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Introduction

Surface mapping plays a key role in digital geometry processing. In general, surface maps introduce
area and angular distortions. If no angular distortion is introduced, the surface mapping is called
a conformal mapping. But natural surface maps, such as the change of the surface of a face while
smiling, do induce distortion. Therefore it is interesting to study Quasi-Conformal surface maps (QC
maps), which are maps that induce bounded angular distortion. The amount of distortion is given by a
complex valued function called a Beltrami coe�cient. While the continuous theory for QC maps is well
developed, the discrete one is still in the making. Paper [1] attempts to de�ne a discrete analogue for
the existing theory. Using this new de�nition, we get an algorithm for computing a QC map associated
with a given Beltrami Coe�cient.

A bit of theory

Smooth Quasiconformal Theory

The theory of QC mappings is a relatively new theory in complex analysis, introduced in 1928. Intu-
itively, an orientation preserving mapping from C to C is called quasiconformal if it is a homeomor-
phism which takes small circles to small ellipses of bounded eccentricity. More formally, let f : C → C
be a complex function and let µ : C → C be a complex valued, Lebesgue measurable function with
sup |µ| < 1. f is said to be QC associated with µ if it is orientation-preserving and satis�es

∂f

∂z̄
= µ (z)

∂f

∂z

known as the Beltrami equation. In particular, note that if µ (z) ≡ 0 we have ∂f
∂z̄ = 0, and by the

Cauchy-Riemann equations we get that f is holomorphic (assuming it is di�erentiable). In this case f
is Conformal, meaning it induces zero angular distortion.

The function µ holds in it all the information about the conformality of f : The eccentricity of the
ellipse mapped by f is given by

e =
1 + |µ|
1− |µ|

and the orientation is given by

θ =
1

2
argµ

We can also generalize this notion to mappings between embedded surfaces:

Suppose S1 and S2 are two Riemann surfaces with global conformal parametrization r1 and r2 re-
spectively (equipped with the standard Euclidean metric). An orientation preserving homeomorphism

f : S1 → S2 is called QC associated with µ if the mapping f̃ := r2 ◦ f ◦ r−1
1 is QC associated with µ.

Discrete Quasiconformal Theory

In order to build a discrete analog for the smooth QC theory, which deals with triangulation meshes
rather than smooth surfaces, there is a need to de�ne a discrete metric on meshes:
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A discrete metric on a mesh M = (V,E, F ) is a function l : E → R+, such that on each triangle
[vi, vj , vk], the triangle inequality holds,

ljk + lki > lij

where lmn is the length of the edge [vm, vn]. Now for the de�nition (by [1]) of a discrete QC map
between two triangulation meshes:

Let M1 and M2 be two triangulation meshes with discrete metrics l1 and l2 respectively, and let
µ : C → C be a given Beltrami coe�cient. Also, let z : V → C be a conformal parametrization of M1.
A mapping f : (M1, l1) → (M2, l2) is a discrete quasiconformal mapping, if with respect to a new

metric l̃ on M1, the mapping f :
(
M1, l̃

)
→ (M2, l2) is discrete conformal, where

l̃ij := lij
|dzij + µijdz̄ij |

|dzij |

The discrete Beltrami coe�cient on [vi, vj ] is µij =
µi+µj

2 and dzij = z (vj) − z (vi) is the per-edge

derivative. l̃ is called the discrete auxiliary metric associated with µ.

Finally, we introduce a theorem which will be used for computing the discrete QC mappings:

Theorem: Suppose (M1, l1) and (M2, l2) are two metric triangular meshes, f : M1 → M2 is a QC

mapping with Beltrami coe�cient µ. Under the auxiliary metric l̃ associated with µ, the mapping

f :
(
M1, l̃

)
→ (M2, l2) is discrete conformal.

About the Project

In this project I implemented the algorithm given in [1] for computing the discrete QC map using the
auxiliary metric associated with a prescribed Beltrami coe�cient on an input triangular mesh. Once
the map is calculated, a texture can be added to the mesh in order to represent the angular distortion
induced by the QC map.

