Security Aspects of Authenticated Encryption
(in light of the CAESAR competition)

Elena Andreeva
COSIC, KU Leuven, Belgium

Cryptoday 2014
Technion, Haifa, Israel
30/12/2014
Outline

- Authenticated Encryption: AE
- Generic AE composition
- Dedicated AE schemes
 - nonce-based AE
 - nonce misuse resistant AE
- Further challenges
- CAESAR AE competition
AE Security Goal

Confidentiality + Authenticity
Confidentiality

Encryption Scheme

Alice \[M \rightarrow \text{Enc} \rightarrow \text{C} = 1001\ldots10 \rightarrow \text{Dec} \rightarrow M \]

Bob
Confidentiality

Encryption Scheme

Alice\[M \rightarrow Enc \rightarrow C' = 1011\ldots10 \rightarrow Dec \rightarrow M' \neq M\]

Bob

Confidentiality ≠ Authenticity
Authenticity

Message Authentication Code: MAC

Alice \(K \) \(\rightarrow \) MAC \(M \) \(\rightarrow \) T \(\rightarrow \) Bob

Bob \(K \) \(\rightarrow \) MAC \(M \) \(\rightarrow \) T' = T

\(T' = T \)
How to combine Encryption and MAC in a secure way?

Confidentiality + Authenticity
1. Encrypt and MAC

2. MAC then Encrypt

3. Encrypt then MAC

Caveat: Careful with interpretations!
Conventional Encryption

- **Enc = (Kg, Enc, Dec)**
 - Key generation: $K \leftarrow Kg$
 - Encryption: $(st, C) \leftarrow Enc^st_K(M)$ (randomized or stateful)
 - Decryption: $M \leftarrow Dec_K(st, C)$ (deterministic)
 - Correctness: $Dec_K(Enc_K(M)) = M$

- **Indistinguishability**
 - $IND-CPA$

![Diagram showing encryption and decryption processes]

- Each input M is encrypted with Enc_K to produce $Enc_K(M)$.
- The output C is either randomized or stateful.
- The decrypted message M is deterministic.
- The diagram illustrates a user trying to distinguish between random bits and randomized encryption.†
MAC

- **MAC** = (Kg, MAC, Verify)

 Key generation: \(K \leftarrow \$ \ Kg \)
 Authentication: \(T \leftarrow \text{MAC}_K(M) \) (any)
 Verification: \(1/0 \leftarrow \text{Verify}_K(M, T) \) (deterministic)

 Correctness: \(\text{Verify}_K(M, \text{MAC}_K(M)) = 1 \)

- **Unforgeability** (weak \(M' \neq M \); strong \(M',T' \neq M,T \))

![Diagram showing MAC process]

Win if \(?\) is 1
Generic Composition [BN’00]

• IND-CPA Enc + Unforgeable MAC

AE secure: Enc then MAC

• Off the shelf schemes

Enc (CBC, CTR,...) + MAC (CBC-MAC, HMAC, PMAC,...)

Caveat: Careful with interpretations!
A. Enc often with badly or externally generated random st or IV
B. st or IV is communicated out-of-band
A: Random IV Encryption

- **Enc** = (Kg, Enc, Dec)

 Key generation: $K \leftarrow$ Kg
 Encryption: IV, C \leftarrow Enc$^{IV}_K$(M) (deterministic)
 Decryption: $M \leftarrow$ Dec$_K$ (IV, C) (deterministic)

 Correctness: Dec$_K$(Enc$^{IV}_K$(M)) = M

- **Indistinguishability**

 IND-CPA

 ![Diagram](image)
Nonce IV

• N: nonce IV
• Not required to be random
• Unique non-repeating value
• Can be communicated out of band
• Theoretically: a way to work with an IV (randomness/state) out of Enc algorithm
• Practically: ease of use
Nonce-based Encryption Scheme

- **Enc = (Kg, Enc, Dec)**

 - Key generation: $K \leftarrow \$ Kg$
 - Encryption: $C \leftarrow Enc_K(N, M)$ (deterministic)
 - Decryption: $M \leftarrow Dec_K(N, C)$ (deterministic)

 Correctness: $Dec_K(N, Enc_K(M)) = M$

- Indistinguishability (nonce respecting adversary) IND-CPA

 - Fix A: Adversary can select N
 - Fix B: out-of-band $|C|\$ Random bits
Build nonce-based AE from

1. IV-Enc + MAC
Generic Composition Reconsidered [NRS’14]

- Build nonce-based AE from
 2. N-Enc + MAC

- Generic composition disadvantages
 Efficiency issues: 2 passes over the data
 Use of 2 keys
 Prone to misuse with conventional Enc schemes
Other Ways to Build AE Schemes?

