
1

Proof-Carrying Data:
secure computation on
untrusted execution platforms

Eran Tromer

Joint work with
Alessandro Chiesa
Eli Ben-Sasson
Daniel Genkin

Technion Cryptoday June 16, 2011

3

Motivation

4

Motivation

• Software engineering (review, tests)
• Formal verification, static analysis
• Language type safety
• Dynamic analysis
• Reference monitors

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

5

Motivation

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

• Software engineering (review, tests)
• Formal verification, static analysis
• Language type safety
• Dynamic analysis
• Reference monitors ?

6

Motivation

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

ENVIRONMENT • Tampering
• Physical
side-channels
(EM, power, acoustic)

8

Motivation

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

ENVIRONMENT • Tampering
• Physical
side-channels

9

Motivation

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

ENVIRONMENT • Tampering
• Physical
side-channels

PLATFORM

• Cosmic rays
• Hardware bugs
• Hardware trojans
• IT supply chain

10

Information technology supply chain: headlines

(May 9, 2008)

“F.B.I. Says the Military Had Bogus Computer Gear”

(October 6, 2008)

“Chinese counterfeit chips causing military hardware
crashes”

(May 6, 2010)

“A Saudi man was sentenced […] to four years in prison
for selling counterfeit computer parts to the Marine Corps
for use in Iraq and Afghanistan.”

Assurance? Validation? Certification?

DARPA Trust in ICs
Argonne APS

11

Motivation

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

ENVIRONMENT • Tampering
• Physical
side-channels

PLATFORM

• Cosmic rays
• Hardware bugs
• Hardware trojans
• IT supply chain

12

Motivation

INTEGRITY CONFIDENTIALITY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

ENVIRONMENT • Tampering
• Physical
side-channels

PLATFORM

• Cosmic rays
• Hardware bugs
• Hardware trojans
• IT supply chain

Fault analysis
• Architectural
side-channels
(e.g.,cache attacks)

23

Information Leakage in Third-Party Compute Clouds

Demonstrated, using Amazon EC2 as a study case:

• Cloud cartography
Mapping the structure of the “cloud” and
locating a target on the map.

• Placement vulnerabilities
An attacker can place his VM on the same physical
machine as a target VM (40% success for a few dollars).

• Cross-VM exfiltration
Once VMs are co-resident, information
can be exfiltrated across VM boundary:

– Covert channels

– Load traffic analysis

– Keystrokes

[Ristenpart Tromer Shacham Savage ‘09]

24

Motivation

CORRECTNESS SECRECY

SOFTWARE
• Bugs
• Trojans

NETWORK • Lack of trust

ENVIRONMENT • Tampering
• Physical
side-channels

PLATFORM

• Cosmic rays
• Hardware bugs
• Hardware trojans
• IT supply chain

• Fault analysis
• Architectural
side-channels
(e.g.,cache attacks)

25

High-level goal

Ensure properties of a
distributed computation

when parties are
mutually untrusting,

faulty, leaky
&

malicious.

27

Proof-Carrying Data
overview

28

Proof-Carrying Data: an example

31

Toy example (3-party correctness)

Alice

z
y←F(x)

y

Bob

z←G(y)

Carol

is “z=G(F(x))”
true?

x, F G

32

Toy example: trivial solution

Carol can recompute everything, but:
• Uselessly expensive
• Requires Carol to fully know x,F,G

– We will want to represent these via short
hashes/signatures

z
y←F(x)

y
z←G(y) z’←G(F(x))

z’ = z

Alice Bob Carol

?

33

Toy example:
secure multiparty computation [GMW87][BGW88][CCD88]

y←F(x) z←G(y)

Alice Bob Carol
x, F G

• computational blowup is polynomial in the whole
computation, and not in the local computation

• computation (F and G) must be chosen in advance

But:

• does not preserve the communication graph:
parties must be fixed in advance, otherwise…

34

y←F(x) z←G(y)

Alice Bob
x, F G

... must pre-emptively talk
to everyone on the Internet!
... must pre-emptively talk

to everyone on the Internet!
... must pre-emptively talk

to everyone on the Internet!

Carol #1

Carol #2

Carol #3

Toy example:
secure multiparty computation [GMW87][BGW88][CCD88]

35

Toy example:
computationally-sound (CS) proofs [Micali 94]

z←G(y)
verify

πzπz

Bob can generate a proof string that is:
• Tiny (polylogarithmic in his own computation)
• Efficiently verifiable by Carol

πz ←prove(
“z=G(F(x))”)

Alice Bob Carol
x, F G

y←F(x)
y z

z=G(F(x))

However, now Bob recomputes everything...

36

Toy example: Proof-Carrying Data [Chiesa Tromer 09]
following Incrementally-Verifiable Computation [Valiant 08]

πy
y←F(x) z←G(y)

Each party prepares a proof string for the next one.
Each proof is:
• Tiny (polylogarithmic in party’s own computation).
• Efficiently verifiable by the next party.

