100K IRQ/s will not tax the CPU. Setting the
maximum interrupt rate to a value greater than 100K IRQ/s will cause the storm protection algo-
rithm to throttle interrupt generation if it is over this maximum, but the resulting interrupt rate
could still perturb CPU processing. For example, in Figure 17, if the maximum interrupt rate is set
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Fig. 17. Users can maliciously or accidentally abuse Urgent, for example if an application submits many

synchronous I/O requests in parallel. To address this, we enable storm protection, which throttles interrupts

to a user-configurable limit. In this experiment, four processes are all submitting synchronous reads in a loop.

Without storm protection, the Urgent storm is noticeable in (c), which shows an interrupt rate of 150 K/sec.

With storm protection, which we configure to throttle interrupts to 100 K/sec, cinterrupts adaptively sets

the threshold and Δ parameters of the adaptive algorithm to keep interrupts below the limit. Doing so frees

up CPU time (d) and marginally improves the throughput and latency of the workload. Importantly, if the

Urgent intensity subsides, cinterrupts adapts automatically and turns off the throttling mechanism.

to 145K IRQ/s, then the storm protection algorithm will do little to change the CPU overhead of
interrupts because the workload only generates 150K IRQ/s.

However, if the maximum interrupt rate is too small, this could result in negative consequences
for the application. For example, a maximum interrupt rate of 10K IRQ/s means requests have
completion latency of at least 100 μs. Throttling interrupt rate to this low value might be beneficial
for batching workloads, but is detrimental to latency-sensitive workloads.

The weight (λ) of the EWMA algorithm represents how much to weigh recent statistics versus
historical data. We currently set λ = 1

128 , which means each new interrupt rate measured con-
tributes λ to the EWMA, while the previous value contributes 1−λ. We chose this value of lambda
so that the IRQ generation algorithm would not be sensitive to sudden changes in workload. The
larger the λ, for example, λ = 1

4 , the more sensitive cinterrupts is to bursty workloads. Because I/O
completions are streams of requests and the calculation of interrupt rate lags slightly behind the
workload, we chose smaller λ to enable smoother transitions in interrupt rate.

Figure 17(c) shows that with this storm protection algorithm, the interrupt rate does not exceed
100 K/sec. Crucially, limiting IRQ rate in this manner does not affect the performance of the work-
load. In fact, there is a slight increase in throughput (Figure 17(a)) and a slight decrease in request
latency (Figure 17(b)) due to less interrupt perturbation. CPU utilization also decreases from 100%
to 94% with storm protection.

Lines of Code. Linux modifications to support cinterrupts total around 100 LOC. The cinterrupts
emulator in the NVMe driver is around 500 LOC, with an additional 200 LOC for implementations
of strict Barrier and Urgent storm.

5 EVALUATION

These questions drive our evaluation: What is the overhead of our cinterrupts emulation
(Section 5.1)? How do device vendors and admins select Δ and thr (Section 5.2)? How does cin-
terrupts compare to the default and the adaptive strategies in terms of latency and throughput
(Section 5.3)? How much does cinterrupts improve latency and throughput in a variety of applica-
tions (Section 5.4)?
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Table 2. Emulation Overhead Is Comparable with Overhead of Mitigations

Sync latency of 4 KB, μs

mitigations off default off off

baremetal baremetal emulation baremetal
system interrupts interrupts interrupts polling

P3700 80±29.0 81±29.1 82±28.2 78±28.1

Optane 10±1.3 11±1.3 10±1.2 8±1.2

Cinterrupts runs with mitigations disabled to compensate for the emulation overhead.

5.1 Methodology

Experimental Setup. We use two NVMe SSD devices: Intel DC P3700, 400 GB [21] and Intel Optane
DC P4800X, 375 GB [23]. We refer to them as P3700 and Optane.

Both SSDs are installed in a Dell PowerEdge R730 machine equipped with two 14-core 2.0 GHz
Intel Xeon E5-2660 v4 CPUs and 128 GB of memory running Ubuntu 16.04. The server runs cinter-
rupts’ modified version of Linux 5.0.8 and has C-states, Turbo Boost (dynamic clock rate control),
and SMT disabled. We use the maximum performance governor.