1. Generic **AE** composition
 + off the shelf primitives
 - 2 passes
 - 2 keys

2. Dedicated **AE** scheme (**AE** designs from scratch)

3. Something in between 😊 (state of the art)
Dedicated AE

Prior to CAESAR

<table>
<thead>
<tr>
<th>Building Block</th>
<th>Nonce dependent AE security</th>
<th>Nonce independent AE security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block cipher</td>
<td>IAPM*’00, OCB*’01, XECB*’01, CCM’03, GCM’04, OTR*’14, CLOC’14</td>
<td>SIV’06, BTM’09, McOE-G’11, POET’14 COPA’13</td>
</tr>
<tr>
<td>Permutation</td>
<td>Sponge Wrap’11 Ketje&Keyak’14 NORX’14</td>
<td>APE’14</td>
</tr>
</tbody>
</table>

* hold a patent
AE Syntax

- **AE** = (Kg, E, D)

 - **Key generation:** $K \leftarrow Kg$
 - **Encryption:** $C \leftarrow E_K(A, N, M)$ (deterministic)
 - **Decryption:** $M/\perp \leftarrow D_K(A, N, C)$ (deterministic)

 Correctness: $D_K(A, N, E_K(A, N, M)) = M$
AE Confidentiality

- IND-CPA

Adversary is nonce respecting
AE Integrity

- INT-CTX

Adversary maybe nonce respecting
Nonce-based AE Security

Adversary is nonce respecting
Example AE with Block Cipher

OCB [RBBK’01]

If BC (AES) is SPRP, OCB is AE secure up to $2^{n/2}$ queries for non repeating N
If P is an ideal permutation, Sponge Wrap is AE secure up to $\min\{2^k, 2^{c/2}\}$ queries for non repeating N
- bound follows Sponge hash indifferentiability proof
- but possibly conservative for secret K and N not repeating
Authenticated Encryption AE
Generic AE composition
Dedicated AE schemes
 - nonce-based AE
 - nonce misuse resistant AE
Further challenges
CAESAR AE competition
Not all security should be lost if N misused!
Distinct Nonces

\[N_1 \rightarrow M_1 \rightarrow \text{OCB/Sponge Wrap} \rightarrow C_1 \]

\[N_2 \rightarrow M_1 \rightarrow \text{OCB/Sponge Wrap} \rightarrow C_2 \]

\[N_3 \rightarrow M_2 \rightarrow \text{OCB/Sponge Wrap} \rightarrow C_3 \]
Nonce Misuse

Ciphertext Repetitions

What security can be lost?

- Valid for **ALL** nonce respecting AE schemes

![Diagram](attachment:image.png)
What else can be lost?

\[OCB-Enc \]

\[M_1 \xrightarrow{\alpha_1} \text{AES}_K \xrightarrow{\alpha_1} C_1 \]
\[M_2 \xrightarrow{\alpha_2} \text{AES}_K \xrightarrow{\alpha_2} C_2 \]
\[\cdots \]
\[M_d \xrightarrow{\alpha_d} \text{AES}_K \xrightarrow{\alpha_d} C_d \]
Nonce Misuse OCB
Ciphertext Block Repetitions

What else can be lost? (OCB loses confidentiality)

• If blocks in C repeat (over distinct OCB calls) then blocks in M repeat (OCB, IAPM, XCBC, ...)

\[
\begin{align*}
O CB-Enc & \\
M'_1 & \xrightarrow{\alpha_1} AES_K \xrightarrow{\alpha_1} C'_1 \\
M_2 & \xrightarrow{\alpha_2} AES_K \xrightarrow{\alpha_2} C_2 \\
\cdots & \cdots \cdots \\
M_d & \xrightarrow{\alpha_d} AES_K \xrightarrow{\alpha_d} C_d
\end{align*}
\]
Nonce Misuse Sponge Wrap

What else can be lost? (Sponge Wrap looses confidentiality)

\[c_1 \oplus c'_1 = m_1 \oplus m'_1\]
What to Do against Nonce Misuse?

Not all security should be lost if N misused!

1. Security up to repetitions
ciphertext leaks only presence of repeating Ms
MAX: SIV, BTM, HBS but **two passes over the data**

2. Security up to longest common prefix
ciphertext leaks only presence of common M prefixes
LCP: McOE-G, COPA, APE, POET
LCP + X: SpongeWrap
1. Online cipher + authentication [BBKN‘01, FFLW’12] [nmr AE scheme secure up to common prefix repetitions]
Regular vs Online Ciphers

- Normally in a cipher
 - m_1 m_2 m_3 m_4
 - c_1 c_2 c_3 c_4

- Online cipher
 - more efficient
 - different security (IND from random online permutation)