Alice Bob Carol
x, F G

y verify

πzπz

z

z=G(y)
and I got a valid proof

that “y=F(x)”

y=F(x)

37

Generalizing:

The
Proof-Carrying Data

framework

38

Generalizing: distributed computations

Distributed computation:

m3

mout

Parties exchange messages and perform computation.

39

Generalizing: arbitrary interactions

• Arbitrary interactions
– communication graph over time is any direct acyclic graph

m3

mout

40

Generalizing: arbitrary interactions

• Computation and graph are determined on the fly
– by each party’s local inputs:

m3

mout

human inputs randomness program

41

Generalizing: arbitrary interactions

• Computation and graph are determined on the fly
– by each party’s local inputs:

m3

mout

human inputs randomness program

How to define
correctness

of dynamic distributed
computation?

42

C-compliance

m3

m5

mout

System designer specifies his notion of correctness via a
compliance predicate C(in,code,out)

that must be locally fulfilled at every node.

C

code

in out

accept / reject

(program, human inputs, randomness)

C-compliant
distributed

computation

C-compliant
distributed

computation

C-compliant
distributed

computation

43

Examples of C-compliance

correctness is a compliance predicate C(in,code,out)
that must be locally fulfilled at every node

Some examples:
C = “the output is the result of correctly computing a prescribed

program”

C = “the output is the result of correctly executing some program
signed by the sysadmin”

C = “the output is the result of correctly executing some
type-safe program” or “… “program with a valid formal proof”

m3

m5

mout

C

C

C

45

Dynamically augment computation with proofs strings

In PCD, messages sent between parties are augmented
with concise proof strings attesting to their “compliance”.

Distributed computation evolves like before, except that
each party also generates on the fly a proof string to
attach to each output message.

mout

πout

m3

π3

C

46

Extra setup (“model”)

Every node has access to a simple, fixed, stateless
trusted functionality

C

mout

πout

m3

π3

SIR
SIR

SIR

SIR

SIR

SIR

• Signed-Input-and-Randomness (SIR) oracle

47

Extra setup (“model”)

Every node has access to a simple, fixed, stateless
trusted functionality: essentially, a signature card.

• Signed-Input-and-Randomness (SIR) oracle

x
input
string

SIRSK

r
random
string

r ← {0,1}s

σ ← SIGNSK(x,r)

s
length

σ
signature
on (x,r)

VK

49

(Some) envisioned applications

50

Application:
Correctness and integrity of IT supply chain

• Consider a system as a collection of components,
with specified functionalities
– Chips on a motherboard
– Servers in a datacenter
– Software modules

• C(in,code,out) checks if the component’s
specification holds

• Proofs are attached across component boundaries
• If a proof fails, computation is locally aborted

→ integrity, attribution

51

Application:
Fault and leakage resilient Information Flow Control

52

Application:
Fault and leakage resilient Information Flow Control

• Computation gets “secret” / “non-secret” inputs
• “non-secret” inputs are signed as such
• Any output labeled “non-secret” must be

independent of secrets
• System perimeter is controlled and all output can be

checked (but internal computation can be leaky/faulty).
• C allows only:

– Non-secret inputs:
Initial inputs must be signed as “non-secret”.

– IFC-compliant computation:
Subsequent computation respect
Information Flow Control rules and follow fixed schedule

• Censor at system’s perimeter inspects all outputs:
– Verifies proof on every outgoing message
– Releases only non-secret data.

53

Application:
Fault and leakage resilient Information Flow Control

• Computation gets “secret” / “non-secret” inputs
• “non-secret” inputs are signed as such
• Any output labeled “non-secret” must be

independent of secrets
• System perimeter is controlled and all output can be

checked (but internal computation can be leaky/faulty).
• C allows only:

– Non-secret inputs:
Initial inputs must be signed as “non-secret”.

– IFC-compliant computation:
Subsequent computation respect
Information Flow Control rules and follow fixed schedule

• Censor at system’s perimeter inspects all outputs:
– Verifies proof on every outgoing message
– Releases only non-secret data.

Big assumption, but otherwise no
hope for retroactive leakage
blocking (by the time you verify, the
EM emanations are out of the
barn).

Applicable when interface across
perimeter is well-understood (e.g.,
network packets).

Verify using existing assurance
methodology.

54

Application:
Simulations and MMO

• Distributed simulation:
– Physical models
– Virtual worlds (massively multiplayer online virtual reality)

• How can participants prove they have
“obeyed the laws of physics”?
(e.g., cannot reach through wall into bank safe)

• Traditional: centralized.

• P2P architectures strongly motivated but insecure
[Plummer ’04] [GauthierDickey et al. ‘04]

• Use C-compliance to enforce the laws of physics.

