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Abstract We present a scheme
which, given two 3D geometric
models, creates a third, synergetic
model with resemblance to one input
model from one viewing direction
and the other input model from an-
other, orthogonal, viewing direction.
Our scheme automatically calculates
the necessary constraints needed to
deform the first model’s silhouette
into the second model’s in 2D, and
creates a 3D deformation function
based on these constraints while

minimizing the object’s distortion
in all areas but the silhouette. The
motivation of this work stems from
the artwork of conceptual artists such
as Shigeo Fukuda [9] and Markus
Raetz [19].

Keywords Free form deformation ·
3D modeling · Non-photorealistic
rendering · Computer graphics art

1 Introduction

Working in the field of non-photorealistic rendering
(NPR), researchers have tried to find different ways to au-
tomatically create artistic images that, traditionally, only
humans could produce. In the same way, we use an ap-
proach, which we coin as non-realistic modeling (NRM),
to create visually interesting 3D models for mostly artis-
tic purposes. Our effort is geared towards creating models
that resemble works of art such as Shigeo Fukuda’s
“Duet” [9] (a sculpture that, from one direction, looks
like a pianist playing a piano, and from another direc-
tion like a violinist playing a violin), or Markus Raetz’s
“Metamorphose” [19] (a man with a hat from one direc-
tion and a rabbit from another). One of the most basic
examples of such models is the “sqriancle” (a combina-
tion of a SQuare, a tRIANgle and a cirCLE), shown in
Fig. 1. We use tools from traditional 3D geometric model-
ing and 3D soft body deformation fields in order to create
such models.

Our aim is to create 3D models that resemble one ob-
ject from one viewing direction, and another, completely

different object from another, orthogonal to the first, view-
ing direction. Following psychological experiments that
demonstrated the human brain’s dependency on silhou-
ettes for 3D object recognition [3], we focus on the ob-
jects’ silhouettes. The use of silhouettes is also seen in the
creation of the artwork mentioned above.

In our NRM approach, the user is prompted to
load two 3D models. One model will only be used
for silhouette extraction, while the other will be de-
formed so that, from a specific viewing direction, its
silhouette matches the silhouette extracted from the first
model. While the problem is conceptually a 3D prob-
lem, it can be reduced to a 2D one. We use a bivariate
B-spline surface, S, to represent the deformation func-
tion that transforms one silhouette into the other, in
the plane. This deformation surface will be the result
of a surface fairing problem, with (silhouette) deforma-
tion points as the constraints. S will then be extruded
in the third dimension to form a 3D deformation func-
tion. This, in turn, will be used to deform the first
object.

The rest of this work is organized as follows. In Sect. 2,
we give an overview of previous work, mostly in the fine
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Fig. 1. The sqriancle (SQuare, tRIANgle and cirCLE) is an object
that resembles a square, a triangle and a circle when viewed from
different angles

arts. Section 3 gives some background on surface fairing
and modeling with constrained free form deformations. In
Sect. 4, we describe the proposed scheme; Sect. 5 presents
a few examples and finally, we conclude in Sect. 6.

2 Related work

Little work can be found in the geometric modeling com-
munity on artistically-oriented modeling. Most contempo-
rary modeling is done using computers for the CAD/CAM
fields, making, for example, models for manufacturing.
These models usually need to be very accurate. Hence,
most available modeling tools (e.g., 3DStudioMax, Maya)
prompt the user to specify a complete set of constraints
in order to receive a precise output model. Some effort
has been made to model inaccurate objects, usually by
sketching, although the aim is not necessarily artistic. One
notable example is Teddy, by Igarashi et al. [16], which al-
lows the user to model simplistic 3D shapes using mouse
movements. The result is, of course, a rough 3D sketch
only, as the user cannot specify actual coordinates or other
accurate constraints, such as angles or sizes.