Technical Details

The implementation

The algorithm was implemented in Matlab. Input is an .obj �le representing the mesh and a C → C
function representing the Beltrami coe�cient. Output is an .obj �le representing the �attened mesh
in texture coordinates. Matlab also prints to the screen the original mesh, the conformally �attened
mesh, and the QC �attened mesh with vertices colored according to the per-vertex Beltrami coe�cient.
Onto the output obj we can then add texture and present it in Meshlab to see the distortion introduced
by the QC map. The implementation includes the following steps:

• Read the input mesh coordinates and connectivity from the .obj �le and store them in Matlab
data structures

• Compute discrete metric (standard Euclidean metric) on the input mesh, and use dc�atten.m
code to compute the conformal parametrization under this metric

• Compute the discrete auxiliary metric associated with the Beltrami coe�cient

• Under the discrete auxiliary metric, dc-�atten the mesh to obtain the QC map
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Usage

For using the QC surface mapper, you should have Matlab installed. Then,

• Place all of the Matlab source �les in some directory, lets refer to it as the working directory

• Under the working directory, place a directory named 'input_objs' in which you should place
the input meshes as .obj �les

• In the working directory place a texture .png �le and name it 'out.png'

• In the working directory place a .mtl �le named 'out.mtl'

• In Matlab, run the gui.�g �le

• In the window that opens, input a Beltrami coe�cient (with z as the variable), choose an input
mesh and hit 'Calculate'

• The output mesh is saved to 'out.obj'

• You can see the texture mapping on the original mesh by opening 'out.obj' in Meshlab

Examples

Lets start o� with a �at mesh, i.e. a mesh that is contained in the xy coordinate plane:

original, �at square viewed from above

Since it is already �at, after discrete conformaly �attening the mesh we should still get the same mesh:
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�attened squares viewed from above, faces colored by interpolating µ values on the vertices, µ (z) ≡ 0

In this example I chose the Beltrami coe�cient to be µ (z) ≡ 0, therefore the discrete QC �attened
mesh is also the same mesh. Clearly, for the texture coordinates we get a perfect circle texture:

square with circle texture viewed in Meshlab

Now lets examine constant but nonzero Beltrami coe�cients. First, if we choose a real and positive
coe�cient, the result is a mapping between circles and ellipses which are horizontally oriented since
the argument is 0.
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hemisphere, ear and face, µ (z) ≡ 0.5

Still with a positive constant, increasing the absolute value of the coe�cient, we get ellipses with
greater eccentricity oriented in the same direction:

hemisphere, ear and face, µ (z) ≡ 0.7

Changing µ to be negative introduces a π
2 counter-clockwise rotation to the ellipse's orientation since

θ = 1
2argµ = 1

2arg (−1) = π
2 :

hemisphere and face, µ (z) ≡ −0.5
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Letting µ be a pure imaginary number introduces a π
4 = 1

2arg (i) counter-clockwise orientation:

hemisphere and face, µ (z) ≡ 0.5i

Finally, non-constant Beltrami coe�cients introduce a less trivial setting of eccentricities and orienta-
tions. For example:

hemisphere, ear and face with µ (z) = e−|z|+0.7|z|i

As for the �attened meshes:
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dc-�at (left) and dqc �at hemisphere with µ (z) = e−|z|+0.7|z|i

dc-�at (left) and dqc �at ear with µ (z) = e−|z|+0.7|z|i

dc-�at (left)and dqc �at face with µ (z) = e−|z|+0.7|z|i
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And to �nish o�, lets check out another function:

hemisphere, ear and face with µ (z) = 0.8 · tan (z)

dc-�at (left) and dqc �at hemisphere with µ (z) = 0.8 · tan (z)

dc-�at (left) and dqc �at ear with µ (z) = 0.8 · tan (z)
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dc-�at (left) and dqc �at face with µ (z) = 0.8 · tan (z)

Problems that arose during the project

Computation time: Most interesting meshes are constituted of at least thousands of faces. Matlab is
a renown CPU bound and memory bound software, so for many meshes we get a very long computation
time (such as the face mesh exhibited here). The face for example takes A solution for this problem
could be implementation in some low-level programming language (such as C).

Dc�attening: Finding isothermal coordinates for a given mesh is done in [1] using a discrete curvature
�ow method. These methods were not covered in the paper (are covered in [2]), and implementing
them was out of the scope of this project. Therefore I used dc�atten.m (which was implemented by
the authors of [2] and modi�ed by Renjie Chen to be intrinsic) to compute the isothermal coordinates.

Downloadables

All of the source code, example meshes, mtl and texture �les can be downloaded here: ..... TBD.....
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