55

Application:
Simulations and MMO – example

• Alice and Bob playing on an airplane, can later
rejoin a larger group of players, and prove they did
not cheat while offline.

m, π
m, π
m, π

m, π

“While on the plane,
I won a billion dollars,
and here is a proof for

that”

m, π

56

Application: type safety

• Using PCD, type safety can be maintained
– even if underlying execution platform is untrusted

– even across mutually untrusting platforms

C(in,code,out) verifies that

code is type-safe & out=code(in)

• Type safety is very expressive:
• Using dependent types (e.g., Coq) or refinement types:

Can express any computable property .
Extensive literature on what that can be verified efficiently
(at east with heuristic completeness – good enough!)

• Using object-oriented model (subclassing as constraint
specification): leverage OO programming methodology .

58

More applications

Mentioned:
• Fault isolation and accountability, type safety, multilevel

security, simulations.

Many others:
• Enforcing rules in financial systems
• Proof-carrying code
• Distributed dynamic program analysis
• Antispam email policies

Security design reduces to “compliance engineering”:
write down a suitable compliance predicate C.

• Recurring patterns:
signatures, censors, verify-code-then-verify-result…

• Introduce design patterns
(a la software engineering) [GHJV95]

60

A few words about realization

61

h

Probabilistically Checkable Proofs (partial history)

[Goldwasser, Micali, Rackoff][Babai and Moran]

generalization of NP proofs to include probabilistic
verification and interaction

[Ben-Or Goldwasser Kilian Wigderson][Shamir][Babai Fortnow Lund]

probabilistic verification and interaction buys a lot of
“expressive” power

[Babai Fortnow Levin Szegedy]

NP proofs can be written in a format that can be checked
with only logarithmic queries and in polylogarithmic time!

[Arora Safra][Arora Lund Motwani Sudan Szegedy]

reduce number of queries to a constant
by now: many improved parameters, e.g., [Håstad] [Dinur]

[Ben-Sasson Sudan] [Ben-Sasson Goldreich Harsha Sudan Vadhan]

early
80’s

late
80’s

early
90’s

now

62

Proof aggregation

Alice

zy
Bob Carol

x
G

V

P P

V

F

πzπy

y=F(x) z=G(y) and
∃πy : V(“ y=F(x)”, πy)=1

63

Soundness vs. proof of knowledge

Alice

zy
Bob Carol

x
G

V

P P

Need proof of knowledge:

V

VP
π 1

P

F

knowledge
extractor valid w

Pr[]≈1

y=F(x)

πzπy

z=G(y) and
∃πy : V(“ y=F(x)”, πy)=1

`

strong

64

Must use PCPs for compression

• Probabilistically Checkable Proofs (PCPs)
used to generate concise proof strings.

Alice

zy
Bob Carol

PCP

x
G

V

P P
PCP

V

F

πzπy

(And there is evidence this is inherent [Rothblum Vadhan 09].)

65

Must use oracles for non-interactive proof of knowledge

Alice

zy
Bob Carol

πzπy
PCP

x
G

V

P P
PCP

RO

V

F

The only known construction of non-interactive proofs of
knowledge is Micali’s, using Merkle trees where the
“hashing” is done using random oracle calls.

66

PCP vs. oracles conflict

• PCP theorem does not relativize [Fortnow ‘94], not even
with respect to a RO [Chang et al. ’92]

• this precluded a satisfying proof of security in [Valiant ‘08]

Alice

zy
Bob Carol

πzπy
PCP

x
G

V

P P

RO

V

F

PCP

V

PCP

67

Our solution:
Public-key crypto to the rescue

Oracle signs answers using public-key signature:
• answers are verifiable without accessing oracle
• asymmetry allows us to break “PCP vs. oracle” conflict, and

recursively aggregate proofs

Alice

zy
Bob Carol

πzπy
PCP

F
x

G

V

P P
PCP

OSK

VK

V

SIR

back

69

Proof-Carrying Data:
Conclusions and open problems

PCD offers a new approach to expressing and enforcing
security properties in distributed systems:
• the system designer writes a compliance specification
• compliance is enforced in all subsequent computation, even

if parties are untrusted and platforms are faulty and leaky

Established
• Formal framework
• Theoretical constructions

Ongoing and future work
• Detailed specifications, implementation and evaluation
• Achieve practicality (“polynomial time” PCP is not good enough!)

• Reduce assumptions, extend functionality
• Identify and realize applications

70

The road to PCD

Established: [Chiesa Tromer ’10]

• Formal framework
• Explicit construction

– “Polynomial time” - not practically feasible (yet).
– Requires signature cards

Ongoing fundamental work:
• Reduce requirement for signature cards (or prove necessity)
• Extensions (e.g., zero knowledge)

Ongoing applicative work:
• Full implementation
• Practicality – improved algorithms
• Interface with complementary approaches: tie “compliance”

into existing methods and a larger science of security
• Applications and “compliance engineering” methodology