Another noteworthy effort is the “Escher for Real”
project [7]. Here, 3D models resembling M.C. Escher’s
impossible drawings are created, such that they appear to
be identical to the original drawings (and hence, impos-
sible) from one single viewing direction. From any other
direction, they are revealed to be fraudulent (see Fig. 2
for a simple example). In addition, the “Beyond Escher
for Real” project [6] includes, among other things, a few
models such as the ones we are exploring here. One ex-
ample is shown in Fig. 3: a Menorah (the state emblem of

Fig. 2a,b. The “Escher for Real” Escher’s Cube [7]. © Copyright
Gershon Elber 2005. a Shows the seemingly impossible cube,
while in b it is shown to be an illusion

Fig. 3a–c. The “Beyond Escher for Real” Star of David/Meno-
rah [6]. © Copyright Gershon Elber 2005. a Shows the view of the
Star of David while b shows the view of the Menorah. c Shows
a general view of this model. Parts a and b show photographs of an
actual manufactured part

Israel) is fused with a Star of David. The models in both
projects were created manually.

In contrast to the lack of work in the geometric mod-
eling field, examples in the art world for NRM do exist.
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Shigeo Fukuda [9] created such works as “Duet”, “Love
Story” and “Cat/Mouse” [9], all resembling two differ-
ent objects from two orthogonal directions. Another rele-
vant artist is Markus Raetz, who also sculpts such works,
for example “Metamorphose” [19], and also a series of
pieces showing one word from one direction, and another
word, usually the antonym, from another. Examples are
“Yes/No” (in many languages), “This/That” and one inter-
esting piece titled “Same/Same” [19], which reads “Same”
from the front, and “Same” read backwards from the side.
Hence, its reflection also reads “Same” on a well placed
mirror.

In other pieces, artists use a different technique to
achieve a similar effect. A collection of objects is placed
in no apparent order, only to reveal a certain shape when
viewed from a special direction. From any other view-
ing angle, they appear to be just a jumbled set of ob-
jects. Examples include Shigeo Fukuda’s “Underground
Piano” [9], in which an arbitrary collection of parts appear
to form a piano when viewed from a particular viewing
angle, and “Lunch with a Helmut On” [9], in which a heap
of welded forks and spoons form a shadow in the shape of
a motorcycle.

3 Background

This section provides the necessary background needed
for understanding the proposed method. In Sect. 3.1, we
briefly introduce the problem of surface fairing, which
will be used for creating a 2D deformation function from
a set of incomplete constraints. In Sect. 3.2, we describe
the modeling tool known as FFD and its uses. FFD will
be created from the 2D deformation function, and will be
used to deform our model. In Sect. 3.3, we briefly explain
the curve matching problem. Curve matching will be used
to attain correspondence between the 2D representations
of the objects’ silhouettes.

3.1 Surface fairing

Surface fairing is essentially a constrained optimization
problem. Typically, the constraints are points that the sur-
face must interpolate. The optimization generally appears
in the shape of some functional that should be minimized
(or maximized), e.g., curvature properties or bending or
stretching energy. Most works seek to minimize bending
energy via the curvature functional [10]:

F(S) =
∫

Ω

κ2
1(S)+κ2

2(S)dA,

where Ω is the surface region of the object, κ1 and κ2
are the principal curvatures and dA is a surface area elem-
ent. Unfortunately, this functional is highly non-linear, and

requires a computationally expensive numerical solution.
Thus, most schemes use a linear approximation of F. One
popular option is to use the following, second order ap-
proximation to the bending energy (or thin plate energy)
functional [10]:

F(S) =
∫∫

u v

(
∂2S

∂u2

)2

+2
(

∂2S

∂u∂v

)2

+
(

∂2S

∂v2

)2

dudv. (1)

The functional of Eq. 1 is derived from the sum of the sec-
ond derivatives of S:

∂2S

∂u2 + ∂2S

∂u∂v
+ ∂2S

∂v∂u
+ ∂2S

∂v2 .