- m_1 m_2 m_3 m_4
- c_1 c_2 c_3 c_4
COPA [ABLMY’13]
Nonce Misuse Resistant AE

\[\begin{align*}
L &= E_K(0) \\
\alpha_0 &= 3L \text{ and } \alpha_1 = 2L \\
\beta_1 &= 2^{d-1} \cdot 3^2L \text{ and } \beta_2 = 2^{d-1} \cdot 7L
\end{align*} \]
COPA
Security Proof

\[M_1 \xrightarrow{XEX} C_1 \]
\[M_2 \xrightarrow{XEX} C_2 \]
\[\ldots \]
\[M_d \xrightarrow{XEX} C_d \]
\[\oplus_{i=1}^{d} M_i \xrightarrow{XEX} T \]

Implicit \(\oplus \) masks
\[\alpha_i = 2^{i-1}.3L \]

If \(E \) is SPRP, COPA is AE secure up to \(2^{n/2} \) queries
APE [ABLMNY’14]
Nonce Misuse Resistant AE

If P is ideal permutation, APE is AE secure up to $2^{c/2}$ queries
Authenticated Encryption AE
Generic AE composition
Dedicated AE schemes
 - nonce-based AE
 - nonce misuse resistant AE
Further challenges
CAESAR AE competition
Further Security Pitfalls in AE

What if attacker gets C decryptions before verification completed?

RUP: Release of unverified plaintext [ABLMNY’14]

- Scenarios
 - insecure memory
 - small buffer
 - real-time requirements

- Not in current AE security models!
AE Syntax under RUP

• Separate the AE Decryption D functionality into
 Dec and Verify (how we design AE schemes)

\[
C, T \leftarrow E_K(A, N, M) \\
M \leftarrow \text{Dec}_K(A, N, C, T) \\
1/0 \leftarrow \text{Verify}_K(A, N, C, T)
\]

Correctness: \(\text{Dec}_K(A, N, E_K(A, N, M)) = M \)
and \(\text{Verify}_K(A, N, E_K(A, N, M)) = 1 \)
RUP Confidentiality

- $\text{IND-CPA} + \text{PA1}$
- Plaintext awareness \(\text{PA1}\)

Adversary can choose any nonce
RUP Integrity

• Int-RUP

Adversary can choose any nonce
<table>
<thead>
<tr>
<th>IV Type</th>
<th>Scheme</th>
<th>PA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>CTR, CBC encryption</td>
<td>Yes</td>
</tr>
<tr>
<td>Nonce</td>
<td>OCB</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>GCM, Sponge Wrap</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>CCM</td>
<td>No</td>
</tr>
<tr>
<td>Arbitrary</td>
<td>COPA</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>McOE-G</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>APE</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SIV, BTM, HBS</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Encode-then-Encipher</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Further Challenges

• AE security
 - handling failure events?
 - further generic results?
 - identify relevant AE security risks?

• Security of present solutions?
Authenticated Encryption AE

Generic AE composition

Dedicated AE schemes
 - nonce-based AE
 - nonce misuse resistant AE

Further challenges

CAESAR AE competition
CAESAR Competition

Competition for Authenticated Encryption: Security, Applicability, and Robustness

• Follows NIST AES, EU NESSIE, EU eStream, and NIST SHA-3 and is co-funded by NIST
• Need for secure and efficient authenticated encryption
• Winner should offer advantages over AES-GCM and be suitable for widespread adoption
• 57 submissions in march 2014
• 7 withdrawals
CAESAR Timeline

• Jan 2015 – announcement 2nd round candidates
• Dec 2015 – announcement 3rd round candidates
• Dec 2016 – announcement of finalists
• Dec 2017 – announcement of final portfolio
CAESAR Candidate Characteristics