Our emulation pairs one dedicated core to one target core. Each core is assigned its own NVMe
submission and completion queue. The microbenchmarks are run on a single core, but we run
macrobenchmarks on multiple cores. For our microbenchmarks, we use fio [4] version 3.12 to
generate workloads. All of our workloads are non-buffered random access. We run the benchmarks
for 60 seconds and report averages of 10 runs.

For a consistent evaluation of cinterrupts, we implemented an emulated version of the default
strategy. Similar to the emulation of cinterrupts we described in Section 4.2.1, device interrupts
are also emulated with IPIs.

Emulation Overhead. The cinterrupts emulation is lightweight and its overheads come from
sending the IPI and cache contention from the dedicated core continuously polling on the CQ
memory of the target core. Table 2 summarizes the overhead of emulation. We also show the
overhead of mitigations for CPU vulnerabilities [31] to show that the overhead of our emulation
is comparable to the overhead of the default mitigations for CPU. Therefore, our performance
numbers with mitigations disabled and emulation on mirrors results from a server with mitigations
enabled and emulation off (cinterrupts implemented in real hardware).

Emulation imposes a modest 3–6% latency overhead for both devices. There is a difference in em-
ulation overhead between the devices, which we suspect is due to each device’s time lag between
updating the CQ and actually sending an interrupt. As the difference between the last column and
the first column shows, this lag varies between devices, and the longer the lag, the smaller the
overhead of emulation.

Baselines. We compare cinterrupts to our adaptive strategy and to the default interrupt strategy,
which does not coalesce. The adaptive strategy is a proxy for comparison to NVMe coalescing,
which it outperforms (Section 3.2).

5.2 Selection of Δ and thr

Δ should approximate the interarrival time of requests, which depends on workload. Figure 18
shows the interarrival time for two types of workloads. The first workload is a single-threaded
workload that submits read requests of size 4 KB with libaio and iodepth = 256. The second work-
load is the same workload, except with batched requests. We run the same workloads on P3700
and Optane, to show that vendors or sysadmin will pick different Δ for different devices.
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Fig. 18. Using interarrival CDF to determine Δ.

Fig. 19. Determining thr under a fixed Δ (Δ= 6 μs for Optane and Δ = 15 μs for P3700). thr is the smallest

value where throughput plateaus, which is between 16–32, so we set thr = 32 for both devices. Note that

the P3700 and Optane behave similarly, except the P3700 has about 15K lower throughput than the Optane.

When libaio submits batches, the CPU can send many more requests to the device, resulting
in lower interarrival times—a 90th percentile of 1 μs in the batched case versus 6 μs in the non-
batched case for Optane. For P3700, both workloads have a 99th percentile of 15 μs. We pick Δ to
minimize the interrupt rate without adding unnecessary delay, so for P3700 we set Δ = 15 μs and
for Optane we set Δ = 6 μs.

After fixing Δ, we sweep thr in the [0, 256) range and select the lowest thr after which through-
put plateaus; the results are shown in Figure 19. thr = 32 achieves high throughput and low inter-
rupt rate for both devices.

In practice, hardware vendors should use this methodology to set default values to Δ and thr for
their devices, and system administrators could tune these values for their workloads.
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Fig. 20. Workloads with only one type of request. Column (a) shows latency of synchronous requests (lower

is better); (b), (c) and (d) show metrics for the asynchronous workload.

5.3 Microbenchmarks

We use fio to generate two workloads to show how cinterrupts behaves at the extremes. The
synchronous-only workload submits blocking 4 KB reads via read. The asynchronous-only work-
load submits 4 KB reads via libaio with iodepth 256 and batches of size 16. For each device, cinter-
rupts and the adaptive strategy are configured with the same Δ and thr. The results are shown in
Figure 20.

As in Section 3.3, the synchronous workload shows the drawback of the adaptive strategy, which
adds exactly Δ= 15 μs to request latency for P3700 and Δ= 6 μs for Optane (first column of Figure 20).
Cinterrupts remedies this with Urgent. The default strategy performs as well as cinterrupts in
the synchronous workload, because it generates an interrupt for every request. This strategy is
penalized in the asynchronous workload, where the default strategy generates 12–15× the number
of interrupts as cinterrupts.