According to Clairaut’s theorem [24], if a function, F , has
continuous second partial derivatives at any given point,
then ∂2F

∂u∂v
= ∂2F

∂v∂u . Uniform B-spline functions of orders
larger than 3 are at least C2 everywhere. In other words
∂2 S
∂u∂v

= ∂2 S
∂v∂u , and so we arrive at the functional of Eq. 1.

For the sake of brevity, we will only survey a small
subset of results on the subject. Surface fairing algorithms
use either global or local optimization schemes [10].
Moreton and Séquin [18] interpolated a system of point
constraints and connectivity information into curve con-
straints, which they used to solve for the desired surface.
The interpolation is done patch by patch, but each patch
is solved, in one pass. Vassilev [23] also used a global
scheme in which he added additional degrees of freedom
in the shape of new constraints in order to reduce the
number of unknowns to a minimum. The additional con-
straints are added where there is an insufficient number of
constraints.

Hadenfeld [11] locally modified the position of one
control point at a time, iteratively, solving for an optimal
position in order to minimize thin plate energy. Hahmann
and Konz [12] also used a local scheme. In each step of
their scheme, a knot is removed and then reinserted in
order to locally smooth the surface. As the main drawback
of local schemes is that they may converge to local min-
ima, [12] used simulated annealing to help the search for
the global minimum. The work in [26] tried to minimize
an energy functional (mainly thin plate) by an iterative al-
gorithm that can perform more than one editing operation
per step, editing the control points that cause irregularities
in the surface’s smoothness.

3.2 Modeling with FFDs

Free form deformation (FFD) is a strong and versatile
geometry manipulation tool. Sederberg and Parry first in-
troduced FFDs in [22]. A major drawback in using FFD
is that the control is over the FFD’s control points and
not over the deformed model. Hsu et al. [13] tried to cir-
cumvent this problem by using direct manipulation. Direct
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manipulation allows the user to move the vertices of the
object to be deformed, and not the control points of the
B-spline volume. Shi-Min et al. [14] improved the work
in [13] by introducing an explicit and more efficient solu-
tion to the direct manipulation problem. Other researchers
explored different ways to control the FFD. Yoshizawa
et al. [25] calculated the model’s skeletal mesh, allowing
the user to manipulate it, and finally update the original
geometry using an FFD constructed by calculating the dif-
ference between the original and edited skeletal meshes.
Hua and Qin [15] embedded their objects in scalar fields
defined by implicit functions. The scalar fields are then
manipulated via level sets in order to deform the ob-
ject. Raviv and Elber [20] used a hierarchy of 3D B-spline
scalar functions, while the zero set still defines the sur-
face of their model. By modifying the hierarchy of scalar
functions, the zero set is altered, and the desired model is
created, with multi-resolution control.

3.3 Curve matching

Curve matching algorithms attempt to find some corres-
pondence between two free form curves or polylines, and
possibly alter one of them such that their matched features
occur at similar parameter values. Besl and McKay [1]
performed curve matching using an iterative closest
point (ICP) algorithm, mainly for registration purposes.
Later on, Cohen et al. [5] used first order differential an-
alysis on the input curves to try to find a correspondence
that best fits their features. The latter was extended using
second order differential analysis in [17]. This was in-
tended more for morphing, geometry construction and
animation purposes. Rodriguez et al. [21] adapted an al-
gorithm from the string matching field for use with 3D
vectors, in order to measure the similarity between two 3D
curves.

4 The non-realistic modeling scheme

Let M1, M2 be two 3D geometric models selected by the
user, and let C1, C2 be the 3D model’s silhouettes repre-
sented as free form curves describing their outer general
outlines according to two user defined viewing directions,
V1 and V2. Our view dependent model’s (VDM) construc-
tion scheme consists of three parts. In the first, the planar
silhouettes C1 and C2 are extracted from M1 and M2, re-
spectively. This stage is described in Sect. 4.1. The second
stage, after the curves are matched, calculates the neces-
sary constraints needed to deform C1 into C2, in the plane.
A planar B-spline surface S is constructed, which inter-
polates the constraints S(C1) = C2, and serves as a planar
deformation function. The construction of this set of con-
straints is described in Sect. 4.2. In order to solve for S, we
reformulate the problem as a set of linear equations. This
stage is described in Sect. 4.3. The result of the second

