
Finding Security Vulnerabilities in a
Network Protocol Using Formal

Verification Methods

Orna Grumberg

Technion, Israel

Joint work with Adi Sosnovich and Gabi Nakibly

CyberDay, April 7, 2014
1

Motivation
• Attacks on network protocols, taking

advantage of built-in vulnerabilities, are
not easy to identify

– Rely on legitimate functionality of the protocol

– May involve only a small number of messages

• Nowadays, identifying attacks is done
mostly manually, by experts, in an ad hoc

manner

Goals of this work

• Develop automatic methods for
identifying attacks in network
protocols

• Using methods and tools for formal
verification of software and
hardware
– Model checking

4

Model Checking [CE81,QS82]

An efficient procedure that receives:

� A finite-state model of a system

� A property

It returns

yes, if the system has the property

no + Counterexample, otherwise

Simple Example

Model checking application

• to verify a mutual exclusion algorithm

5

6

Mutual Exclusion Example
• Two process mutual exclusion with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (sem=1) or taken (sem=0)

• Initially both processes are in the Non-critical state and

the semaphore is available --- N1 N2 S1

• S0 denotes sem=0

• S1 denotes sem=1

Mutual Exclusion Example

P = P1 || P2

Pi :: while (true) {

if (vi == N) vi = T;

else if (vi == T && sem=1)

{vi = C; sem=0;}

else if (vi == C) {vi = N; sem=1;}

}

Initial state: (v1 == N, v2 == N, sem=1)
7

8

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

Checked property 1: The two processes are

never in their critical states at the same time

The state with (C1 ∧C2) is not reachable

9

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (C1 ∧C2) is not reachable

10

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (C1 ∧C2) is not reachable

11

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (C1 ∧C2) is not reachable

12

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (C1 ∧C2) is not reachable

13

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (C1 ∧C2) is not reachable √√√√

14

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

Checked property 2: The two processes are never in

their trying states at the same time

The state with (T1 ∧T2) is not reachable

15

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (T1 ∧T2) is not reachable

16

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

The state with (T1 ∧T2) is not reachable

17

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

A violating state has been found

18

Mutual Exclusion Example
N1N2S1

C1N2S0
T1T2S1

N1T2S1T1N2S1

N1C2S0

T1C2S0C1T2S0

Model checking returns a counterexample

Our goals
To search for attacks using model checking

For this purpose, we define:

• Model
– Represents the protocol’s behaviors

– Includes an attacker with predefined
capabilities

• Specification
– Specifies “suspect” states

Challenges

• Building a model which is
– Sufficiently detailed: to enable identifying

attacks based on the protocol's functionality

– Sufficiently reduced: feasible for model
checking tools

• Write general specification to identify
different kinds of attacks with different
techniques

Routing in the Internet

• How do packets get from A to B in
the Internet?

A B
Internet

Routing in the Internet

• Each router makes a local decision on how
to forward a packet towards B

A B

R1 R4

R2

R3

R6

R7

R5

R8

Research Focus - OSPF

• We focused on the routing protocol
Open Shortest Path First (OSPF)

• OSPF is widely used for routing in the
Internet
– Finding attacks on OSPF is significant

• OSPF is a complex protocol
– Modeling it is challenging

OSPF
• Each router compiles a database of the most recent

OSPF messages received from all routers in the
network

A B

R1
R4

R2

R3

R6

R7

R5

R8

Originator List of
neighbors

Links
costs

r1 r4,r6,r2,
r3

…

r2 r3,r1,r8 …

… … …

database

network

Using this database a router obtains a

complete view of the network topology

OSPF
• OSPF messages are flooded through the network

Originator List of
neighbors

Links
costs

r6 r4,r1,r8 …

OSPF message M

A B

R1 R4

R2

R3

R6

R7

R5

R8

network

M

M
M

M

M

M

M

M

OSPF Attacks
• The goal of an OSPF attacker is to advertise fake
messages on behalf of some other router(s) in the
network.