- Online +
- Parallelizable +
- Nonce misuse resistant +
- Release of unverified plaintext RUP +
- Underlying primitive
- Inverse free +
- Efficient +
<table>
<thead>
<tr>
<th>#</th>
<th>AE Scheme</th>
<th>Type (BC or P)</th>
<th>Parallelizable (E/D)</th>
<th>Online (E/D)</th>
<th>NMR Nonce misuse resistance</th>
<th>Inverse free</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACORN</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>++AE</td>
<td>BC</td>
<td>Partly/Partly</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AEGIS</td>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AES-CMCC</td>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AES-COBRA</td>
<td>BC</td>
<td>Partly/Partly</td>
<td>Fully/Fully</td>
<td></td>
<td>Yes</td>
<td>Withdrawn</td>
</tr>
<tr>
<td>6</td>
<td>AES-COPA</td>
<td>BC</td>
<td>Partly/Partly</td>
<td>Fully/Fully</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AES-CPFB</td>
<td>BC</td>
<td>Fully/No</td>
<td>Fully/Fully</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AES-JAMBU</td>
<td>BC</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AES-OTR</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>A+N</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AEZ</td>
<td>BC</td>
<td>Fully/Fully</td>
<td></td>
<td></td>
<td>MAX</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>Artemia</td>
<td>P/Sponge</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ascon</td>
<td>P/Sponge</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AVALANCHE</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Calico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CBA</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CBEAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Withdrawn</td>
</tr>
<tr>
<td>17</td>
<td>CLOC</td>
<td>BC</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>AE Scheme</td>
<td>Type (BC or P)</td>
<td>Parallelizable (E/D)</td>
<td>Online (E/D)</td>
<td>NMR Nonce misuse resistance</td>
<td>Inverse free</td>
<td>Status</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>18</td>
<td>Deoxys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ELmD</td>
<td>BC</td>
<td>Partly/Partly</td>
<td>Fully/Fully</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Enchilada</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>None</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>FAKER</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td></td>
<td></td>
<td>Withdrawn</td>
</tr>
<tr>
<td>22</td>
<td>HKC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Withdrawn</td>
</tr>
<tr>
<td>23</td>
<td>HS1-SIV</td>
<td>Other</td>
<td>Fully/Fully</td>
<td>No/No</td>
<td>MAX</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ICEPOLE</td>
<td>P/Sponge</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>LCP+X</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>iFeed[AES]</td>
<td>BC</td>
<td>Fully/No</td>
<td>Fully/Fully</td>
<td>LCP+X</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Joltik</td>
<td>BC</td>
<td>Fully/Fully, Partly/Partly</td>
<td>Fully/Fully, Fully/Fully</td>
<td>None, LCP</td>
<td>No, No</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Julius</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>No/No</td>
<td>MAX</td>
<td>Yes, No</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Ketje</td>
<td>P/Sponge</td>
<td>No/No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Keyak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>KIASU</td>
<td>BC</td>
<td>Fully/Fully, Partly/Partly</td>
<td>Fully/Fully, Fully/Fully</td>
<td>None, LCP</td>
<td>No, No</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>LAC</td>
<td>BC</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Marble</td>
<td>BC</td>
<td>Partly/Partly</td>
<td>Fully/Fully</td>
<td>A+N/MAX, online</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>AE Scheme</td>
<td>Type (BC or P)</td>
<td>Parallelizable (E/D)</td>
<td>Online (E/D)</td>
<td>NMR Nonce misuse resistance</td>
<td>Inverse free</td>
<td>Status</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>33</td>
<td>McMambo</td>
<td>LRX</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td></td>
<td>No</td>
<td>Withdrawn</td>
</tr>
<tr>
<td>34</td>
<td>Minalpher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>MORUS</td>
<td>Other</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td>A+N/LCP+X</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>NORX</td>
<td>P/Sponge</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>A+N/LCP+X</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>OCB</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>OMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>PAEQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>PAES</td>
<td>AES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Withdrawn</td>
</tr>
<tr>
<td>41</td>
<td>PANDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Withdrawn</td>
</tr>
<tr>
<td>42</td>
<td>π-Cipher</td>
<td>P/Sponge</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>None</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>POET</td>
<td>BC/AES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POET-G withdrawn</td>
</tr>
<tr>
<td>44</td>
<td>POLAWIS</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>PRIMATEs</td>
<td>P/Sponge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Prøst</td>
<td>P</td>
<td>Partly/Partly, Fully/Fully, No/No</td>
<td>Fully/Fully</td>
<td>Yes, No, Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Raviyoyla</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAESAR Classification

https://aezoo.compute.dtu.dk

<table>
<thead>
<tr>
<th>#</th>
<th>AE Scheme</th>
<th>Type (BC or P)</th>
<th>Parallelizable (E/D)</th>
<th>Online (E/D)</th>
<th>NMR Nonce misuse resistance</th>
<th>Inverse free</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Sablier</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Scream</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SHELL</td>
<td>BC</td>
<td>Partly/Partly</td>
<td>Fully/Fully</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Silc</td>
<td>BC</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td>A+N</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Silver</td>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>STRIBOB</td>
<td>P/Sponge</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td>A+N</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Tiaoxin</td>
<td>BC</td>
<td>No/No</td>
<td>Fully/Fully</td>
<td>None</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>TriviA-ck</td>
<td>Other</td>
<td>No/No</td>
<td>No/No</td>
<td>A+N</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Wheesht</td>
<td>Other</td>
<td></td>
<td>None</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>YAES</td>
<td>BC</td>
<td>Fully/Fully</td>
<td>Fully/Fully</td>
<td>None</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Software comparison:

More Features ...

• Further features:
 - Incrementality, tag truncation, ciphertext expansion, secret msg number, etc.
 - Side channel resistance
 - Distinctive security properties
 - ...

• AE design categories
 (nonce-based vs nonce misuse resistant, software, hardware, etc.)
Thank you!

Elena.Andreeeva@esat.kuleuven.be