stage is a planar B-spline surface S: Ω ⊂R2 →R2,

S(u, v) =
n∑

i=0

m∑
j=0

Pi, j Bdu
i,τ u (u)Bdv

j,τv (v), u, v ∈ [0, 1] ,

(2)

where the Pi, js are the surface control points, du and dv

are the degrees of the B-spline basis functions, Bd
i,τ , in the

u and v directions, and τ u and τ v are the knot vectors over
which the basis functions are defined. S should be a sur-
face that satisfies the required constraints that deform C1
into C2 while minimizing a certain fairing functional, such
as that of Eq. 1. In the third and final stage, discussed in
Sect. 4.4, S is extruded along its normal direction to form
a B-spline volume FFD, which is, in turn, applied to M1,
resulting in the desired VDM model.

4.1 Silhouette extraction

Consider model Mi (see Fig. 4a). In order to extract Mi’s
silhouette, we use the following simple method. First, ren-
der Mi into an image, without the use of shading, from the
viewing direction Vi , selected by the user. This yields a bi-
nary image Ii in which one color marks the background,
and another marks the body of Mi , as shown in Fig. 4b.
Then, employ an edge detector to extract the boundary.
Here, we used the simple Sobel edge detection filter [4].
The output of the filter is another binary image. In this bi-
nary image, black pixels mark edge pixels of Ii , i.e., the
outer silhouette of Mi , and gray pixels cover the rest of Ii .
This step is shown in Fig. 4c. In the final stage, we tra-
verse this outer silhouette, assuming that it is completely
contained in Ii . During this traversal, we sample the outer
silhouette at regular intervals, and then approximate the
samples by a periodic B-spline curve, Ci , as shown in
Fig. 4d. We complete this section by noting that any other
silhouettes’ extraction scheme could be employed as part
of this NRM effort.

Fig. 4a–d. Silhouette extraction: a is the original triceratops model
shown from the desired viewing direction. b Shows the image I
that is the result of rendering the model with no shading informa-
tion. c Shows the screen buffer after the application of the Sobel
edge detection filter, and finally d shows the final B-spline silhou-
ette curve C
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4.2 Calculating the constraints set

We are now ready to define a set of constraints that will
warp C1 into C2, and construct a B-spline surface S that
complies with these constraints. While the problem of ex-
actly mapping C1 to C2 is continuous and hence, quite
difficult, we benefit from our need to only have an approx-
imate solution and solve a discrete problem instead. We
approximate the desired deformation by calculating a dis-
crete set of constraints, the size of which is set by the user,
according to the smoothness of C1 and C2. The smoother
the curves, the smaller the set of constraints needs to be
in order to approximate Ci to within a prescribed toler-
ance. Each constraint is a pair of 2D points of the form
(u1

i , v1
i ) ∈ C1, (u2

i , v2
i ) ∈ C2, such that the 2D point on S

with parameter values (u1
i , v1

i ) will be mapped to (u2
i , v2

i ),
or simply,

S
(
u1

i , v1
i

) = (
u2

i , v2
i

) = Q2
i . (3)

The term C2 is the outer silhouette that we seek for M1
from view direction V1 following the deformation. As
of now, there is no correlation between C1 and C2. This
means that if we sample Ci at regular parameter values
and match the resulting coordinates, there is no guaran-
tee that the samples will be appropriately matched in any
way. In order for the constraints to be meaningful, we must
first apply some form of curve matching [5] between C1
and C2, so that the two curves have the same orientation,
and, as much as possible resemble each other in terms of
the parameter values at their features; see Fig. 5 for a sim-
ple example. With proper matching, the two curves are
mapped to a common planar domain. To this end, mainly
for the sake of simplicity when performing the matching,
each curve is non-uniformly scaled so that its bounding
box is the domain [0, 1]2. This non-uniform scaling de-
forms the silhouette curves, and will later be compensated
for, and recovered in the created VDM.

