\[\text{Proof:} \quad P = Q \quad \text{for all } n \in \mathbb{N} \]

Next, we consider the case where \(P \) and \(Q \) are polynomials.

Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) and \(Q(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0 \) be two polynomials.

We want to prove that for any \(x \in \mathbb{R} \),

\[P(x) = Q(x) \]

We will use mathematical induction to prove this.

Base Case:

For \(n = 0 \), we have \(P(0) = a_0 = b_0 \) since the constant term of both polynomials is the same.

Inductive Step:

Assume that the statement is true for \(n = k \), i.e.,

\[P(x) = Q(x) \quad \text{for all } x \in \mathbb{R} \]

Then, consider \(n = k + 1 \).

Let \(P(x) = a_{k+1} x^{k+1} + a_k x^k + \cdots + a_1 x + a_0 \) and \(Q(x) = b_{k+1} x^{k+1} + b_k x^k + \cdots + b_1 x + b_0 \).

By the inductive hypothesis,

\[P(x) = Q(x) \quad \text{for all } x \in \mathbb{R} \]

This implies that the coefficients of the corresponding terms are equal.

Hence, we have shown that for all \(x \in \mathbb{R} \),

\[P(x) = Q(x) \]

This completes the proof.
Let \(C = \{x_1, \ldots, x_n\} \) be the set of elements.

For each \(i \), let \(f(x_i) = 1 \) if \(x_i \) is in \(C \), and \(f(x_i) = 0 \) otherwise.

Let \(C_i = \{ f \in C \mid f(x_i) = 1 \} \).

Then \(C_i = \{ x_i \mid f(x_i) = 1 \} \).

Let \(I \) be the set of indices such that \(f(x_i) = 1 \).

Then \(|I| = \# \mathbb{S} \geq \# \mathbb{S}_0 \).

And \(\# \mathbb{S}_0 + \# \mathbb{S} = n \).

Then \(|C| = \# \mathbb{S} \geq \left\lfloor \frac{n}{2} \right\rfloor \).

Thus \(T(n) \geq T(\left\lfloor \frac{n}{2} \right\rfloor) + 1 \).

\[T(n) \geq T(\left\lfloor \frac{n}{2} \right\rfloor) + k \]

Let \(k = \left\lceil \log n \right\rceil \).

Then \(T(n) = \left\lceil \log n \right\rceil \).
\[T_A \nabla \zeta \in \Lambda \Rightarrow A \times \nabla = \nabla \zeta \in A \times \Lambda \]

\[\left| C \right| \leq \prod_{C=1} \log |C|

\[T_A \nabla \zeta \in \Lambda \Rightarrow \prod_{C=1} \log |C| \]
\[C = \{ x_1, x_2, \ldots, x_n \} \]

\[\bigcap_{A \subseteq C} \mathcal{F} \supseteq \lceil \log n \rceil \]