Motion Planning in the Presence of Mobile Obstacles

Avi (Abraham) Stiefel
Motion Planning in the Presence of Mobile Obstacles

Research Thesis
In Partial Fulfillment of The Requirements for the Degree of Master of Science in Computer Science

Avi (Abraham) Stiefel

Submitted to the Senate of the Technion - Israel Institute of Technology
Av, 5775, Haifa, July 2015
The Research Thesis was done under the supervision of Prof. Gill Barequet in the Faculty of Computer Science

I would like to thank Prof. Barequet for all his assistance and patience during my research.

I would like to give a special thanks to Miriam and Azi, without whom I could not have finished this thesis, as well as all those who have supported me through this endeavor.
Contents

1 Introduction ... 3
 1 Background .. 4
 1.1 Reactive Algorithms 4
 1.2 Path-Based Algorithms 5
 1.3 Site Selection 5
 1.4 Path Generation in Dynamic Algorithms 8
 1.5 Path Smoothing 9

2 Terminology and Goal 11
 1 Definitions ... 11
 2 Given .. 12
 3 Statement of the Problem 14

3 Overview of the Method 17
 1 Motivation .. 17
 2 Method ... 17
 3 Convex Decomposition of the Free Space 19
 3.1 Data Structures 19
 3.2 Definitions 19
 4 Method of Decomposition 19
 4.1 Adding and Removing Gates 20
 4.2 Convex Decomposition of the Polygon 20
4.3 Initialization .. 24
4.4 Maintaining the Convex Decomposition 27

5 Search Graph Construction 29
5.1 Structure of the Search Graph 29
5.2 Selection of Best Path Segments 30
5.3 Search Graph Initialization and Update 30
5.4 Maintaining the Graph 32
5.5 Full Update Process 33

6 Path Augmentation 34
6.1 End-Point Orientation Computation 35
6.2 Curve Computation 35

7 Improvement to Path-Length Estimate 37

8 The Complete Algorithm 38

9 Panic Mode ... 38

4 Curvature Augmentation Methods 41

1 Notation ... 41

2 Circle-to-Circle Spline 42
2.1 Computation ... 42
2.2 Curve Length ... 46
2.3 Maximum Curvature 47
2.4 Failure of Computation 47
2.5 Improvements to the Boundedness Test 47

3 Cubic Bézier Spline 48
3.1 Computation ... 49
3.2 Curve Length ... 53
3.3 Maximum Curvature 54
3.4 Failure of Computation 55
5 Analysis of the Algorithm

1 Correctness and Completeness .. 61
 1.1 Finding an Axis of Monotonicity 61
 1.2 Concave clipping ... 62
 1.3 Path Creation and Updates 63

2 Complexity .. 63
 2.1 Convex Decomposition ... 64
 2.2 Search Graph Construction and Maintenance 65
 2.3 Path Augmentation ... 67
 2.4 Total Complexity ... 67

6 Results .. 69

1 Implementation ... 69

2 Convex Decomposition ... 71
 2.1 Average Numbers of Polygonal Regions 72
 2.2 Complexity of the Polygons in the Decomposition 73

3 Construction of the Spline Tree 74

4 Path-Augmentation Methods ... 76
 4.1 Minimum Length ... 76
 4.2 Full Path Length ... 78
 4.3 Algorithmic Failures ... 79
7 Conclusions
List of Figures

2.1 An example model ... 15
3.1 Adding and removing gates 21
3.2 Monotone polygon convex decomposition 22
3.3 Non-monotone polygon convex decomposition 23
3.4 Finding an axis of monotonicity 25
3.5 Elimination of all holes 26
3.6 Completed initialization of the algorithm 26
3.7 Adding a gate to the model 28
3.8 Removing a gate from the model 28
3.9 Adding and removing gates from the model 28
3.10 Examples of gates with direct and indirect passthrough ... 31
3.11 Examples of the passthrough algorithm 32
3.12 The first two iterations of the linear graph and path construction ... 34
3.13 An example of the endpoint orientation computation 36
3.14 A curve scenario .. 37
3.15 The panic cone and obstacle bounding-discs 39
4.1 CtC spline example ... 42
4.2 Vector winding signs +,+ 45
4.3 Vector winding signs +,- 45
4.4 Vector winding signs -,+ 45
Abstract

We take a new approach to motion planning specifically designed for handling mobile obstacles. Previous methods are modified versions of the algorithms for static obstacles, but with speed-ups designed to ensure real-time operation. Because of this logic, each iteration requires we completely recompute the path, based on the new locations of the robot and the obstacles. Ideally, the algorithm should allow us to, during each iteration, simply update the previous path based on the new configuration of the robot and the obstacles.

We begin by dividing the area accessible to the robot, the freespace, into convex regions. We then create perform a path search in the dual graph of this decomposition, creating a piecewise-linear path stretching from the robot to the target, such that each linear segment is fully contained within a single convex region. This path is a greedy estimate of the shortest path; each segment is placed to minimize the difference towards the target. Last, the path is augmented to become a smooth curve with bounded curvature, with each segment fully contained within a convex region.

After the first iteration, we assume that only small changes need to be made to our model to maintain a usable path. Therefore, we ensure that the convex decomposition remains convex, updating if necessary. We refine our path, given the previous state of the path and the current state of the decomposition. Last, we augment the path again given the new geometric bounds.

We show that our method is computationally faster than pre-existing algorithms. Furthermore, we show that because of the structure of the algorithm we can more easily determine if the entire path avoids obstacles. We show that the under the iterative improvements to the path, the path length always tends towards a local minimum.
Chapter 1

Introduction

Motion planning of mobile platforms is the study of efficient navigation of a robot from an initial pose to a final pose while avoiding obstacles. In general, robots operate using a “Sense-Plan-Act” (SPA) paradigm [21]. In this model, the robot runs a three stage loop to solve the problem. In the *Sense* stage, the robot uses sensors to read all available information about itself, the world, and the robot’s location in the world. During the *Plan* phase, the robot uses the information gathered from the sensors to plan the next action to be taken. Last, in the *Act* stage, the robot actually acts on the action recommended in the planning stage.

When the robot must only contend with static obstacles, obstacles that never move, the existing algorithms include an initialization phase before the SPA loop. In this phase, the robot reads all information available, constructs a model of the world, constructs an optimal path based on the information, and stores this path in memory. Once this path has been constructed, the SPA loop becomes simple. The robot senses its current location on the path, determines the motion required to reach the next location on the path, and performs that motion. Due to the static nature of the problem, no updates to the path will ever be required, and so the bulk of the calculation can be performed before the loop even begins.

In the case of moving obstacles, an initialization phase similar to that of the static algorithms can be used. However, changes must constantly be made to the model, and so the SPA loop becomes more complicated. In this case, the *Sense* and *Act* stages remain the same, but the *Plan* stage must be changed to do more work. In general, in the *Plan* stage the robot rebuilds or updates the model of the world, constructs an optimal path according to the new world model, and determines what motion is required to move along the new optimal path. This can be very costly,
and so steps must be taken to perform this task as efficiently as possible, so as to ensure the algorithm can operate in real time.

A secondary concern of these algorithms is path smoothness. We want to ensure that the robot is not forced to turn with a radius of curvature less than the capabilities of the robot. For example, car shaped robots cannot rotate in place. Sometimes, we may want to have a smooth path even when the robot is capable of rotating in place. Our goal, therefore, is not just to select an optimal path, but to select a path that is optimal subject to curvature constraints.

1 Background

Motion-planning algorithms have two stages. First, the algorithm goes through an initialization phase, in which the robot attempts to build a model of the workspace. Next, the robot enters the SPA loop, in which the robot attempts to actually perform the task of reaching the target.

Historically, there have been two classes of obstacle avoidance algorithms: reactive and path-based. A reactive algorithm searches for the best single action given the current state, while a path-based algorithm searches for a complete path. In general, these algorithms are designed to handle polygonal obstacles; obstacles bounded by free-form curves can be approximated by a polygon.

1.1 Reactive Algorithms

There are two types of reactive algorithms. The first type is based on the principle of potential energy minimization [25]. In the initialization phase, the robot builds a model that places an attractive force at the target, and a repulsive force on all obstacles. Every possible location has its own value, and the robot can wander anywhere necessary to minimize energy at each stage.

In the loop, the robot first reads in the current location. The robot then calculates the potential at all possible neighbour locations, selects the neighbour location with minimum potential value, and moves to that location. In the static case, the potential values at all locations in the workspace are calculated before the robot begins moving. In the dynamic case, the potential values change as the obstacles move. As the robot searches for the next location, the robot calculates the sum of negative potentials imposed by the obstacles on all neighbour points, as well as the
potential imposed by the target, and selects the neighbour point with maximum potential sum.

Since the forces at each location are based on the location of the obstacles, this algorithm is by nature dynamic; a change in the location of the obstacles results in an immediate change in the potential values throughout the workspace. Since we are only concerned with the energy of neighboring locations, rather than the entire workspace, computation of the optimal action is simple. However, this model is extremely susceptible to local minima, and allows very little control over the shape of the path.

The second type of reactive algorithm is a silhouette method [11]. In these algorithms, the robot moves towards the target. Once the robot hits an obstacle, the robot manoeuvres around the obstacle until it can move towards the target again. If the obstacle moves, the robot will move with the obstacle. This algorithm is especially unsuited for moving obstacles, because the robot spends large amounts of time immediately adjacent to obstacles, which will lead to unintended collisions.

1.2 Path-Based Algorithms

All path-based motion planning algorithms currently in existence work along the same principles. The algorithms use the following process:

1. Site Graph Generation: The algorithm generates a set of sites, locations in the workspace to be used as markers or waypoints for the robot’s movement. The algorithm also creates adjacencies between sites, creating a graph of possible site-to-site movements.