Fig. 5. a Shows the sampled constraints needed to deform the cir-
cle ( red points) to the square (yellow points), without matching the
two curves. The orientations of the curves are similar, as is their
speed, but their starting points do not match. b Shows the samples
after the curves have been properly matched

In order to discretize the problem, we uniformly sam-
ple both silhouette curves f times, at parameter values

tk = k

f
, k = 0 . . . f −1.

The constraints are as shown in Eq. 3, where(
u1

k, v1
k

) = C1(tk),

and(
u2

k, v2
k

) = C2(tk).

An example of such a set of constraints for a properly
matched pair of curves is shown in Fig. 6.

Fig. 6. a Shows the points on the silhouettes of a sphere and a cube,
(red and yellow points, respectively), and the correspondence be-
tween them (green lines). b Adds the resulting deformation surface
S (in black) and its parametric domain (black square)

4.3 The optimization problem

The unknowns in this optimization problem are the con-
trol points of the B-spline surface, S, namely, Pi, j : i =
1 . . . n, j = 1 . . . m, as seen in Eq. 2. Unfortunately, the
deformation constraints of Eq. 3 are not distributed evenly
across the parametric domain of the surface ([0, 1]2).
This may cause some regions of S to be either under-
constrained or over-constrained. The over-constrained
case can be avoided by adaptively adding knots to the sur-
face S, thus adding degrees of freedom, or alternatively by
solving for the control points, using Least Squares (LS). In
order to deal with the under-constrained regions, we add
a minimization requirement, and force the surface to be as
smooth as possible globally, by minimizing the following
functional [10]:

F =
∫∫

u,v

ν1

(
∂2S

∂u2

)2

+ν2

(
∂2S

∂u∂v

)2

+ν3

(
∂2S

∂v2

)2

dudv,

(4)

where νi, i = 1, 2, 3, are user defined parameters that al-
low better control of the resulting surface. By default, we
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use the natural coefficients ν1 = ν3 = 1 and ν2 = 2, as ex-
plained in Sect. 3.1.

The functional in Eq. 4 with coefficients ν1 = ν3 = 1
and ν2 = 2 is the simplified thin plate energy functional
(or bending energy functional, Eq. 1) [10] of a paramet-
ric surface. The resulting surface should uphold the con-
straints of Eq. 3 while minimizing the global bending
functional Eq. 4. Areas that are under-constrained will
minimize bending, and consequently, will move as little as

Fig. 7. a Shows the planar deformation surface, S, needed to de-
form a circle into a square (see Fig. 6). b Shows the same surface
extruded into a 3D FFD, F. Figure 8 shows the final VDM model
of this example

Fig. 8a–e. The Sphube, a sphere–cube merge. a Shows the original cube model from the front and b shows the original sphere model.
These are the desired outcome’s silhouettes. The parts c,d and e show the resulting VDM model from the front, a general view and side,
respectively. See also Fig. 7 showing the FFD that created this VDM model

possible from the initial regular grid, which has no bend-
ing energy at all. (Note Eq. 4 also measures bending in the
plane).

We now construct the Lagrange operator L:

L =
∫∫

u,v

ν1

∥∥∥∥∂2S

∂u2

∥∥∥∥
2

+ν2

∥∥∥∥ ∂2S

∂u∂v

∥∥∥∥
2

+ν3

∥∥∥∥∂2S

∂v2

∥∥∥∥
2

dudv

+
f −1∑
k=0

λk

∥∥∥Q2
k − S

(
u1

k, v1
k

)∥∥∥

=
∫∫

u,v

ν1

∥∥∥∥∂2S

∂u2

∥∥∥∥
2

+ν2

∥∥∥∥ ∂2S

∂u∂v

∥∥∥∥
2

+ν3

∥∥∥∥∂2S

∂v2

∥∥∥∥
2

dudv

+
f −1∑
k=0

λk

∥∥∥∥Q2
k −

n,m∑
i, j=0

Pi, j Bdu
i,τ u

(
u1

k

)
Bdv

j,τv

(
v1

k

)∥∥∥∥, (5)

where λk are the Lagrange multipliers. In order to
solve Eq. 5 we differentiate L with respect to Pi, j ,
(i = 0 . . . n, j = 0 . . . m) and λk (k = 0 . . . f −1) and
find the extremal points.

