Entropy Coding

Connectivity coding

Connectivity data

Add 7, Add 6, Add 7, Add 5,...

TG output

CRRRLSLECRRE

Entropy coder output

Edgebreaker output

Entropy coding

Lossless coder

Input: a set of symbols

Output: bitstream

Idea

Assign each symbol a series of bits

Use less bits for common symbols

Definitions

Alphabet
Finite set containing at least one element

Symbol
Element in the alphabet

A string over the alphabet
Sequence of symbols from alphabet

Codeword
Bits representing coded symbol or string

p_i
Occurrence probability of s_i in input string

L_i
Length of codeword of s_i in bits

\[A = \{a, b, c, d, e\} \]

\[s_i \in A \]

\[S = ccdabcdaad \]

\[110101001101010100 \]

\[p_i = P(s_i \in S), \sum_{i=1}^{n} p_i = 1 \]
Entropy

Entropy of the set \(\{ e_1, \ldots, e_n \} \) with probabilities \(\{ p_1, \ldots, p_n \} \)

\[
H(p_1, \ldots, p_n) = -\sum_{i=1}^{n} p_i \log_2 p_i
\]

- \(\log_2 p_i \) = uncertainty in symbol \(e_i \)
 - The “surprise” when we see this symbol
 - Entropy – average “surprise” on all symbols

In our context
- Minimal number of bits on the average, needed to represent a symbol
- Average on all symbols code lengths
- Assuming no dependencies between symbols’ appearances

Entropy example 1

Entropy calculation for a two symbol alphabet.

Example 1:
\[A \quad p_A=0.5 \]
\[B \quad p_B=0.5 \]

\[
H(A, B) = -p_A \log_2 p_A - p_B \log_2 p_B =
\]
\[
= -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1
\]

We need 1 bit per symbol on average to represent the data.

Entropy example 2

Entropy calculation for a two symbol alphabet.

Example 1:
\[A \quad p_A=0.8 \]
\[B \quad p_B=0.2 \]

\[
H(A, B) = -p_A \log_2 p_A - p_B \log_2 p_B =
\]
\[
= -0.8 \log_2 0.8 - 0.2 \log_2 0.2 \approx 0.7219
\]

We need LESS than 1 bit per symbol on average.

Entropy examples

- Entropy of \(\{ e_1, \ldots, e_n \} \) is maximized when
 \[p_1=p_2=\ldots=p_n=1/n \quad \rightarrow \quad H(e_1, \ldots, e_n)=\log_2 n \]
 - No symbol is “better” than the other or contains more information
 - \(2^k \) symbols must be represented by \(k \) bits

- Entropy of \(\{ e_1, \ldots, e_n \} \) is minimized when
 \[p_1=1, p_2=\ldots=p_n=0 \quad \rightarrow \quad H(e_1, \ldots, e_n)=0 \]
Entropy coding

- Entropy
 - Lower bound on average number of bits needed for alphabet
 - Data compression limit

- Coding efficiency = Bits Per Symbol
 \[\text{BPS} = \frac{\text{length(encoded message)}}{\text{length(original message)}} \]

- Entropy coding methods
 - Try to achieve entropy of alphabet: BPS → Entropy
 - If BPS = Entropy, code is optimal

Code types

- **Fixed-length codes**
 - All codewords have same length (number of bits)
 - A – 000, B – 001, C – 010, D – 011, E – 100, F – 101

- **Variable-length codes**
 - Codewords can have different lengths
 - A – 0, B – 00, C – 110, D – 111, E – 1000, F – 1011

Huffman code

- A variable-length prefix code
 - Codeword chosen by probability of appearance
 - High probability → short codeword
 - Integral number of bits per codeword
 - **Optimal** variable-length prefix code for known probabilities
 - Encoding/decoding done using Huffman tree
Huffman tree example

 Codeword determined according to path from root to symbol

 When decoding, tree traversal is performed, starting from root

Codewords

- A-01
- C-00
- B-10
- D-110
- E-111

Example:

Decoding input “110” (D)

Huffman encoding example

Use previous codewords to encode “BCAE”:

- String: B C A E
- Encoded: 10 00 01 111

Number of bits used: 9

The BPS is (9 bits/4 symbols) = 2.25

Entropy: -0.25log0.25 - 0.25log0.25 - 0.2log0.2 - 0.15log0.15 - 0.15log0.15 = 2.2854

BPS lower than entropy. WHY?