2. Path Selection: Using the sites as a basis, the algorithm generates an optimal path from the initial location to the final location.

1.3 Site Selection

There are currently four primary methods of site selection: motion primitives, skeleton methods, visibility graphs, and cell decomposition.
Motion Primitives

A *motion primitive*, as described by Likhachev [18], is a small, basic movement that the robot can perform. Examples may include “move forward a step,” “move forward while turning,” and many others. All possible actions are counted. Sites in this method are all locations that can be reached by the robot by a sequence of motion primitives. Two sites are adjacent if one site can be reached from the other site using a single motion primitive.

This method allows for very fine control of the path. However, this method creates a number of sites that is exponential with the size of the workspace. Therefore, searching for an optimal path becomes extremely difficult even for a smaller workspace, and this is very difficult to manage in a real-time manner. Further, when directing a robot, we generally do not command the robot to go to a specific point. In general, we tell the robot in what direction to move, at what speed, but this algorithm would require us to give commands of start and stop to the robot. It is much more desirable to send the robots more general movement commands, rather than command the robot to make a specific motions.

Skeleton Methods

These algorithms attempt to construct some form of skeleton representing the free space, and using this skeleton construct a path. The robot moves from the initial point to the nearest point on the skeleton, traverses the skeleton until it reaches the point nearest to the target, and then moves towards the target.

In the Generalized Voronoi Diagram (GVD) method [11], the robot constructs the graph of all locations that are equidistant from two or more obstacles. In a standard Voronoi Diagram, the sites are individual points, and therefore the graph consists of straight lines. Because the obstacles are not points, the edges of the graph are not necessarily straight lines. There are three pairs of “nearest neighbour” pairings. The points equidistant from a vertex of one obstacle and a vertex of the other obstacle form a straight line, as do the points equidistant from an edge of one obstacle and an edge of a second obstacle. However, the points equidistant from a vertex of one obstacle and an edge of the other obstacle form a parabola, defined by a focus located at the vertex and directrix located at the edge.

In this method, sites are vertices of the GVD, all points in the workspace that are equidistant from three or more obstacles. Adjacencies are determined by the
GVD: if two sites have a GVD edge connecting them, they are connected in the site graph.

This method searches for the safest path, the path that is least likely to intersect with an obstacle. This method also has the benefit of having relatively few sites and edges, as the complexity of GVDs is linear with the number of vertices and edges. Because the GVD is affected by both the vertices and edges of the polygons, if there are \(n \) vertices then the GVD is dependent on \(2n \) sites. Since it is known that a regular Voronoi diagram has at most \(2n - 5 \) vertices and \(3n - 6 \) edges \([2]\), the GVD has at most \(4n - 5 \) vertices, and at most \(6n - 6 \) edges. In actuality, this bound is very high, and many fewer edges and sites will be generated (any site or edge equidistant from two or more vertices or edges from the same polygon may be discounted). Therefore, paths based on GVDs are safe and easy to compute, once the initial GVD is calculated.

However, Generalized Voronoi Diagrams have a number of drawbacks, making them unsuited to the dynamic case. During an iteration of the SPA loop, the obstacles may move, which can drastically change the GVD. Movement by the obstacles can lead to large changes in the GVD, leaving the robot stuck off a path. The robot could potentially spend a lot of time moving towards the path, rather than the target. Further, during each iteration the algorithm must reconstruct the entire diagram, which is not ideal. While the GVD can be computed in \(O(n \log n) \) time \([2]\), it is still desirable to not have to fully recompute this at each iteration.

Visibility Graph (VG)

A visibility graph \([11]\) is a graph in which the vertices are corners of the obstacles and the workspace, and edges connect vertices if the straight line between the two vertices does not pass through any of the obstacles. In this case, the sites are vertices, and the adjacencies are determined by visibility.

This algorithm seeks the shortest path, a straight line. The VG of obstacles consisting of \(n \) vertices will have exactly \(n \) sites, by definition. The number of edges is higher, \(O(n^2) \), but still low enough to create a relatively small search space. However, This algorithm is also not truly suited for real time. First, this algorithm is predicated on the idea of getting close to obstacles, which is risky when the obstacles can move. Further, computation of the VG is an \(O(n^2 \log n) \)-time problem \([2]\), and can be too complex for a real-time algorithm. This algorithm also has the same issue of repeated reconstruction of the model, which we would like to avoid.
Cell Decomposition

The idea of this algorithm is to divide the free space of the workspace into cells [16]. Sites are then located in free cells, and adjacencies are determined by adjacent cells. There are a number of different algorithms that use cell decomposition. A commonly-used algorithm is trapezoidal decomposition [27], where the free space is divided by vertical lines. Other algorithms overlay the workspace with a grid, and all empty regions are considered free sites. In these algorithms, the specific site selection is not so obvious. There are a number of different possibilities, such as the centroids of the regions. The trapezoidal decomposition can be computed in \(O(n \log n)\) time, but must be fully recomputed at each iteration as there is no easy way to update the decomposition easily. The grid method is much more expensive to compute; with \(k\) cells in the grid the computation of free regions takes \(O(kn)\) time [23]. Furthermore, the grid method rules out all areas that are in grid cells that intersect with obstacles, even the areas that are not within the obstacles themselves. This means that we could potentially rule out a legitimate path.

1.4 Path Generation in Dynamic Algorithms

There are many algorithms that try to generate paths in real time, using the sites found in the first part of the algorithm. In the case of Cell Decomposition, Skeleton Methods, and Visibility Graphs, the size of the graph is linear with respect to the size of the workspace and obstacles, and so a general heuristic search, such as A* [15], can be used.

When using motion primitives, an exhaustive search is not fast enough to run in real time. During each cycle, the robot must expand all possible motions, search the entirety of the search graph, and select the currently optimal path. The number of sites grows exponentially with the size of the workspace, and so an exhaustive search in a large workspace would take too much time. While a real time variant of A* has been developed [13], the algorithm still cannot successfully perform an exhaustive search under the time constraints. There are other variants of A*, such as D* [6], which performs a forward search and a backwards search simultaneously. D* is faster than A*, since it only must search halfway. However, although D* is faster, even its real-time variant is not fast enough for real-time applications. Therefore, various algorithms have been developed to approximate an exhaustive search in a shorter time, to ensure the algorithm can run in real time. These algorithms try to limit the number of states to search.
Local Search Space Real Time A^* [14], performs an exhaustive search over a smaller region surrounding the starting location. Given a positive integer n, the algorithm expands n states, as in A^*. A modified heuristic is used, which is the distance from the state to the nearest state that is on the edge of the opened region added to the distance from that state to the target. The algorithm then uses the best path in the smaller search space.

Other algorithms use probability to limit the search space. These algorithms only open a subset of the possible states, and perform a search on the smaller set of states. The Random exploring Random Trees [17] algorithm begins at the robot and randomly expands the search graph to a given number of states, and then searches for the best path in this randomly-generated search space. Probabilistic Road Maps [12] works similarly, but instead of expanding just from the robot, the algorithm creates a set of sites spread randomly throughout the free space of the workspace, and expands search graphs from each of these nodes as well. This gives us many disjoint subgraphs, and the best path within the smaller subgraphs is calculated using A^*.

1.5 Path Smoothing

When using skeleton methods, visibility graphs, and cell decomposition, the resulting path is generally not smooth, which forces the robot to rotate in place. We much prefer to have a smoother path that allows the robot to move constantly, and not rotate in place. Therefore, methods have been developed to augment the path in such a way that the path remains smooth throughout. Control points are placed based on the path and the free space to generate a piecewise Bézier curve or B-spline that remains within the free space [20].
Chapter 2

Terminology and Goal

1 Definitions

We use the following general definitions to describe the algorithm.

\(X \)
A simple polygon in a 2-dimensional Euclidean space. Alternatively, a simply-connected open subset of the plane

\(\partial X \)
The boundary of \(X \), consisting of edges and vertices

\(|X| \)
The complexity (number of edges/vertices) in the bounds of \(X \)

\(V_X \)
The vertices of the boundary of \(X \)

\(E_X \)
The edges of the boundary of \(X \)

\(t \)
A real valued time parameter

\(X_t \)
\(X \) at time \(t \)

\(\kappa(x) \)
Given a real-valued function, \(f(x) \), this is the curvature of the function at a given point \(x \), equal to the reciprocal of the radius of the tangent circle \(\frac{1}{r_{tan}} \).

For a parametric function, the curvature is defined as \(\kappa(x) = \frac{\|f'(x) \times f''(x)\|}{\|f'(x)\|^3} \)

\(\text{site} \)
A point in the plane.
2 Given

For the algorithm to operate, we must know certain information. We must know the bounds of where the robot can move, what obstacles exist and where they are, and what the target is. Furthermore, we must know the state of the robot and the obstacles at the current point in time. To this end, the following information must be known.

Workspace: $W \subset \mathbb{R}^2$

The workspace is represented by a simple polygonal boundary. In general, we want to limit our focus to a specific region, and not care about the entire world. Furthermore, we say that the workspace is simple, so that the robot can reach the entire workspace. If the workspace is not connected, we can treat the workspace as a number of separate workspaces, and only concern ourself with the workspace containing the robot.

Robot: $R(t) = (x_R(t), y_R(t)) \in \mathbb{R}^2$, $\theta_R(t) \in [0, 2\pi]$

A robot is represented by a single point and an orientation. All robots can be represented by a single point, even if the robot itself is actually a polygon or a circle. Polygonal robots can be represented by the minimum bounding circle of the robot’s vertices, and a circular robot can be represented by the center of the robot. In such a situation, we can expand all obstacles to ensure that the robot never intersects with any obstacle. We also define $v(R(t))$ as the velocity of the robot at t, and $\kappa(R(t))$ as the curvature of the path of the robot’s motion at time t.