Cinterrupts matches the synchronous latency of default, while achieving up to 35% more asyn-
chronous throughput, and matches the asynchronous throughput of adaptive while achieving up
to 37% lower latency. Finally, OOO does not add overhead to cinterrupts performance when it is
not triggered.

CPU Fairness. Another tradeoff introduced by cinterrupts and OOO is CPU fairness. In particular,
in the mixed workload originally described in Section 3.3, the nature of the interrupt coalescing
scheme affects how much of the CPU each process can use.

Figure 21 shows the CPU utilization for each system while running the mixed workload. From
the process scheduler’s point of view, a fair schedule would enable each thread to get nearly 50%
of the CPU, as is the case in the baseline, where all requests receive interrupts. However, with
the adaptive strategy, the device inadvertently prevents this fair scheduling because it withholds
interrupts from the synchronous thread: the synchronous thread only gets 23% of the CPU because
it is blocked.
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Fig. 21. CPU utilization for each process for the mixed workload. Both the baseline and cInterrupts + OOO

allow the processes to use the CPU fairly.

Cinterrupts uses the Urgent hint to better approximate fair scheduling, and OOO processing
achieves the same CPU allocation as the baseline, due to immediate delivery of interrupts for
synchronous requests. This imbalanced CPU utilization also explains why cinterrupts has lower
total throughput than adaptive in Figure 10. Per CPU unit, the synchronous process achieves lower
throughput than the asynchronous process. Therefore, since cinterrupts gives the synchronous
process more CPU time, the total throughput of both processes decreases with cinterrupts.

5.4 Macrobenchmarks

To evaluate the effect of cinterrupts on real applications, we run three application setups on Optane:
RocksDB [64], KVell [48], and RocksDB and KVell colocated on the same cores. RocksDB is a
widely used key-value store that uses pread/pwrite system calls in its storage engine, and KVell
is a new key-value store employing Linux AIO in its storage engine. Both applications use direct
I/O. KVell uses default kernel annotations (Barrier) while we will note when RocksDB uses default
annotations or the modified annotations described in Section 4.1.2.

We run each application on two cores. In KVell, an additional four cores are allocated for clients.
Cinterrupts is the only strategy that performs the best across all three setups.

5.4.1 RocksDB. Load. Using db_bench [8], we load a database with 10 M key-value pairs, with
16 byte keys and 1 KiB values. During the load phase, we compare the results under cinterrupts
where RocksDB is unmodified and modified. In unmodified RocksDB, every I/O is labeled Urgent
by default. In modified RocksDB, background activity is non-Urgent as described in Section 4.1.2.
Table 3 shows the performance results.

We see that marking background activity as non-Urgent has a modest but significant 4% increase
in throughput without affecting latency (app-cint vs cint). This is because delaying the interrupts
of background I/O does not affect foreground latency. In fact, doing so actually decreases the tail la-
tency of foreground writes by 15%. Hence reducing the CPU pressure caused by interrupts enables
better p99 latency.

Steady State. After loading the database to 20 GB, we run two experiments from db_bench: read-
random, where each thread reads randomly from the key space, and readwhilewriting, where one
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Table 3. Modifying RocksDB with Annotations That Make the

Flush Non-Urgent (App-cint)

interrupt thruput norm avg lat norm p99 lat norm
scheme [KIOPS] [ms] [ms]

cint 388±5.6 1.00 1.3±0.3 1.00 15.0±0.8 1.00
default 391±1.8 1.01 1.3±0.1 1.00 14.4±0.4 0.96
adaptive 391±4.6 1.01 1.3±0.4 1.00 14.2±0.9 0.95
app-cint 405±5.6 1.04 1.3±0.1 1.00 12.7±0.3 0.85

Results are for database load (fillbatch experiment in db_bench). Note that cint

and default have the same performance, within error bounds, which is expected

for RocksDB.

Fig. 22. Latency of get operation and throughput in RocksDB for varying workloads. We show performance

degradation with respect to cinterrupts. Labels show absolute values in μs and KIOPS, respectively. As ex-

pected, cinterrupts and the default strategy have nearly the same performance within error bounds, but the

adaptive strategy has up to 45% worse latency and 5-32% worse throughput due to the Δ delay.

thread inserts keys and the rest of the threads read randomly. The readwhilewriting experiment
runs for 30 seconds. For each experiment, we also vary the number of threads. The latency of the
get operation and throughput for both experiments is shown in Figure 22.