Huffman tree construction

- **Init:**
 - Leaf for each symbol \(s \) of alphabet \(A \) with weight \(p_s \)

- while (tree not connected) do
 - \(Y, Z \) \(\leftarrow \) lowest_root_weights()
 - \(r \leftarrow \) new_root
 - \(r \rightarrow \) attachSons(\(Y, Z \))
 - \(\text{weight}(r) = \text{weight}(Y) + \text{weight}(Z) \)

Probabilities

- 0.25
- 0.2
- 0.25
- 0.15
- 0.15

Huffman tree construction

- **Initialization**
 - Leaf for each symbol \(s \) of alphabet \(A \) with weight \(p_s \)
 - Can work instead with integer weights - number of occurrences

- while (tree not connected) do
 - \(Y, Z \) \(\leftarrow \) lowest_root_weights_tree()
 - \(r \leftarrow \) new_root
 - \(r \rightarrow \) attachSons(\(Y, Z \))
 - attach one via a 0, the other via a 1, order not significant
 - \(\text{weight}(r) = \text{weight}(Y) + \text{weight}(Z) \)
Huffman encoding

- Build a table of per-symbol encodings - generated from Huffman tree
 - Globally known to both encoder and decoder
 - Sent by encoder, read by decoder
- Encode one symbol after the other, using encoding table.
- Encode the pseudo-eof symbol.

Huffman decoding

- Construct decoding tree based on encoding table
- Read coded message bit-by-bit
 - Traverse the tree top to bottom accordingly
 - When a leaf is reached, a codeword was found → corresponding symbol is decoded
- Repeat until the pseudo-eof symbol is reached
- No ambiguities - prefix code

Symbol probabilities

- How are the probabilities known?
 - Counting symbols in input string
 - Data must be given in advance
 - Requires an extra pass on the input string
 - Data source's distribution is known
 - Data not known in advance, but distribution is known

Example

"Global" English frequencies table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0721</td>
<td>N</td>
<td>0.0638</td>
</tr>
<tr>
<td>B</td>
<td>0.0240</td>
<td>O</td>
<td>0.0681</td>
</tr>
<tr>
<td>C</td>
<td>0.0390</td>
<td>P</td>
<td>0.0290</td>
</tr>
<tr>
<td>D</td>
<td>0.0372</td>
<td>Q</td>
<td>0.0023</td>
</tr>
<tr>
<td>E</td>
<td>0.1224</td>
<td>R</td>
<td>0.0638</td>
</tr>
<tr>
<td>F</td>
<td>0.0272</td>
<td>S</td>
<td>0.0728</td>
</tr>
<tr>
<td>G</td>
<td>0.0178</td>
<td>T</td>
<td>0.0908</td>
</tr>
<tr>
<td>H</td>
<td>0.0449</td>
<td>U</td>
<td>0.0235</td>
</tr>
<tr>
<td>I</td>
<td>0.0779</td>
<td>V</td>
<td>0.0094</td>
</tr>
<tr>
<td>J</td>
<td>0.0013</td>
<td>W</td>
<td>0.0130</td>
</tr>
<tr>
<td>K</td>
<td>0.0054</td>
<td>X</td>
<td>0.0077</td>
</tr>
<tr>
<td>L</td>
<td>0.0426</td>
<td>Y</td>
<td>0.0126</td>
</tr>
<tr>
<td>M</td>
<td>0.0282</td>
<td>Z</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

Total: 1.0000
Huffman entropy analysis

Best results - entropy wise
- Only when occurrence probabilities are negative powers of 2 (i.e. \(\frac{1}{2}, \frac{1}{4}, \ldots \)). Otherwise, BPS > entropy bound.

Example

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>01</td>
</tr>
<tr>
<td>C</td>
<td>0.125</td>
<td>001</td>
</tr>
<tr>
<td>D</td>
<td>0.125</td>
<td>000</td>
</tr>
</tbody>
</table>

Entropy = 1.75

An input stream which represents the probabilities
- AAAABBCD Code: 1110101001000

BPS = (14 bits/8 symbols) = 1.75

Huffman tree

Construction complexity
- Simple implementation - \(O(n^2) \).
- Using a Priority Queue - \(O(n \cdot \log(n)) \):
 - Inserting a new node – \(O(\log(n)) \)
 - \(n \) nodes insertions - \(O(n \log(n)) \)
 - Retrieving 2 smallest node weights – \(o(\log(n)) \)

Huffman summary

- Achieves entropy when occurrence probabilities are negative powers of 2
- Alphabet and distribution must be known in advance
- Given Huffman tree, very easy (and fast) to encode and decode
- Huffman code not unique (arbitrary decisions in tree construction)

Better than Huffman?

- Huffman optimal, so how can improve?
- Use fractional number of bits per codeword
 - Arithmetic coding
- Learn probabilities from bit stream
 - Lempel-Ziv coding
 - Unknown alphabet
 - Unknown probabilities
 - Handles dependencies between symbols