Target: $T = (x_T, y_T) \in \mathbb{R}^2$

The target is a single point in the plane. The target is static, so there is no time parameter.

Obstacles: $B(t) = \{B_0(t), ..., B_b(t) | B_i(t) \subset \mathbb{R}^2\}$

An obstacle is a simple polygon that the robot cannot enter. We assume that $W \cap B_i(t) \neq \emptyset$, that the obstacle is at least partially within the workspace, and
invalidates a portion of the workspace. If this is not the case, then we can discount
the obstacle as irrelevant.

A static obstacle is an obstacle that does not move. Conversely, a dynamic, or
mobile obstacle is an obstacle that translates and rotates over time. Therefore, at
any given moment the obstacles can be located at any location. We assume that
the motion is smooth; the obstacles cannot jump, and over a short period of time
the obstacles will only translate and rotate a small amount. We also assume that
this motion is random from the perspective of the robot, and that the robot cannot
predict the position of the obstacles at any particular point in time.

Path: \(P(\tau, t) = \{x_p(\tau, t), y_p(\tau, t)\} \)

A path is a piecewise-parametric function that leads from some initial location to
some final location. The path can be any parametric function, although constraints
placed on the path can define what forms of functions may be used. For example,
if we ignore the curvature constraint and simply search for the shortest path, the
path will be a piecewise-linear function.

Time Dependence

- \(W \) is constant with respect to time, meaning the bounds of the workspace do
 not change;

- \(T \) is constant with respect to time; the target point does not move (a loose
 requirement);

- Each \(B_i \) translates and rotates rigidly and smoothly over time. The motion is
 bounded such that, for \(b \) obstacles:

\[
\forall t, \forall i \in [1, b], B_i(t) \subset W
\]

\[
\forall t, \forall i, j \in [1, b] \quad B_i(t) \cap B_j(t) = \emptyset
\]

- \(R(t) \) moves smoothly over time; and

- \(\theta_R(t) \) changes smoothly over time, but is normalized to stay in the range
 \([-\pi, \pi]\).
3 Statement of the Problem

Given:

- A workspace, W;
- A set of b obstacles $B = \{B_i\}, i = 1...b$;
- A robot $R = (x_R(t), y_R(t))$, with orientation $\theta_R(t)$;
- A target site $T = (x_T, y_T)$; and
- A maximum path curvature, α;

navigate R to the target, if possible, such that the following statements all hold true:

- The robot site is never contained (even partially) within any of the obstacles, $\forall t : (x_R(t), y_R(t)) \notin \bigcup B_i(t)$;
- The path of the robot is always smooth, $\forall t : \frac{dx_R(t)}{dt}, \frac{dy_R(t)}{dt}$ exist;
- The motion of the robot never stops completely, $\forall t : \sqrt{\left(\frac{dx_R(t)}{dt}\right)^2 + \left(\frac{dy_R(t)}{dt}\right)^2} \neq 0$; and
- The curvature of the path never exceeds the given threshold, or alternatively, the robot never makes excessively sharp turns: $\forall t : |\kappa(R)| < \alpha$.

We assume that R has perfect knowledge of the world.

A complete layout, with a workspace, obstacles, robot, and target point, will be called a model. Figure 2.1 shows a sample model, one which we will use throughout this thesis. The octagonal white region, bounded by the red boundary and the grey space, is the workspace. The red polygons are the obstacles, and so the white area is the freespace. The red point surrounded by the green circle is the robot, and the red point surrounded by the purple circle is the target. The arrow leaving the robot is the initial orientation of the robot.
Figure 2.1: An example model
Chapter 3

Overview of the Method

1 Motivation

To the best of our knowledge there is no pre-existing algorithm that reuses information from cycle to cycle, as the obstacles move. At each cycle one must entirely recompute the visibility diagram or Voronoi diagram, or one must recheck or recompute every motion primitive. Essentially, the entire process must be recomputed fully at each iteration. To solve this problem, we separate the problem of path finding into three sections that are done in sequence. We perform these steps attempting to reuse as much information from iteration to iteration. We will then see how this model will actually ease the path augmentation for all augmentation methods.

2 Method

The first stage of the algorithm is to create a locally-optimal convex decomposition of the freespace. That is to say, we divide the free area, the area accessible to the robot, into non-overlapping convex, such that no two edge-adjacent regions can be joined into a larger convex region. This decomposition is optimal with respect to the number of faces in the decomposition.

First, we separate the freespace into convex regions. During the first iteration of the algorithm we add diagonals until no region is concave. We then scan through the added edges and greedily remove unnecessary gates to create fewer, more complex convex regions. In all other iterations of the algorithm, we attempt to maintain as much continuity in the map. Therefore, in preparation for the next iteration,
after the obstacles have moved slightly, we first test each face of the pre-existing decomposition. If the face is convex, we ignore it. If the face is now concave, we add new edges, to separate the face into two or more convex regions. We then scan all edges that were added in previous iterations. If the edge can be removed to fuse two smaller convex regions into a single larger convex region, we remove the edge. The edges that are added or removed to the model we call gates.

In the second step of the algorithm, we maintain a straight-line skeleton of the graph, which forms a spanning tree of the adjacency graph of the faces. The straight lines create a piecewise-linear path from the initial point to the target point. The linear segments are joined on gates, so each segment has an initial gate and a final gate. The spanning tree is updated backwards from the leaves (the path ends) to the root (the robot’s current location). If two faces of the decomposition are merged, the branches of the spanning tree are merged as necessary; similarly if a face is split, we split the appropriate branch. When a segment is first added to the spanning tree, the line segment is placed such that the initial point is equal to the final point of the parent segment (on the shared gate). We place the final point on the exit gate in such a way so as to minimize the sum of the distance from the initial point to the final point and the distance from the final point to the target. In all other iterations, we set the final point to match the initial point of the best child, and then set the initial point to be the point on the initial gate that minimizes the sum of distances from the parent’s initial point to the final point. The first branches, whose parent is the root, have a fixed initial point, while the branches that reach the target have a fixed final point.

In the third step of the algorithm, we recompute the path augmentation. We select an augmentation method to create a smooth path. The method should require as input for computation nothing more than a maximum curvature, initial and final points, and initial and final orientations. We begin this step by computing the initial and final orientations for each segment. The initial orientation is computed as a function of the parent’s initial point, the initial point, and the final point, while the final orientation is computed as a function of the initial point, the final point, and the best child’s final point. We then compute the augmented path, based on the selected augmentation method. We then ensure that the resulting path has a maximum curvature less than the threshold, and is bounded within the face spanned by the underlying linear segment.
3 Convex Decomposition of the Free Space

3.1 Data Structures

The convex decomposition is maintained using a *doubly-connected edge list* structure, DCEL in short, which consists of the following internal structures:

Vertex
A point in \(\mathbb{R}^2 \), which contains a pointer to an outgoing halfedge.

Halfedge
A line segment in \(\mathbb{R}^2 \), exiting a source vertex. Each halfedge has a pointer to a twin halfedge which exits the second endpoint of the line segment. Each halfedge also contains a pointer to a preceding halfedge, a successor halfedge, and an adjacent face.

Face
An open polygonal subspace of \(\mathbb{R}^2 \). The face contains a pointer to a single outer, bounding edge, and a list of pointers to edges bounding 'holes,' internal faces.

By construction, outer halfedges of a face progress counter-clockwise around the face, that is to say that as one traverses the boundary of a face from one halfedge to the next halfedge, one will be traveling counter-clockwise around the perimeter of the face.

3.2 Definitions

gate
\(g \in E, \ g \notin \partial W, \ \forall B_i(t) \in B(t) \rightarrow g \notin \partial B_i(t) \)

Let \(G \) be the set of all gates, \(G = E \setminus (\partial W \cup \bigcup \partial B_i(t)) \). Then, \(\forall g \neq h \in G, \ g, h \) do not intersect.

4 Method of Decomposition

For the purposes of this thesis, we will refer to the set of vertices, edges, and faces as the “model.” We will also define the term “locally-optimal convex decomposition”
to mean a convex decomposition such that no edge-adjacent regions can be fused into a single larger convex region.

The primary objective of the convex decomposition method is to create and maintain a locally-optimal convex decomposition. In the first iteration we create the decomposition, and in each subsequent iteration we split and fuse regions as necessary to preserve the convexity and the local optimality. A secondary objective is to maintain continuity between iterations, where continuity is defined as similarity between the faces at the end of the previous iteration and the current iteration. This means that we prefer to split concave regions into a fewer number of convex regions, rather than fully triangulate the polygon.

4.1 Adding and Removing Gates

In order to maintain a locally-optimal convex decomposition, we must be able to easily add and remove gates from the model. Gates are added to maintain convexity, and are removed to maintain optimality. We can view the boundary of a face as a chain directed counter-clockwise about the face, where the links are halfedges and the joins define the sequence of previous and next halfedges. In this model, adding a gate is analogous to breaking two joins and adding two links to the boundary chain to create two separate boundary chains. Similarly, removing a gate is analogous to removing a pair set of links from two chains, and joining the broken ends to create a single chain. In both cases, we need to maintain the correct sequence of previous and next halfedges. Figure 3.1 shows an example of necessary and unnecessary gates.

4.2 Convex Decomposition of the Polygon

In order to ensure that the decomposition results in convex regions, we must develop a method to decompose concave polygons into two or more convex regions. Since any polygon can be triangulated, and triangles are certainly convex, we can always rely on this result to form a convex decomposition. However, because the goal is to maintain a locally optimal convex decomposition, and to maintain as much continuity as possible between iterations, we try to find a method that creates fewer, larger convex polygons. We present different approaches for monotone and non-monotone polygons.
Figure 3.1: (a) A portion of the model, and (b) the same portion of the model, but with an added gate connecting the two paths. Each halfedge is drawn as an arrow, beginning at the halfedge’s source and reaching the next halfedge’s source. By following each arrow to the next arrows we can see the sequence of next and previous edges. (c) A gate which splits two angles turning in. This gate is splitting convex angles, and can be removed.