As expected, for both metrics, cinterrupts and the default strategy perform nearly the same be-
cause both generate interrupts for every request; in the next two applications, the default strategy
will suffer due to this behavior. On the other hand, adaptive does consistently worse because of its
Δ delay; this is particularly noticeable in the latency measurements. With eight threads, this delay
penalty is amortized across more threads, which reduces the performance degradation.

Interestingly, modified RocksDB had similar performance to unmodified RocksDB during these
benchmarks. This is because there is very little if any background I/O in the readrandom bench-
mark, and the write rate is not high enough for the background I/O interrupts to affect foreground
performance in the readwhilewriting benchmark.
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Table 4. Summary of YCSB Workloads

Workload Description

A update heavy: 50% reads, 50% writes
B read mostly: 95% reads, 5% writes
C read only: 100% reads
F read latest: 95% reads, 5% updates
D read-modify-write: 50% reads, 50% r-m-w
E scan mostly: 95% scans, 5% updates

Fig. 23. Throughput and latency results for YCSB on KVell. Labels show absolute throughput in KIOPS and

latency in ms.

5.4.2 KVell. We use workloads derived from the YCSB benchmark [14], summarized in Table 4.
We load 80-M key-value pairs, with 24-byte keys and 1-KB item sizes for a dataset of size 80 GB.
Each workload does 20M operations. Figure 23 shows KVell throughput, average latency, and 99th

percentile latency for each YCSB workload.
Throughput. Cinterrupts does better than default for throughput, because default generates an

interrupt for every request. In contrast, cinterrupts uses Barrier to generate an interrupt for a
single batch, which consists of 10s of requests. The difference between cinterrupts and default is
more pronounced for write-heavy workloads (A, D), but less pronounced for read-heavy workloads
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Table 5. YCSB-E Throughput Results for KVell

length=16 length=256

interrupt scans normalized scans normalized
scheme [KIOPS] [KIOPS]

cint 26.2±0.5 1.00 1.6±0.04 1.00
default 23.1±0.3 0.88 1.5±0.06 0.95
adaptive 24.9±0.6 0.95 1.6±0.02 0.97

Excessive interrupt generation limits default throughput to 86%-89% of cinterrupts’.

Fig. 24. Latency CDF of scans of length 16 and 256 in KVell.

(B, C, F). This is because reads are efficient in KVell, so there is some CPU idleness in these work-
loads (3% idleness under default and 14% idleness under cinterrupts).

The adaptive strategy performs similarly to cinterrupts because it is designed to detect bursts.
Its delay is more pronounced in latency measurements.

Latency. The adaptive strategy has 5–8% higher average and 99th percentile latency than cin-
terrupts in all workloads. Again, this is the effect of the Δ delay, which cinterrupts remedies with
Barrier. Cinterrupts latency also does better than the default, where interrupt handling and context
switching both add to the latency of requests and slow down the request submission rate. The high
number of interrupts in the default strategy also adds to latency variability, which is noticeable in
the larger 99th percentile latencies.

YCSB-E. Scans are interesting because their latency is determined by the completion of requests
that can span multiple submission boundaries. Table 5 shows throughput results for YCSB-E with
different scan lengths, and Figure 24 shows latency CDFs for scans of length 16 and 256.

Similar to the other YCSB workloads, the adaptive strategy again can almost match the through-
put of cinterrupts, because it is designed for batching. At higher scan lengths, factors such as
application-level queueing begin affecting scan throughput, reducing the benefit of cinterrupts.

Figure 24 shows that there is a notable difference in scan latency between cinterrupts and the
default for both scan lengths; the difference in 50th percentile latencies between default and cin-
terrupts is around 600 μs for both scan lengths. This difference is maintained at the 99th percentile
latencies.

Notably, there is a 400-μs difference between cinterrupts and adaptive 50th percentile latencies
when the scan length is 16, which goes away when the scan length is 256. The adaptive strategy
does well in KVell’s asynchronous programming model and longer scans are able to amortize the
additional delay over many requests.