The existence of a solution to the interpolation sys-
tem relies on the fulfillment of the Schoenberg–Whitney
condition [2]. For any set of non-self-contradicting con-
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straints, there exists a fine enough grid at which the system
has at least one solution.

4.4 Creating and applying the FFD

While our current deformation function, S(u, v), is only
2D, remember we are seeking a 3D deformation volume.
The volumetric FFD is created so that it is an iden-
tity along the w axis, using an extrusion: T(u, v, w) =(
sx(u, v), sy(u, v), w

)
where S = (sx, sy). The w axis is

parallel to V1 (the viewing direction of M1) and spans the
w range of M1 (see Fig. 7). As a final step, the FFD, T ,
is applied to the base model’s vertices, deforming it to its
new desired, VDM, shape.

5 Results

Figures 8–14 present some examples created using the
presented approach for NRM realization of VDMs. All ex-
amples are organized in the same manner. The top images
show the input models, M1 and M2, from the desired view

Fig. 9a–e. The Knishop, a knight–bishop merge. a Shows the original bishop model from the front, and b shows the original knight model
from the side. These are the desired outcome’s silhouettes. The parts c, d and e show the resulting VDM model from the front, a general
view and side, respectively. The bishop model was retrieved from the Princeton 3D model search engine, http://shape.cs.princeton.edu/
search.html. The knight model was retrieved from the 3DCafe website, http://www.3dcafe.com

directions, V1 and V2, respectively. The center image is
a general view of the resulting VDM model. Finally, the
bottom images show the resulting model from the front
and side, displaying the desired silhouettes. One notice-
able artifact appears in the Tricerhino (Fig. 11), where the
rhinoceros’ ears (marked (1)) and horns (6) were matched
to the Triceratops’ frill (4) and horns (5), respectively.
As the rhinoceros’ silhouette requires that its ears and
horns be at the same height, the front view of the result-
ing Tricerhino reveals that its frill and horns have been
brought to the same height as well ((2) and (3)). This prob-
lem is discussed in Sect. 6.

Figure 13 is a bit different than the other examples, as
it is an attempt to emulate a wire-sculpture by Markus
Raetz, titled “Hasen-Spiegel” (Hare-Mirror in German).
The sculpture is actually a thick wire, which resembles the
silhouette of a hare from one direction, and that of a bust
from another. In our example, M1 was created by taking
a “wire” representation of the bust model, stretching it by
a factor of

√
2 in the X direction, and then rotating it by 45

degrees around the Y axis, so that its silhouette is that
of a “wire” bust from both the side and the front. M2 is
a simple “wire” bunny. The silhouettes of the bunny and
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Fig. 10. The Knishop, rotated around the Y -axis, 90 degrees

Fig. 11a–f. The Tricerhino (a triceratops–rhinoceros). a Shows the original rhinoceros model from the side and b shows the original tricer-
atops model from the side. These are the scheme’s considered silhouettes. The parts c, d and e show the resulting VDM model from the
front, a general view and side, respectively, while f shows the original triceratops model from the front for comparison with e. Note that
ideally, a and c should be identical, as should e and f. The triceratops model was retrieved from the Princeton 3D model search engine,
http://shape.cs.princeton.edu/search.html. The rhinoceros model was retrieved from the 3DCafe website, http://www.3dcafe.com

bust were both extracted from the photographs of the ori-
ginal “Hasen-Spiegel” sculpture. Interestingly enough, the
result ended up very similar to the actual wire sculpture,
even when viewed from a general direction.