Monotone polygon convex decomposition

To decompose a monotone polygon into convex regions, we develop a variant of the standard triangulation algorithm for monotone polygons [2]. The triangulation algorithm uses a plane sweep to traverse the polygon along the axis of monotonicity and add diagonals to the polygon. While this results in convex regions, this may be excessive, and does not maintain continuity between iterations. Therefore, we modify the algorithm to not insert every single diagonal, but only the necessary diagonals.

The simplest modification to the algorithm is to test each candidate gate before it is added, and only add if either endpoint is concave in the polygon. While this reduces the number of added diagonals, there is still the potential to overly-decompose the polygon. Therefore, we have developed the following variant to the algorithm.
We assume without loss of generality that the polygon is \(x \)-monotone. We begin at the leftmost vertex (with the lowest \(x \) value), and begin iterating clockwise and counter-clockwise about the boundary of the polygon. At each step we advance the iterator whose successor has a lower \(x \) value. This process is continued until one of the iterators reaches a concave vertex. We refer to this iterator as the first iterator, and the other as the second. We advance the second iterator until one of the stopping conditions are met. The stopping conditions are:

- A second concave vertex is found;
- Adding the diagonal would result in a concave vertex on the left side of the new diagonal; and
- The second iterator passes the successor of the first.

In the second and third cases, we backtrack the second iterator to the previous vertex. We add a gate connecting the two vertices, and continue, as can be seen in Figure 3.2.

In some cases we may reach a concave vertex, and after reaching our stopping conditions, the two vertices are already adjacent. In this case, we must use the standard triangulation algorithm until the final vertex is reached, or the stack from the original algorithm contains only two adjacent vertices.

![Figure 3.2: Monotone polygon convex decomposition](image)

General polygon convex decomposition

The above algorithm will not work for a non-monotone algorithm, because we do not know if all unchecked points are beyond the sweep-line. We therefore take a different approach. While we could fully triangulate the polygon, this process is excessive, and
limits the continuity between iterations. Furthermore, while the time complexity of
the triangulation algorithm is theoretically linear with respect to the complexity of
the polygon, there is, to our knowledge, no successful implementation of the linear
time triangulation algorithm, and so there is no benefit, with respect to complexity,
of fully decomposing the polygon. Rather, we split the polygon into smaller regions,
and recursively split the new regions until we obtain convex regions. If at any point
one of the regions is monotone, we can apply the monotone decomposition algorithm
described above. We present two algorithms for the decomposition, examples of
which can be seen in Figure 3.3.

The first method is to divide the polygon into monotone regions and then apply
the monotone convex decomposition algorithm described above. We use the stan-
dard monotone decomposition algorithm [2], the sweepline algorithm that separates
the polygon into monotone regions. We select an arbitrary axis of monotonicity,
and then apply the algorithm, adding gates to the model, and creating two or more
monotone regions.

The second method is to locate a concave vertex, and then to insert a diagonal
into the model to split the angle of the concave vertex. We can always add a diagonal
to a polygon [22], although by the construction of the diagonal-adding algorithm we
know that this will not always split the concave vertex.

While this method appears, on the surface, to be the most inefficient, in practice
this is the fastest method. Monotone decomposition requires sorting the vertices,
while adding a diagonal requires testing each vertex at most twice. Due to the
smoothness of motion, we almost always find that the diagonal we try to add is
an internal diagonal. In the rare occasion in which the diagonal is not internal,
our process still progresses towards a convex decomposition, even if in an inefficient
manner.

![Figure 3.3: The first step in general polygon decomposition. (a) A polygon that is
not x-monotone. (b) The result of completing the x-monotone division
algorithm. (c) The result of the first step of Diagonal Splitting.]
Finding an axis of monotonicity

It is clear that the monotone decomposition algorithm is both faster and simpler, and is therefore preferable. By selecting a single axis of monotonicity, or a small set of possible axes and testing each, we limit our likelihood of being able to apply the monotone algorithm. Therefore, we can apply the following algorithm [24] to find (in linear time) an axis of monotonicity, if such a line exists.

Given a vertex of a polygon, the adjacent vectors of the vertex are defined as the vectors beginning at the vertex, with magnitude and orientation equal to the adjacent edges of the vertex. Any vector with orientation between the orientations of the adjacent vectors will define the slope of a line that passes through at most one of the edges. Therefore, if the vertex is a concave vertex of the polygon, a 90° rotation of the angular region defines a set of possible axes of monotonicity. We can consider the set to be the intersection of two half-spaces of a one dimensional space, where one endpoint (a 90° rotation of one of the vectors) defines the halfspace greater than the orientation, and the other endpoint (a 90° rotation of the second vector) defines the halfspace less than the orientation. We can now apply the linear-programming algorithm that finds a point in the intersection of halfspaces. We arbitrarily select a vertex to begin. If the vertex is concave, we compute the two “half-spaces” to add to our model, and add them as defined by the linear programming algorithm. We then iterate around the polygon, and repeat the process for every concave vertex we find. If, after passing all vertices, we have a solution, we have an axis of monotonicity, and can use that axis for the monotone decomposition algorithm. If there is no solution, then we must use a non-monotone decomposition algorithm. The algorithm to find an axis of monotonicity for a given face f can be seen in Figure 3.4.

4.3 Initialization

We begin our entire algorithm by creating the DCEL representation of the scenario. First, the vertices and edges of ∂W are added in counter-clockwise order to create a simple polygon. We then add halfedges to connect the vertices, such that the interior halfedges traverse the bounds in counter-clockwise order, and the exterior halfedges traverse the bounds in clockwise order. Last, we create an interior face and an exterior face. We set the adjacent face of all external halfedges to the exterior face, and the adjacent face of all internal halfedges to the internal face. We arbitrarily select a single interior halfedge to set as the adjacent edge of the interior face, and act similarly for the exterior face.
1: function FindAxis(f)
2: \(\theta_{\text{min}} := 0; \)
3: \(\theta_{\text{max}} := 2\pi; \)
4: \(s := f.\text{outer}; \)
5: \(i := f.\text{outer}; \)
6: Repeat
7: If isConcave(i.source) Then
8: \(\theta_2 := \text{atan2}(i.dy, i.dx); \)
9: \(\theta_1 := \text{atan2}(i.\text{prev}.dy, i.\text{prev}.dx); \)
10: If \(\theta_1 < 0 \) Then
11: \(\theta_1 := \theta_1 + \pi; \)
12: fi
13: If \(\theta_2 < 0 \) Then
14: \(\theta_2 := \theta_2 + \pi; \)
15: fi
16: If \(\theta_2 < \theta_1 \) Then
17: \(\theta_2 := \theta_2 + \pi; \)
18: fi
19: \(\theta_{\text{min}} := \max(\theta_{\text{min}}, \theta_1); \)
20: \(\theta_{\text{max}} := \min(\theta_{\text{max}}, \theta_2); \)
21: fi
22: i := i.next;
23: Until s = i;
24: If \(\theta_1 \geq \theta_2 \) Then
25: return \(\frac{\theta_1 + \theta_2 + \pi}{2}; \)
26: Else
27: return \(\infty; \)
28: fi
29: end

Figure 3.4: Finding an axis of monotonicity. \(e.dx = e.x - e.\text{prev}.x \), and the comparable definition exists for \(e.dy \).

Next, we insert the obstacles into our model, adding holes to the workspace polygon. For each obstacle, we add the vertices, half edges, and interior faces as we did with the bounds. The exterior face of all the obstacle’s exterior halfedges are set to be the interior face of the workspace.

The next step is to eliminate the holes of the polygon by adding gates to the model. The gates added in this stage should be diagonals of the polygon, and should connect a vertex on the boundary of a hole to either a vertex on the boundary of a different hole, or a vertex on the boundary. This process can be seen in Figure 3.5.

The resulting polygon is almost certainly not convex, and most likely is not even monotone. We apply the appropriate convex-decomposition algorithm, adding gates
until the entire freespace has been split into convex regions. This two-step process, of eliminating the holes and then decomposing into convex regions, can result in unnecessary gates. This is due, in part, to the general decomposition algorithm. In both options, we add gates that we know are currently necessary, but we do not consider the gates that will be added in a future stage of the algorithm. The other cause for unnecessary gates is the initial hole elimination, which also does not take into consideration the addition of any other gates (and, in fact, does not necessarily split concave vertices). Therefore, we must test all gates, and remove any unnecessary gates to optimize the decomposition. The entire initialization process, from a polygon with holes to a locally-optimal convex decomposition, can be seen in Figure 3.6.
4.4 Maintaining the Convex Decomposition

Because the obstacles move smoothly over time, we assume that the model can remain fairly consistent, with few changes from iteration to iteration. Therefore, after the initialization process we no longer have to do the process described above, and instead can try to maintain the decomposition with as much continuity as possible. We run a two-step process to ensure that convexity is maintained, while keeping as much similarity between the regions before and after the process as possible and keeping the composition locally optimal.

In the first stage we ensure that no face is concave. We begin by testing each face for convexity and monotonicity, as described above. All concave polygons are split using the appropriate algorithm. In the second stage, we scan over all the gates, and greedily remove as many gates as possible, resulting in a locally optimal convex decomposition.