5.5 Colocated Applications

We run two types of colocated applications to see the effects of cinterrupts in consolidated data-
center environments.
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Table 6. Performance of RocksDB Readrandom while the RocksDB Dump

Tool Is Running in the Background

interrupt thruput norm get lat norm p99 lat norm
scheme [KIOPS] [ms] [ms]

cint 24.8±3.9 1.00 30.4±0.4 1.00 421±41 1.00
default 24.9±1.6 1.00 30.9±0.3 1.02 420±25 1.00
adaptive 20.2±0.7 1.02 43.9±0.5 1.44 85.1±7.0 0.15
app-cint 33.1±1.2 1.37 20.7±0.4 0.68 75.7±0.1 0.14

app-cint modifies the dump tool to mark its I/O requests as non-urgent, boosting

throughput and latency of the foreground get operations. Interestingly, the

adaptive strategy can tame the tail latency (p99 lat) of get requests, but does so at

the expense of limited IOPS.

5.5.1 RocksDB + Dump Tool. First, we run two colocated instances that both use pread/pwrite,
which means by default the kernel marks all I/O as Urgent. The first is a regular RocksDB in-
stance, and the second is a RocksDB instance running the RocksDB dump tool. As described in
Section 4.1.2, we modify the RocksDB dump tool to explicitly disable the Urgent bit on its I/O
requests.

We load two databases with 10 M key-value pairs, as in the previous section. Then, one database
runs readrandom, as in the previous section, while we run the dump tool on the second database.
We compare the performance of get requests under modified and unmodified RocksDB in Table 6.
app-cint shows the results when the dump tool is modified.

By disabling Urgent in the dump tool, we increase the throughput of get requests by 37%, de-
crease the average latency by 32%, and decrease the 99th percentile latency by 86% compared to
the kernel annotations cinterrupts. This is not only from the reduced interrupt rate generated by
the dump tool, but also from the reduced I/O bandwidth generated by the dump tool. On the other
hand, the throughput of the dump tool decreases by 11% under app-cint, but this is an acceptable
trade-off for the foreground improvements.

5.5.2 RocksDB + KVell. Finally, we run RocksDB and KVell on the same cores. RocksDB runs the
readrandom benchmark from before, and KVell runs YCSB-C. We run two experiments, varying the
number of threads of the RocksDB instance. The latency of RocksDB requests and the throughput
of KVell is shown in Tables 7 and 8.

When there are four RocksDB threads, the default strategy matches the RocksDB latency of
cinterrupts, but has 12% less KVell throughput due to the excessive interrupt rate. Conversely,
the adaptive strategy can match the KVell throughput of cinterrupts, but has 11% worse RocksDB
latency.

As before, when there are more RocksDB threads, the effect of cinterrupts is less pronounced,
because the CPU spends less of its time handling interrupts and more of its time context-switching
and in userspace. Even so, cinterrupts still achieves a modest 5–6% higher throughput and up to
6% better latency than the other two strategies.

6 CINTERRUPTS FOR NETWORKING

Figure 6 (in Section 2) shows that NICs suffer from similar problems as NVMe drives with respect
to interrupts. A natural future direction is applying cinterrupts to the networking stack. Accom-
plishing this goal, however, is more challenging, as explained next in the context of Ethernet.

Cooperation. For network cinterrupts to work, modifying a single host (as in storage) is insuffi-
cient. Multiple communicating parties should be changed to agree on how cinterrupts semantics
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Table 7. Results from Colocated Experiment: 4 RocksDB Threads and KVell

interrupt RocksDB normalized KVell normalized
scheme get lat [μs] [KIOPS]

cint 116±0.8 1.00 171±2.8 1.00
default 115±0.8 0.99 153±2.0 0.89
adaptive 129±0.0 1.11 171±2.0 1.00

As expected, cinterrupts both has lower latency than the adaptive strategy and higher

throughput than the baseline.

Table 8. Results from Colocated Experiment: 8 RocksDB Threads and KVell

interrupt RocksDB normalized KVell normalized
scheme get lat [μs] [KIOPS]

cint 164±0 1.00 131±1 1.00
default 163±0 0.99 123±0 0.94
adaptive 174±1 1.06 124±0 0.95

The performance gains of cinterrupts is reduced with respect to Table 7, because the CPU is

both context-switching more and spending more time in userspace.

are communicated. In particular, transmitters should be modified to send network packets that
indicate whether to fire an interrupt immediately upon reaching their destination, and receivers
should be modified to react accordingly. Any interrupt-driven software routers along the way
should also preferably support cinterrupts.