Originator List of
neighbors

Links costs

r5 r3,r8 …

fake OSPF message M

A B

R1 R4

R2

R3

R6

R7

R5

R8

network

M

OSPF Attacks

A B

R1 R4

R2

R6

R7

R5

R8

A B

R1 R4

R2

R3

R6

R7

R5

R8

M

Routing path before

from A to B

R3Routing path after

from A to B

OSPF Fight Back Mechanism

A B

R1 R4

R2

R6

R7

R5

R8

M

M

M

M

M

M

When a router receives a message in its own name that it didn't

originate, it sends a fight back message to all its neighbors

The fight back message is supposed to revert the effect of the attack eventually

M
R3

MM

Originato
r

List of
neighbors

Links
costs

r5 r3,r8 …

fake OSPF message - M

OSPF Attacks
• An attack is a run of the protocol that

creates a fake topology view for some
routers in the network

• An attack is called persistent if the fake
topology view remains in some routers'
databases

• We are interested in finding persistent
attacks

OSPF Concrete Model

• A fixed network topology

• Router Model
– Models a legitimate router

• Attacker Model
– Models a malicious router

• can send any random message to any random
destination router

• can ignore incoming messages.

Specification
• A global state is considered attacked if:

– Some router has a fake message in its
database

– No message resides in any router's queue

• An attacked state defines the outcome
of a successful persistent attack
regardless of a specific attack
technique

Model Checking

• We implemented the model of OSPF in C , and
used the Bounded Model Checking tool CBMC
to find persistent attacks on OSPF

• A counterexample returned by CBMC is an
attack

Example of Attacks on OSPF
Attack #1

– The attacker (r3) originates a fake
message:
dest = r2, orig = r4

r0

r2

r1

r4

r3

Example of Attacks on OSPF
Attack #2

• The attacker (r3) sends two fake messages:

• m1 = (dest = r4, orig = r1, sequence_number = 1)

m2 = (dest = r4, orig = r1, sequence_number = 2)

r0

r2

r1

r4

r3
1 2

1

1

2

2
2

2

Concrete Model - Problems
• state explosion problem

– Models that can be handled are very small
in size and hence restricted in their
topologies and functionality

– We would like to extend our search for
attacks to larger and more complex
topologies

Abstract Model

• We define an abstract model for OSPF,
consisting of an abstract topology and an
abstract protocol
– It represents a family of concrete networks

• The attacker is always an un-abstracted
router

Main Property of the Abstract
Model

• If an attack is found on an abstract
network, then there is a corresponding
attack on each one of the concrete
networks represented by it.

Example of an Abstract Attack
on OSPF in the Abstract Model

– The attacker sends a fake message with:

dest=2, orig=4

a0

r2

r1

r4

r3

a1a2

Example of an attack in a
concrete instantiation of the

abstract model
a0

r2

r1

r4

r3

a1
a2

Example of a similar attack on
another possible instantiation

of the abstract model
a0

r2

r1

r4

r3

a1a2

Examples of attacks on OSPF in
the abstract model

• Attack # 2

– The attacker (designated router)
originates a fake message on behalf of sr1:
m = (dest = sr5; orig = sr1; seq = 1; isFake = T)

DR

Correctness of Our Method
• Lemma

– For each abstract transition on the abstract
topology, there is a corresponding concrete finite
run on each matching concrete topology

Abstract run

Matching

concrete run

Correctness of Our Method

• Theorem
– An abstract attack found on an abstract

topology TA, has a corresponding attack on
each matching concrete topology TC.

• Exposed OSPF vulnerabilities:
• a message is opened only by its destination

• the flooding procedure does not flood a
message back to its source

– As a result, a fake message in the name of
router r might be sent through r

– If the attacker plays the role of a
designated router, then by ignoring
messages it can stop message flooding,
including fight back messages

Conclusion
• We automatically found attacks on small

concrete models

• We automatically found general attacks on
small abstract models

• The general attacks are applicable to huge
networks, with possibly thousands of routers
– No model checker can be applied directly to such

networks

Advantages of our approach

• We do not need to define an attack,
but only its possible outcome.

– Specifying suspect states requires less
knowledge and efforts than finding an
attack

– May enable finding new attacks, unknown
by now

Thank You

47