Below, Figure 3.7 shows the addition of a gate to the model, Figure 3.8 shows the removal of a gate, and Figure 3.9 we see both actions occurring in the same iteration.
Figure 3.7: The green gate is added to the model

Figure 3.8: The bold blue gate is removed from the model

Figure 3.9: The green gate is added to the model, and the bold blue gate is removed
5 Search Graph Construction

The next step of the algorithm, after the convex decomposition, is to construct a piecewise-linear tree, or skeleton, that forms the basis of our path. We will represent the skeleton as a directed graph, or digraph, where each node represents a gate, the robot, or the target, and edges represent linear path segments. The edges must keep track of their initial and final points, and update as necessary. The “root” of the digraph should be the robot, and the digraph should span the workspace, such that the end-nodes of the graph are either ends of the searched graph, or the target. Each edge of the graph should span a single region. During each iteration, we must remove nodes representing gates that were removed in convex fusions, and we must add nodes and split edges when faces are split. We must update all the edges initial and final points.

5.1 Structure of the Search Graph

The graph consists of nodes and edges. Almost all nodes represent gates of the convex decomposition, the exceptions being one node that represents the initial point, the robot, and one node that represents the target. All paths on the directed graph originate at the robot, and so we will call this the root of the graph. Edges of the graph represent sections of the path that span a single face of the convex decomposition, and are directed from the robot towards the target. Edges that leave a node are called outgoing edges, and edges that come in are called incoming edges. The node that an edge leaves is called the source node, and the node that an edge reaches is the end node. Since gates are twinned pairs of halfedges, the node specifically represents the halfedge adjacent to the spanning face of the incoming edges.

Generally, in global motion-planning algorithms, the nodes of the search graph represent specific locations in the workspace. In our algorithm, with the exception of the root and target nodes, the nodes represent gates in G, which are line segments, and the path segments can meet anywhere on the line segment. Therefore, each edge of the digraph must also maintain the initial and final points on the gate segment.

Nodes keep track of the gate they represent, as well as a list of outgoing edges of the digraph. As stated above, each edge stores the initial and final points, the locations where the path segment begins and ends. Each edge also tracks the node on which it ends. Last, each edge keeps track of the parent edge, the edge of the
digraph that leads immediately to this edge, as well a list of children, edges that follow directly from this edge of the digraph.

We can then define the data structures and data stored in each.

- **Node**
 - Gate halfedge g
 - Outgoing edges out

- **Edge**
 - Parent edge p
 - A list of children edges $children$
 - End node end
 - Initial Point P_0
 - Final Point P_1

5.2 Selection of Best Path Segments

By construction of the dual graph, a given edge may have more than one child edge. Each edge must end at a single specific point, and to construct a complete path we need the end of an edge to coincide with the beginning of the child edge that will complete the path. Therefore, we need to determine an evaluation method that selects a best child. For a given edge e, for each child $f \in e.children$ we give f the score of the sum of the length of f and the distance of f to the target; formally, the f’s score is equal to $\|f.P_1 - f.P_0\| + \|T - f.P_1\|$, where T is the target. We select the child with the minimum score as the best child.

5.3 Search Graph Initialization and Update

As mentioned above, an edge of the graph and the source and end nodes are not sufficient to represent the edge’s actual position in the plane. Because the nodes represent line segments, and each edge passes between two nodes, we must find a way to determine the specific locations on the nodes’ gates where the edge begins and ends.

Furthermore, when we construct the search graph we do not want to add every single possible edge; to do so would be to add unnecessary complexity to the search
graph itself, and would add unnecessary computation time to our algorithm as we update edges that are not even searched. Therefore, we only add edges as dictated by the graph search. As we reach a new node in our search of the graph, we add edges to our graph connecting the node to its neighbors. If the edge already exists from some previous iteration, we update the edge’s initial and final points based on the new geometry.

We present the method of inserting and updating edges in the graph to find the best possible path skeleton. Our goal in this section is to begin with a greedy estimate of the shortest path, and iteratively improve the estimate.

As an edge is added to the search graph, the end-points are placed minimize the distance to the target. For an edge, \(e \), the initial point, \(e.P_0 \) is set to equal \(e.parent.P_1 \) (unless \(e \) exits the root of the digraph, the robot, in which case \(e.P_0 := R \)). Once \(e.P_0 \) is set, we \(e.P_1 \) is set to give the best greedy estimate of the path. If \(e.end = T \), \(e \) ends at the target, then obviously \(e.P_1 := T \). Otherwise, the final point is computed by finding the “pass-through” point on the ending node’s gate. This point, the result of the \(\text{passthrough} \) function, is the point that minimizes the length of the path from the initial point to the target. We assign \(e.P_1 := \text{passthrough}(e.P_0, T, e.out.gate) \).

The \(\text{passthrough} \) function is computed as follows. Given a gate \(g \) connecting \(v_1, v_2 \), and two points not on the gate, \(P_a, P_b \notin g \), the point \(\text{passthrough}(P_1, P_2, g) \) is computed by finding the intersection point \(P = \text{intersection}(P_a, P_b, v_1, v_2) \), the intersection of the line segments \(\overline{v_1, v_2} \) and \(\overline{P_a, P_b} \). We then compute \(\tau = \frac{P_a - v_1}{v_2 - v_1} \).

If \(0 \leq \tau \leq 1 \), the function returns \((P_x, P_y)\). Otherwise, we compute \(d_1 = \|P_1, v_1\| + \|P_2, v_1\| \) and \(d_2 = \|P_1, v_2\| + \|P_2, v_2\| \). If \(d_1 < d_2 \), then the function returns \(v_1 \), otherwise \(v_2 \).

Once an edge already exists in the digraph, the purpose of updating is to iteratively improve our estimate of the path segment. We first update the final point, which depends on the state of the edge. If \(e.end == T \), then \(e.P_1 := T \). If \(e.end \) is

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example_gates.png}
\caption{(a) A gate and direct pass-through \hspace{1cm} (b) A gate which does not allow for a direct pass-through}
\end{figure}
not the target, but $e.children$ is empty, we assign $e.P_1 := \text{passthrough}(e.P_0, T, e.end)$. If, however, $e.children$ is not empty, we select the best child, and set $e.P_1 := \text{bestChild}.P_0$. Next, we update the initial point. If $e.parent.end$ is the root, then $P_0 := R(t)$. Otherwise, $e.P_0 := \text{passthrough}(e.parent.P_0, e.P_1, e.parent.end.gate)$.

Figure 3.10 shows an example of a “direct” passthrough, one in which the two endpoints are mutually visible along a straight line passing through the gate, and an indirect passthrough, in which the two endpoints are not mutually visible, and so two linear segments are necessary. Figure 3.11 shows the result of the full iterative updating process. This updating process is similar to Chaikin’s corner cutting algorithm for curve construction [7]. However, Chaikin’s algorithm raises the order of the polyline by adding control points to better approximate a curve, while our algorithm attempts to effectively lower the order of the polyline to better approximate the shortest path available.

5.4 Maintaining the Graph

In the course of each iteration, the graph must be scanned for edges that are no longer valid. This could be due to nodes removed when their associated gates have been removed in a convex merge, or this could be due to a concave split of the edge’s spanning face.
We first check for edges that end on nodes that no longer exist. Because the node was removed as part of a convex merge, the children edges are now meant to span the same face, and so they can be kept, but pulled one level up the digraph. We begin at the root edge of the digraph, at the edge that is incoming to the root node. We call the current edge \(\textit{current} \), and begin testing each child edge. For each child edge, \(e \in \textit{current}.\text{children} \), we test to see if \(e.\text{end}.\text{gate} \) still exists. If \(e.\text{end}.\text{gate} \) does not exist, then all of \(e.\text{children} \) are added to \(\textit{current}.\text{children} \). Furthermore, for each \(f \in e.\text{children} \), we assign \(f.\text{parent} = e.\text{parent} \). Then, we assign the initial point of \(f \) as described above. Last, we remove \(e \) from \(e.\text{parent}.\text{children} \) and \(e.\text{entranceNode}.\text{leaving} \). Once we complete the test on all edges, we iterate over all edges \(e \in \textit{current}.\text{children} \), and recursively apply this function to \(e \).

Next, we search the graph for edges that span split faces. Again, we begin at the root edge, and treat it as current. For each edge \(e \in \textit{current}.\text{children} \), we test if \(e.\text{exitNode}.\text{adjacentFace} = e.\text{parent}.\text{exitNode}.\text{g}.\text{twin}.\text{adjacentFace} \) (in the case of edges leaving the root, we test if \(e.\text{exitNode}.\text{adjacentFace} \) contains the root location). If \(e \) fails this test, then we know the spanning face was split. We add \(e \) to a set of split edges, \(\textit{split} \), and remove them from \(\textit{current}.\text{children} \). We create a new node, \(g' \), representing the added gate, and a new edge \(e' \). \(e' \) is added to \(\textit{current}.\text{children} \), \(e'.\text{parent} := \textit{current} \), and \(e'.\text{end} := g' \). Then, for all \(f \in \textit{split} \), we add \(f \) to \(e'.\text{children} \), and set \(f.\text{parent} := e' \). We then set \(e'.P_0 := \textit{current}.P_1 \), and we maintain \(f.P_1 \) for all the edges that were split. Next, for all \(f \), we select the best child (as described above), and update \(f.P_0 \).

It is to our benefit to prevent cycles in the search graph; partly, cycles increase the complexity of the search graph, and partly cycles serve very little purpose, as they require unnecessary traveling, which would guarantee a longer than necessary path. Therefore, if two paths reach the same node, we only keep the better of the two paths. We do not remove the entire second path, just the section that reached the conflicted node, as well as children. This means that two segments cannot arrive at the same gate, and thus there are no possible cycles.

5.5 Full Update Process

The full update function is a recursive, depth-first traversal that allows us to clean and update the graph in one scan. Beginning at the root edge, we begin applying the cleaning function described above. Before we return from a branch, and go one level up the digraph, we select the best child. If there are no children, then there is
no best child, but if there are children we will have already updated all the children, so we can correctly choose a best child. Once a best child is chosen we apply the linear segment update to the edge, and then return. The first two iterations of the linear graph creation and maintenance can be seen in Figure 3.12.