Propagation. NVMe controllers deal with plaintext read or write requests associated with point-
ers to buffers; the controller either copies bytes from the buffers to the drive or vice versa. This
is true even when NVMe is encapsulated in other, higher-level protocols, as is the case with, e.g.,
NVMe over TCP over TLS encryption (denoted NVMeTLS [62]).

In contrast, network stacks are layered. NICs may operate at the Ethernet level, but the content
of Ethernet frames frequently encapsulates higher-level protocols, like IP, TCP, UDP, and VXLAN.
Crucially, the transmitted payload, which includes headers of higher-level protocols, is oftentimes
encrypted. For example, the payload in tunnel-mode IPsec packets [36] encapsulates encrypted IP
and TCP headers. Bits in these headers are thus unsuitable for communicating cinterrupts informa-
tion, as the receiving NIC might not be able to observe them. Consequently, to support cinterrupts,
each layer at the sender should be modified to explicitly propagate cinterrupts information to its
encapsulating layer, until a low-enough protocol level is reached.

Within a data center, it seems reasonable to choose Ethernet as the aforementioned low-enough
protocol. In practice, however, there are no free Ethernet reserved bits or flags that can be used for
this purpose [69]. Cinterrupts bits can instead reside one level higher, at the least-encapsulated IP
layer, as its headers are not encrypted, and its “options” field [44] can be used to add the extra bits.
The downside is that other, non-IP networks—such as RDMA over Converged Ethernet (RoCE)
[73] and Fiber Channel over Ethernet (FCoE) [32]—should be handled separately, in some other
way.

Segmentation. TCP performance is accelerated by NIC offloading functionality, which signif-
icantly reduces CPU processing overhead. Notably, upon transmit, software may use TSO (TCP
segmentation offload) to hand a sizable (≤64KB) TCP segment to the NIC, relying on the NIC to
split the outgoing segment into a sequence of (≤MTU) Ethernet frames [51]. Likewise, with LRO
(large receive offload), the NIC may reassemble multiple incoming frames into a single sizable
segment before handing it to software [51, 52].
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Storage cinterrupts affect only the timing and number of device interrupts. Network cinterrupts
can also increase the number of I/O requests and thus the CPU usage, assuming TSO and LRO
are not applied beyond cinterrupts. To illustrate, assume {Mi }15

i=0 is a consecutive series of 1-KB
messages, each individually associated with a cinterrupt. To optimize latency, differently than what
frequently happens on existing systems, {Mi }15

i=0 should seemingly not be aggregated into a single
16-KB TCP segment at the sender before it is handed to the NIC (leveraging TSO), nor should it be
aggregated to a single segment by the receiver NIC (leveraging LRO); otherwise only the cinterrupt
of M15 will survive. But such a policy might inadvertently degrade both latency and throughput
if the CPUs of the sender or receiver are saturated, necessitating a more sophisticated policy that
considers CPU usage.

URG and PSH. The TCP flags URG and PSH seem related to cinterrupts. But even if ignoring
the aforementioned propagation problem, in practice, the semantics of these flags are sufficiently
different that they cannot be repurposed for cinterrupts. Specifically, URG is used to implement
socket out-of-band communication [27, 29, 54], and its usage model involves the POSIX SIGURG
signal. (URG also has security implications [28, 29, 81], and middleboxes and firewalls tend to clear
it by default [12, 59].) When examining how PSH is used in the Linux network stack (see calls to the
tcp_push and tcp_mark_push functions in the source code), we find that it is used in many more
circumstances than is appropriate for cinterrupts. For example, sending a 16-KB message using a
single write system call frequently results in four Ethernet frames encapsulating PSH segments,
instead of one.

7 CONCLUSION

In this article, we show that the existing NVMe interrupt coalescing API poses a serious limita-
tion on practical coalescing. In addition to devising an adaptive coalescing strategy for NVMe, our
main insight is that software directives are the best way for a device to generate interrupts. Cinter-
rupts, with a combination of Urgent, Barrier, and the adaptive burst-detection strategy, enabling
workloads to experience better performance even in a dynamic environment. In doing so, cinter-
rupts enables the software stack to take full advantage of existing and future low-latency storage
devices.
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