6 Conclusions and future work

We have presented an approach to non-realistic, artis-
tic, modeling (NRM), in which the output is a visually
intriguing 3D object, resembling two different objects
when viewed from orthogonal angles. The work draws

its inspiration from works of conceptual artists, in the art
world.

There is a noticeable drawback to our scheme. When
viewed from a direction perpendicular to the deform-
ing direction, the silhouette of the original model does
not remain intact. See, for example, the crest of the
Triceratops in Fig. 11. In this example, the rhinoceros’
ears (marked (1)) and horns (6) were matched to the
Triceratops’ frill (4) and horns (5), respectively. As the
rhinoceros’ silhouette requires that its ears and horns be at
the same height, the front view of the resulting Tricerhino
reveals that its frill and horns have been brought to the
same height as well ((2) and (3)). Thus, the resulting
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Fig. 12a–e. The Smart Beetle, a Mercedes–Benz Smart–VW Beetle. a Shows the original VW Beetle model from the front and b shows
the original Smart model from the front. These are the scheme’s considered silhouettes. The parts c, d and e show the resulting VDM
model from the front, a general view and side, respectively, while f shows the original smart model from the front for comparison with e.
The Smart model was retrieved from the 3DS resources website, http://www.3dsresources.com. The VW Beetle model was retrieved from
the 3DCafe web site, http://www.3dcafe.com

Fig. 13a–e. The “Hasen-Spiegel” (German for Hare-Mirror). This example is an effort to emulate a wire-sculpture by Markus Raetz, of the
same name. a Shows the silhouette of M1 from the front and b shows the silhouette of M2 from the front. These are the desired outcome’s
silhouettes. The parts c, d and e show the resulting VDM model from the front, a general view and side, respectively. The silhouettes of
the bunny and bust were extracted from photographs of the original sculpture
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Fig. 14. The “Hasen-Spiegel”, rotated around the Y -axis, 90 degrees

model does not exactly resemble the Triceratops when
viewed from the front. The solution to this problem lies in
a matching between V1 and V2, which would only allow
movement of points on V1 in one direction; in this case,
horizontally, towards their targets on V2. This kind of de-
formation would cause the vertices of the model to move
only along the line of sight when viewing the model from
the front, and eliminate this type of artifact. The drawback
to this kind of matching is the loss of some freedom in the
deformation.

There are two additional issues worth investigating, in
the context of this work. The first is to determine whether
a solution for S exists. The interpolation of the constraints
is possible once the Schoenberg–Whitney conditions [2]
are met. The minimization problem, on the other hand, re-
quires that the matrices involved in the explicit solution be
invertible, the conditions for which are still unclear, and
also depend on the selected minimization functional. The
second issue is the uniqueness of an (optimal) solution,
as there may be many VDM models that satisfy certain
demands.

Future work may also include an attempt to directly
calculate a fair 3D volume, and not just a fair 2D surface,
using a 3D set of constraints, allowing more degrees of
freedom. Another interesting related problem to examine

would be the arrangement of many random 3D objects
such that their collective silhouette would resemble some
object (or objects) from a specific viewing direction, and
nothing in particular from any other direction, as seen in
Shigeo Fukuda’s “Underground Piano” [9]. Yet another
interesting option could be to create an object with its
right half similar to one input model, and its left half simi-
lar to a different input model, all from the same viewing
direction. An interesting optimization issue considers the
use of a different functional as the minimization func-
tional T , instead of the bending energy functional used in
this work. One viable alternative is stretching energy, but
many others can be found in the relevant literature. Also
worth exploring is the use of non-orthogonal viewing di-
rections for silhouette extraction and deformation. Clearly,
one can map the two orthogonal views of the model, V1
and V2, to two arbitrary views, using a shearing trans-
formation, but an interesting question is whether one can
handle more than two views, and if so, what conditions are
needed for the creation of this kind of a VDM?
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