6 Path Augmentation

The resulting spanning graph consists of linear edges passing between gates while remaining within a single convex region. Each edge, or path segment, has an initial point and a final point. Our goal is to augment the linear path segments into curves. The augmented path should be a smooth curve whose maximum absolute curvature is less than a given threshold, and that is fully contained within the bounding face. For each segment we must be able to compute the maximum curvature and we should have at least an approximation of the curve length. Last, we must be able to test if the curve is bounded within the face. This can be done with any curve...
in any polygonal face, but we will use the geometry and convexity of the faces to accelerate the boundedness test.

6.1 End-Point Orientation Computation

The first step in computing the path augmentation is to find the initial and final orientations of the curve segment. We have already fixed the initial and final points, we have fixed the parent initial point and best child final point, and so from this we can compute the orientations. The general orientation update function is the following. Given three points, \(P, P_{\text{prev}}, P_{\text{next}} \), then the orientation at \(P \), denoted by \(\theta \), is computed as:

\[
\theta = \arccos \left(\frac{\langle v_{\text{prev}}, v_{\text{next}} \rangle}{\|v_{\text{prev}}\| \|v_{\text{next}}\|} \right) + \frac{\pi}{2},
\]

where \(v_{\text{prev}} = P - P_{\text{prev}} \) and \(v_{\text{next}} = P - P_{\text{next}} \).

We will call this calculation \(\text{HeadingatPoint}(P, P_{\text{prev}}, P_{\text{next}}) \), and an example can be seen in Figure 3.13.

We also add initial and final orientations to the linear segments, which we will label, for a given segment \(e \), by \(e.\theta_0 \) and \(e.\theta_1 \), respectively.

For a linear segment \(e \), we set the initial heading and final headings:

\[
e.\theta_0 := \text{HeadingatPoint}(e.P_0, e.\text{parent}.P_0, e.P_1),
\]

\[
e.\theta_1 := \text{HeadingatPoint}(e.P_1, e.P_0, e.\text{bestChild}.P_1).
\]

If \(e.\text{parent}.\text{end} = \text{root} \), then there is no previous point, and so we set \(e.\theta_0 := \theta_R \), the robot’s orientation. Similarly, if \(e.\text{end} = \text{target} \), then we have no next point, and so we set \(e.\theta_1 \) to equal some final orientation (which can be chosen by the user, or can be a function of the path and the augmentation method). Otherwise, if \(e.\text{children} \) is empty, again we have no next point, so we assign \(e.\theta_1 := \text{HeadingatPoint}(e.P_1, e.P_0, \text{target}.\text{point}) \).

6.2 Curve Computation

From the construction of the skeleton, each segment has an initial point and a final point, as well as an initial orientation and a final orientation (which for now we
will treat as givens). We select a path augmentation method that is a function of the initial point and orientation, the final point and orientation, and (possibly) the maximum curvature. Three such methods will be discussed later. After the path is computed, we must test the path for three necessary conditions. First, is the path computable. Depending on the form the augmentation takes, the computation may result in no viable solutions. Second, we must know if the path’s maximum curvature is below the threshold. While this may be proven by construction, it is not necessarily so, and so we must be able to test for the maximum curvature. Third, we must be able to check if the path is fully bounded within the spanning face.

For some augmentation methods, we may be able to test the boundedness of the curve using a very quick test. For example, we will see in Section 3.5 a simple method to test the boundedness of a Bézier curve. For some methods there is no known simple test, so we will show a method here that will work for all augmentations. We define the initial-heading block as the edge that bounds the face and does not contain the initial point, but intersects the line passing through the initial point with heading equal to the initial orientation. We also define the final-heading block as the direct analog for the initial with the final point and final orientation. During each iteration, because everything occurs smoothly, we can assume that the initial orientation changes somewhat smoothly as well. Therefore, when we update the path segment, we test the current initial and final heading blocks to ensure that they are still serving as the block. If they are not, we shift the block to a neighboring edge as needed. If the current block is deleted as part of a convex merging we use the current block’s neighbors to begin the search for the new block, so that we don’t need to perform a full scan.

To test if a curve, $\gamma(\tau), \tau \in [0, 1]$ is fully bounded by a convex region, we perform a point crawl as follows: We begin at $\gamma(0)$, and the current block is set to the initial-edge block. Our next point is $\gamma(\Delta \tau)$, for some small $\Delta \tau$. We compute $\gamma(\Delta \tau) - \gamma(0)$, and test if the extension of this vector from $\gamma(0)$ intersects the current block. If not, we adjust the current block to the correct neighbor. We then check that both points are on the same side of the current block; if both are, then the current point is within
the face. We then set $\tau = \Delta \tau$, and repeat the process for $\gamma(\tau)$ and $\gamma(\tau + \Delta \tau)$. We repeat this process until we reach the final point, or until our two test points are on opposite sides of the current block.

Figure 3.14 shows a curve segment scenario. We see the bounding face, as well as the initial and final points and orientations. We also see a possible curve for the scenario, and how the point crawl could be performed on this curve with this scenario.

7 Improvement to Path-Length Estimate

To this point we have not discussed any specific curve augmentation method. However, based on our assumptions we know that regardless of the augmentation method we can compute the curve length, maximum curvature, and boundedness. Therefore, we know that we can improve our path estimation from above to include these three factors. Rather than using the linear segment length during the full update stage of the algorithm, we use the length of the augmented curve segment. If we cannot augment the edge, if the augmentation function fails for some reason on a given edge, we add a penalty to that edge’s score. We also add a penalty to the scores of edges that violate either the curvature constraint or the boundedness constraint. As the scenario changes, the segments that are currently in violation of our conditions may become compliant with said conditions, and it is to our benefit to keep updating the curve. Therefore, we don’t destroy the segments, but keep updating them, doing, however, our best to avoid them.
8 The Complete Algorithm

We first maintain the convex decomposition, as described in the first section, and update the current face (the face of the decomposition in which the robot currently stands). Then we run the complete graph-update function. When we update the segments, we don’t just update the linear segments, but also update the curves, and test the curve segments for computability and boundedness. We use the results to update the path segments. We then run an A* search, using the curve lengths and the penalties as the path length, and Euclidean distance from the final point to the target as our heuristic. In this stage we can create new segments.

Once we have selected a path, we have the robot traverse the path. The robot follows the selected path, along the initial path segment. If the robot crosses an edge into a new region, we need to update the graph. We select the best child of the first path segment as the next step in the path. We move into the region and rebalance the tree. If the first segment is \(e \), and the second segment is \(f \), then we apply the following process: we flip \(e.gate \), to use the gate edge twin. We then remove \(f \) from \(e.children \), and add \(e \) to \(f.children \).

The algorithm terminates when the robot cannot travel any longer. This occurs when either the robot reaches the target, or the robot cannot reach the target (if the obstacles trap the robot).

9 Panic Mode

There are two possible scenarios by which we may have to break out of the standard algorithm. The first situation is when the initial segment fails one of the three tests: thresholded curvature, boundedness, or computability. If any of these tests fail, then we choose a direction of rotation, and turn at maximum curvature in that direction of rotation until the path passes all three tests. The second possible situation is if the robot comes too near an obstacle. In that case, we turn away from the obstacle at maximum curvature.

In order to determine that we are nearing an obstacle, that a collision is imminent, we define a cone in front of the robot, which we will call the panic cone. This cone has a known aperture angle and known side-length. We can test if the robot is nearing the boundary of the workspace by checking all edges of the boundary of the workspace, \(e \in E_W \). If any edge intersects the panic cone, then the robot enters
the panic mode. Rather than testing every edge of every obstacle for a possible collision, we check for collisions with bounding discs. During the initialization of the algorithm, we compute the minimum bounding disc of each obstacle. As each obstacle is moved, we move the bounding disc as well. This works because the obstacles move rigidly. Then all we must do is check each obstacle’s bounding disc for a collision with the panic cone. The panic cone and bounding discs for our sample model can be seen in Figure 3.15.

Figure 3.15: The panic cone and obstacle bounding-discs
Chapter 4

Curvature Augmentation Methods

We will now discuss three different possible methods of curvature augmentation. For each method, we will show how we can compute the curve, how the curve computation can fail, how we can test the maximum curvature, and how we can compute the curve length. We will also show how the boundedness test can be improved, so that a full point-crawl is not necessary.

1 Notation

We define the following:

\(P_0, P_1 \)

The initial and final points of the curve,

\(v_0, v_1 \)

The unit vectors representing the initial and final orientations of the curve,

\(\theta_0, \theta_1 \)

The angle of the initial and final orientations of the curve, in radians,

\(\kappa_{\text{max}} \)

The maximum allowed curvature of the path,

\(F \)

The face spanned by the curve,

\(g_0, g_1 \in \partial F \)

The initial and final gates, by which the path enters \(F \):

\(P_0 \) lies on \(g_0 \) and \(P_1 \) lies on \(g_1 \), and

\(b_0, b_1 \in \partial F \)

The initial and final heading blocks.
2 Circle-to-Circle Spline

The first method we will discuss is called Circle-to-Circle (henceforth to be called CtC Spline). In this method, we find a method that assumes either we are turning at the maximum curvature, or else we are driving straight. To do this, we use the initial point and orientation and the final point and orientation to each define a circle of rotation, and the resulting path is an arc of the initial circle of rotation, followed by a joint tangent, followed by an arc of the final circle of orientation. Examples can be seen in Figure 4.1.

The idea of using sets of conic sections for interpolation, given interpolation points and orientations, was introduced by R.A. Liming [19] for airplane design. This method is still in use in a number of engineering disciplines, and opens a wide array of possible curves. We use circles and lines because they are easy to manipulate and create the shortest path.

