
Remo - Kinect based remote control application for XBMC

Introduction
Kinect is a line of motion sensing input devices by Microsoft for Xbox 360 and Xbox
One video game consoles and Windows PCs. Based around a webcam-style add-
on peripheral, it enables users to control and interact with their console/computer without
the need for a game controller, through a natural user interface using gestures and spoken
commands. Kinect sensor is based on Prime-Sense technology and there are similar sensors
on the market such as Asus Xtion and PrimeSense Carmine.

XBMC is a free and open source media player developed by the XBMC Foundation, a non-
profit technology consortium. XBMC is available for multiple operating systems and
hardware platforms, with a 10-foot user interface for use with televisions and remote
controls. It allows users to play and view most videos, music, such as podcasts from the
internet, and all common digital media files from local and network storage media.
in our project we were asked to create a remote control application for XBMC utilizing the
Kinect sensor capabilities.

Project Objectives
A good remote control application must have the following characteristics:

• Intuitive
• Responsive
• Short learning curve
• Well defined gestures

We will later explain why our application meets the following requirements.
It is important to note that the main focus of this project was to create a full and working
application. Because of a limited time frame when possible we used existing libraries (e.g.
Fizbin) which saved a lot of development time and simplified the interaction with the
sensor.

Project Infrastructure
The project is A WPF(Windows Presentation Foundation) application, based on Microsoft
Kinect SDK 1.7 and written in C# under Visual Studio 2012, and relies on the following
libraries:

Microsoft.Kinect.Toolkit - This is the Microsoft kinect toolkit library which provides means to
connect to a Kinect sensor, and access to the 3 main streams a Kinect sensor provides:

• Color Stream
• Depth Stream
• Skeleton Stream

which will be explained in more detail in the implementation section.
Fizbin.Kinect.Gestures - The Fizbin Gesture Library, for Microsoft Kinect for Windows,
provides a simple and straight forward means of recognizing both static and dynamic
gestures. Based off code described in Writing a Gesture Service With the Kinect for
Windows SDK, by Michael Tsikkos and James Glading, the library has been updated with
support for SDK 1.5 and extended.
 for more information about how fizbin works see:

http://en.wikipedia.org/wiki/Motion_sensing
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Xbox_One
http://en.wikipedia.org/wiki/Xbox_One
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Webcam
http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/Game_controller
http://en.wikipedia.org/wiki/Natural_user_interface
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Media_player_(application_software)
http://en.wikipedia.org/wiki/Consortium
http://en.wikipedia.org/wiki/10-foot_user_interface
http://en.wikipedia.org/wiki/Remote_control
http://en.wikipedia.org/wiki/Remote_control
http://en.wikipedia.org/wiki/Podcast
http://en.wikipedia.org/wiki/Digital_media
http://en.wikipedia.org/wiki/Storage_media
http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx
http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx
http://blogs.msdn.com/mcsuksoldev/archive/tags/Michael+Tsikkos/default.aspx
http://blogs.msdn.com/mcsuksoldev/archive/tags/James+Glading/default.aspx

http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-
the-kinect-for-windows-sdk.aspx

Microsoft.Kinect.Interaction - This is a part of the Microsoft Kinect SDK which provides
access to the kinect sensor Interaction Stream, which enables hand tracking and hand
open/close recognition.

Design

a standalone application
Being a popular open source application, XBMC has a very developed add-on system, and
developing the application as an XBMC add-on could have provided us with more control
over XBMC, and a very convenient distribution system. Despite the above we have decided
to develop an open source application due to the following reasons:
• writing an XBMC add-on would have restricted us to writing in a specific language
 and using openNI due to Linux compatibility.
• writing an XBMC add-on would have made our application dependent on XBMC
 updates and might not function well on next versions of XBMC.
• A standalone application is easy to adjust to other media players in the future.

Application Structure

for every data stream we implemented a controller which gets raw data (interaction and
skeleton) from the SDK's and translates it to events which are sent to a manager who
handles these Events with respect to the application state. Remo will get data from the
managers and translate it to user output using our UI.

GestureController
Gesture controller registers to Kinect.SkeletonStream and gets raw skeleton data from it
This class actually holds a list of all gestures to be recognized by Remo and runs the following
state machine for each one:

UI

Remo

Microsoft.Kinect.Interaction

GestureController

InteractionController

GestureManager

InteractionManager

Fizbin

Scheduler

http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx
http://blogs.msdn.com/b/mcsuksoldev/archive/2011/08/08/writing-a-gesture-service-with-the-kinect-for-windows-sdk.aspx

As you can see each gesture is divided to parts, every part consists of a set of relative
conditions which will either move us to the next part or fail the gestures.

GestureManager
This class is in charge of deciding what to do when a gesture is recognized, and executing
non UI related code(e.g sending keys to XBMC), also it has to send Remo relevant
information so Remo would handle the UI and be aware of the application state.

InteractionController
Interaction Controller does pretty much the same as gestures controller only it registers to
Kinect.InteractionStream and turns hand open/close/location data into hand moving related
events (e.g. when we want to scroll fast it will calculate the hands speed when we open it.
this will allow us later to know how much to scroll).

InteractionManager
Interaction Manager will get events from InteractionController and will act accordingly, it
also keeps data on application state such as left/right hand open/close.

RemoScheduler
A good example that can explain RemoScheduler job is a mechanism implemented in order
to prevent unwanted scrolling. when we move our hand left to scroll a small movement
upwards or downwards can accidently trigger unwanted up/down scrolling. in order to
prevent it RemoScheduler starts a timer every time a handmoved event is raised. and will
only allow scrolling in other direction if 5 seconds pass. because scheduling may require
coordination between all class it is implemented as a separate entity.

Implementation -

microsoft kinect sdk VS. openni
There are two main SDKs used today with prime-sense based depth sensors -
OpenNI - The OpenNI framework provides a set of open source APIs. These APIs are
intended to become a standard for applications to access natural interaction devices.
The APIs provide support for:

• Voice and voice command recognition
• Hand gestures
• Body Motion Tracking

http://en.wikipedia.org/wiki/API

OpenNI is open source and linux compatible, it also supports most of the sensors on the
market.

Microsoft Kinect SDK - The Kinect for Windows SDK enables to use C++, C#, or Visual Basic to
create applications and experiences that support gesture and voice recognition by using the
Kinect for Windows sensor and a computer or embedded device. The Developer Toolkit
contains additional resources, sample applications with full source code Kinect Studio, and
other resources to simplify and speed up application development.
Kinect SDK is only compatible for Windows Computers and Microsoft Kinect sensors.
We tried both SDKs and came to realize that for our purposes Microsoft Kinect SDK is more
stable and easy to develop on. So we chose to implement Remo based on this SDK.

Communicating with XBMC
In order for Remo to be used for other applications its way of communicating with other
applications (default XBMC) is emulating keyboard strokes. In order to implement it we
used microsoft's System.Windows.Forms.SendKeys library.

On Screen Display
Because XBMC (and generally movie watching) is operating under full screen mode we
needed a way to interact with the user while he is watching a movie, and a regular window
can't be seen. Our way of solving this problem was using WPF's transparent window option
which enabled us to show OSD like data to the user while he is watching a movie in
fullscreen mode.

	Remo - Kinect based remote control application for XBMC
	Introduction
	Project Objectives
	Project Infrastructure
	Design
	Application Structure
	GestureController
	GestureManager
	InteractionController
	InteractionManager
	RemoScheduler

	Implementation -
	microsoft kinect sdk VS. openni
	Communicating with XBMC
	On Screen Display