![Figure 4.1: Two CtC splines in the same scenario, with different maximum curvatures](image)

2.1 Computation

To compute the CtC spline, we begin by computing the two possible initial circles of rotation. If we treat the initial point and vector as a tangent vector to a circle of radius \(\frac{1}{\kappa_{\text{max}}} \), we can compute the two centers by rotating the initial vector by \(\pm 90^\circ \) and translating from the initial point by the radius. We repeat this process for the final vector, giving us two initial circles and two final circles, combining for four pairs of circles. We then define the winding sign of the vector to be the sign of rotation implied by the tangent vector (positive for counter-clockwise, negative for clockwise). We compute the winding sign of the initial vector for each tangent circle, and the winding sign of the final vector for each final tangent circle.
For each possible pair, we compute all four cotangents. For each cotangent, the vector from the initial circle’s tangent point to the final circle’s tangent point induces a winding sign for each circle. For each possible pair, there is only one cotangent with the correct pairing of winding signs to match the winding signs of the initial and final vectors. We compute the arc traversed by around both circles, and the length of the tangent line, to get a curve length. We select the pair of circles that has the shortest curve length, and that results in our curve.

Mathematically, the construction works as follows:

Given \(P_0, P_1, v_0, v_1, \kappa_{\text{max}}, \) and \(r = \frac{1}{\kappa_{\text{max}}} \) define

\[
dx_0 = v_{0,x}, \ dy_0 = v_{0,y}, \ dx_1 = v_{1,x}, \ dy_1 = v_{1,y}.
\]

We can then define four circles with centers and angles to the initial/final point as follows:

\[
c_{00} = P_0 + [dy_0, -dx_0], \ \theta_{00} = \arctan2(-dy_0, dx_0),
\]
\[
c_{01} = P_0 + [-dy_0, dx_0], \ \theta_{01} = \arctan2(dy_0, -dx_0),
\]
\[
c_{10} = P_1 + [dy_1, -dx_1], \ \theta_{10} = \arctan2(-dy_1, dx_1),
\]
\[
c_{11} = P_1 + [-dy_1, dx_1], \ \theta_{11} = \arctan2(dy_1, -dx_1).
\]

This allows us to calculate the winding sign

\[
\text{wind}_{00} := \text{wind}(v_0, c_{00}) = \langle v_0, [-\sin(\theta_{00}), \cos(\theta_{00})] \rangle
\]
\[
\text{wind}_{01} := \text{wind}(v_0, c_{01}) = \langle v_0, [-\sin(\theta_{01}), \cos(\theta_{01})] \rangle
\]
\[
\text{wind}_{10} := \text{wind}(v_1, c_{10}) = \langle v_1, [-\sin(\theta_{10}), \cos(\theta_{10})] \rangle
\]
\[
\text{wind}_{11} := \text{wind}(v_1, c_{11}) = \langle v_1, [-\sin(\theta_{11}), \cos(\theta_{11})] \rangle
\]

Because the vectors \(v_0 \) and \(v_1 \) are by construction unit vectors, \(v_0 \) is tangent to \(c_{00} \) and \(c_{01} \), and \(v_1 \) is tangent to \(c_{10} \) and \(c_{11} \), the dot product result is either 1 (for parallel) or -1 (for anti-parallel). And since the derivative of the function of a circle implies a counter-clockwise rotation about the circle, this gives us the winding sign as described above.

We say that \(C_0 = \{c_{00}, c_{01}\} \), \(C_1 = \{c_{10}, c_{11}\} \), and define \(C_{0,1} := C_0 \times C_1 \)
For each circle pair \((c_i, c_j) \in C_0, c_i \in C_0, c_j \in C_1\), we compute the four cotangent lines, and thus the four pairs of tangent points which we denote as \((t_{00}, t_{10}), (t_{01}, t_{11}), (t_{02}, t_{12}), (t_{03}, t_{13})\). We compute the inner tangent points:

\[
m = (c_i + c_j)/2,
\]

\[
\theta_c = \arctan(c_{j,x} - c_{i,x}, c_{j,y} - c_{i,y}),
\]

\[
l = \|m - c_i\|,
\]

\[
\theta = \arcsin(r/l),
\]

\[
l_1 = l \cdot \cos(\theta),
\]

\[
t_{00} = m - [l_1 \cos(\theta_c + \theta), l_1 \sin(\theta_c + \theta)],
\]

\[
t_{10} = m + [l_1 \cos(\theta_c + \theta), l_1 \sin(\theta_c + \theta)],
\]

\[
t_{01} = m - [l_1 \cos(\theta_c - \theta), l_1 \sin(\theta_c - \theta)],
\]

\[
t_{11} = m + [l_1 \cos(\theta_c - \theta), l_1 \sin(\theta_c - \theta)].
\]

We compute the outer tangents and tangent points as follows:

\[
\theta_c = \arctan(c_{j,x} - c_{i,x}, c_{j,y} - c_{i,y}),
\]

\[
t_{02} = c_i + [r \cdot \cos(\theta_c + \pi/2), r \cdot \sin(\theta_c + \pi/2)],
\]

\[
t_{12} = c_j + [r \cdot \cos(\theta_c + \pi/2), r \cdot \sin(\theta_c + \pi/2)],
\]

\[
t_{03} = c_i + [r \cdot \cos(\theta_c - \pi/2), r \cdot \sin(\theta_c - \pi/2)],
\]

\[
t_{13} = c_j + [r \cdot \cos(\theta_c - \pi/2), r \cdot \sin(\theta_c - \pi/2)].
\]

We then calculate, for \(m \in \{0, 1\}, n \in \{0, 1, 2, 3\}, v_{mn} = \frac{t_{mn} - c_i}{|t_{mn} - c_i|}\), and \(v_{cn} = t_{1n} - t_{0n}\). Using this, for current circles \(i, j\), we find the value of \(n\) such that \(\text{wind}(v_{cn}, c_{0i}) == \text{wind}(v_{0}, c_{0i})\) and \(\text{wind}(v_{cn}, c_{1j}) == \text{wind}(v_{1}, c_{1j})\) and so our tangent pair candidate for centers \((c_i, c_j)\) is \((t_{0n}, t_{1n})\).

Then, for each center pair, we compute the path length created by the circles and tangent. The linear segment is computed as \(l = \text{distance}(t_{0n}, t_{1n})\). The arc lengths are computed by calculating the angular displacement. We compute \(\alpha_0 = \text{VectorToAngle}(P_0 - c_i), \alpha_a = \text{VectorToAngle}(t_{0n} - c_i), \alpha_1 = \text{VectorToAngle}(P_1 - c_j), \alpha_b = \text{VectorToAngle}(t_{1n} - c_j)\), and then compute \(\phi_0 = (\alpha_0 - \alpha_a) \cdot \text{wind}(v_{0}, c_i)\).
Figure 4.2: Vector winding signs +1, +1, (d) is correct

Figure 4.3: Vector winding signs +1, -1, (a) is correct

Figure 4.4: Vector winding signs -1, +1, (b) is correct

Figure 4.5: Vector winding signs -1, -1, (c) is correct
\[r, \phi_1 = (\alpha_1 - \alpha_b) \cdot \text{wind}(v_1, c_j) \cdot r. \]

The curve length is computed as \(l_{ij} = l + \phi_0 + \phi_1. \) We select the pair \(i, j \) that minimizes \(l_{ij}, \) and use that as our center pairing, with the correct \(t_{0n}, t_{1n}. \)

Below we can see all possible circle pairs with all possible common tangent lines. Figure 4.2 shows all common tangents for the scenario when both endpoints have positive winding signs. In Figure 4.3, the point \(P_0 \) has a positive winding sign while \(P_1 \) has a negative sign, and in Figure 4.4 we have the opposite case. Last, Figure 4.5 shows the scenario in which \(P_0 \) and \(P_1 \) have negative winding signs. Figure 4.6 shows the results of the first two iterations of our algorithm using CtC curves.

![Images](image1.png)

(a) The initial graph (b) The initial path (c) A tighter initial graph (d) A tighter initial path

(e) The second iteration graph (f) The second iteration path (g) The tighter graph (h) The tighter path.

Figure 4.6: The resulting CtC spline graph and path for the first two iterations of the algorithm (first iteration in the top row, second iteration in the bottom. The two leftmost columns are the result of a minimum radius of curvature equal to five percent of the width of the workspace, and the two rightmost columns are the result of a minimum radius equal to 0.5 percent of the width of the workspace.

2.2 Curve Length

The curve length is a direct result of the curve construction. The curve consists of arcs of two circles with known radius, and a segment of the cotangent line that lies between the two tangents. We sum the arc lengths and the line segment length to get the curve length. We record this during the construction.
2.3 Maximum Curvature

The maximum curvature is also a direct result of the construction. The circular arcs have curvature equal to the reciprocal of the radius, and the straight line segment has a curvature of 0. Hence, the maximum curvature is equal to the curvature of the arcs, and by construction the maximum curvature is the maximum curvature allowed.

2.4 Failure of Computation

The computation fails if there are no matching pairs of circles with a joint tangent such that the winding sign condition holds. However, this is not actually possible. If there exists a pair of tangent circles that do not overlap at all, then all four joint tangent lines must exist, and so there must be a winding sign match. Therefore, for P_0 we can select a tangent circle with center further from P_1, and the reverse for P_1, resulting in two non-overlapping circles, so we must be able to find a match.

Numerically, if an end of the linear segment lies very close to an endpoint of the segment, our computation can fail by determining that the tangent point is past the endpoint, rather than before. Frequently, this can be solved by switching the tangent circle being used, but not always, and so setting low values to zero gives a fair approximation.

2.5 Improvements to the Boundedness Test

There are a number of ways we can accelerate the boundedness test. The first method is to perform the point crawl from the beginning, just around the initial arc, and to perform the crawl from the end, backwards around the final arc. If the last point tested from both segments is within the bounds, then, since the bounding face is convex, the entire linear segment is contained within the bounding face.

We can test a looser condition that will guarantee the curve is bounded, but is more likely to fail. We can compute the intersection of the initial vector and the tangent vector, and test if that point is bounded. We can also perform this for the final point. If both points are bounded, then the entire curve is bounded. If either point is not bounded, we can then use the point crawl on the correct end to test. Clearly this will work better if the angle is smaller, but it can always be used to test our results as long as neither circular arc is greater than or equal to 180°.
Another possible method is as follows. We begin by translating from the center of the initial circle, along the initial orientation vector, until we reach the initial-edge block. We may need to adjust the initial edge block, depending on the block’s length and the location of the circle. We make sure the distance is greater than the radius of the circle. We repeat this process for the final circle. This will guarantee that the middle line segment is completely bounded. We next ensure that the initial and final arcs are bounded. Beginning at the initial edge, we find the edge’s second intersection point with the initial circle. If that point is on the segment, the initial arc is bounded if the point is further along the initial circle than the tangent point. If the point is not on the segment, we move to the correct neighbor. We test the intersections until we either pass the angle at which we exit the arc, or until we find an intersection point. If we find the intersection point first, we are unbounded, but if we find the exit angle, we are still bounded. We repeat this process for the end of the curve by backtracking from the final point around the final circle until reaching the point at which we exit the final arc. If we pass all four tests, the path is fully bounded.

3 Cubic Bézier Spline

The next curve form we examine is that of cubic Bézier curves. A Bézier curve is a parametric curve defined by Bézier [5] as follows: Given an ordered set of \(n + 1 \) control points, \(\{P_0, ..., P_n\} \), which is called the control polygon, we construct a degree-\(n \) parametric polynomial \(\gamma(t) = \sum_{i=0}^{n} P_i B_{i,n}(t) \), where \(t \in [0,1] \) and \(B(i,n) \) is the Bernstein polynomial, which is defined [9] as \(B_{i,n}(t) = \binom{n}{i} t^i (1 - t)^{n-i} \). The equations for the curve and the first two derivatives are

\[
\gamma(t) = \sum_{i=0}^{3} P_i B_{i,n}(t)
\]

\[
\gamma'(t) = \sum_{i=0}^{n-1} n(P_{i+1} - P_i)B_{n-1,i}(t) \quad \text{and}
\]

\[
\gamma''(t) = \sum_{i=0}^{n-2} (n(n - 1))(P_{i+2} - 2P_{i+1} + P_i)B_{n-2,i}(t).
\]
In the case of a cubic Bézier curve, we can rewrite these equations as

\[
\gamma(t) = P_0(1-t)^3 + 3P_a(1-t)^2t + 3P_b(1-t)t^2 + P_1t^3,
\]
\[
\gamma'(t) = 3(P_a - P_0)(1-t)^2 + 6(P_b - P_a)(1-t)t + 3(P_1 - P_b)t^2
\]
\[
\gamma''(t) = 6(P_b - 2P_a + P_0)(1-t) + 6(P_1 - 2P_b + P_a)t,
\]

where the four control points are \(P_0\), \(P_a\), \(P_b\), and \(P_1\). Examples can be seen in Figure 4.7.

Bézier curves have a number of desirable properties that we can use to our advantage. The first such property is the variation diminishing property [26]. According to this property, the entire curve is contained within the convex hull of the control points. The second property is that the curve interpolates the first and last control points, and that the tangent at the endpoints is along the first and last edges of the control polygon.

![Figure 4.7: Examples of cubic Bézier curves](image)

(a) A single Cubic Bézier Spline, with associated control polygon
(b) Two overlaid Cubic Bézier Splines that differ by maximum curvature

3.1 Computation

We wish to construct a cubic Bézier curve with maximum curvature equal to \(\kappa_{\text{max}}\). The derivative of the curvature of a Bézier curve is a quintic function, and thus has no analytic solutions. However, experimentally we see that the number of curvature maxima of a Bézier curve is at most the number of turns in the control polygon, so a cubic Bézier curve has at most two curvature maxima. Therefore, if the endpoint curvature are local maxima, then the maximum curvature of the entire segment is equal to the endpoint curvature. The construction of this curve attempts to
construct a curve whose endpoint curvature is equal to the maximum allowable curvature.

Because we have fixed the first and last points, and we know the first and last orientations, we simply need the length of the first and last segments of the control polygon to get a curve with this property.

\(P_0 \) is the initial point of the curve, \(P_1 \) is the final point of the curve, \(v_0 \) is the initial unit vector, and \(v_1 \) is the final unit vector. For simplicity of notation, we will rotate \(v_1 \) by 180°, so that the second interior control point lies a positive distance along this vector from \(P_1 \). Then, for some positive number \(\alpha_0 \), \(P_a := P_0 + \alpha_0 \cdot v_0 \), and similarly for some positive number \(\alpha_1 \), we have \(P_b := P_1 + \alpha_1 \cdot v_1 \). Therefore, the goal is to compute \(\alpha_0 \) and \(\alpha_1 \).

Theorem 3.1. The lengths \(\alpha_0 \) and \(\alpha_1 \) for which \(\kappa(0) = \pm \kappa_{\text{max}} \) and \(\kappa(1) = \pm \kappa_{\text{max}} \) are the real roots of the following quartic function:

\[
\frac{27}{8} \kappa_{\text{max}}^3 \alpha_0^4 - S_0 \cdot \frac{9}{2} \kappa_{\text{max}}^2 (v_0 \times L) \alpha_0^2 - S_1 \cdot V^3 \alpha_0 + \frac{3}{2} \kappa_{\text{max}} (v_0 \times L)^2 - S_1 \cdot (v_1 \times L)V^2, \tag{4.1}
\]

and the associated value:

\[
\alpha_1 = \frac{S_0 \cdot \frac{3}{2} \kappa_{\text{max}} \alpha_0^2 - v_0 \times L}{V} \tag{4.2}
\]

where \(S_0 = \text{sign}(\kappa(0)) \) and \(S_1 = \text{sign}(\kappa(1)) \).

Proof. The curvature of a planar parametric curve is defined as \(\kappa(\gamma(t)) \), which we will write in shorthand as \(\kappa(t) \), such that \(\kappa(t) = \frac{\gamma'(t) \times \gamma''(t)}{||\gamma'(t)||^3} \).

By rearranging the derivatives of a cubic Bézier curve, we have

\[
\gamma'(t) = 3 \left((P_1 - 3P_b + 3P_a - P_0)t^2 + 3(P_b - 2P_a + P_0)t + (P_a - P_0) \right),
\]
\[
\gamma''(t) = 6 \left((P_1 - 3P_b + 3P_a - P_0)t + (P_b - 2P_a + P_0) \right).
\]

Furthermore, by assigning \(l_0 := P_a - P_0 \), \(l_1 := P_b - P_a \), \(l_2 = P_1 - P_b \), we can rewrite the above equations as

\[
\gamma'(t) = 3 \left((l_2 - 2l_1 + l_0)t^2 + 3(l_1 - l_0)t + l_0 \right)
\]
\[
\gamma''(t) = 6 \left((l_2 - 2l_1 + l_0)t + (l_1 - l_0) \right)
\]
The first and second derivatives at the endpoints are:

\[
\gamma'(0) = 3l_0, \quad \gamma''(0) = 6(l_1 - l_0), \\
\gamma'(1) = 3l_2, \quad \gamma''(1) = 6(l_2 - l_0).
\]

and therefore the curvature at the endpoints is

\[
\kappa(0) = \frac{\gamma'(0) \times \gamma''(0)}{\|\gamma'(0)\|^3} = \frac{3l_0 \times 6(l_1 - l_0)}{\|3l_0\|^3} = \frac{2l_0 \times (l_1 - l_0)}{3\|l_0\|^3}
\]

By a similar analysis we find that \(\kappa(1) = \frac{-2l_2 \times l_1}{3\|l_2\|^3}\). We then substitute:

\[
l_0 = P_a - P_0 = P_0 + \alpha_0 v_0 - P_0 = \alpha_0 v_0, \\
l_1 = P_b - P_a = P_1 + \alpha_1 v_1 - P_0 - \alpha_0 v_0, \\
l_2 = P_1 - P_b = P_1 - P_1 - \alpha_1 v_1 = -\alpha_1 v_1.
\]

By defining \(L = P_1 - P_0\) and \(V = v_0 \times v_3\), we can reformulate the endpoint curvature as

\[
\kappa(0) = \frac{2(\alpha_0 v_0 \times (L + \alpha_1 v_1 - \alpha_0 v_0))}{3\|\alpha_0 v_0\|^3} = \frac{2(v_0 \times L + \alpha_1 V)}{3\alpha_0^2} \tag{4.3}
\]

\[
\kappa(1) = \frac{-2(-\alpha_1 v_1 \times (L + \alpha_1 v_1 - \alpha_0 v_0))}{3\|\alpha_1 v_1\|^3} = \frac{2(v_1 \times L + \alpha_0 V)}{3\alpha_1^2} \tag{4.4}
\]

We begin by assigning both endpoint curvatures to equal \(\kappa_{\text{max}}\).

\[
\kappa_{\text{max}} = \frac{2(v_0 \times L + \alpha_1 V)}{3\alpha_0^2}
\]

\[
\alpha_1 = \frac{\frac{3}{2}\kappa_{\text{max}} \alpha_0^2 - v_0 \times L}{V}
\]

\[
\alpha_0^2 = \frac{\frac{9}{4}\kappa_{\text{max}} \alpha_0^4 - 3 \kappa_{\text{max}} v_0 \times L \alpha_0^2 + (v_0 \times L)^2}{V^2} \tag{4.5}
\]

\[
\kappa_{\text{max}} = \frac{2(v_1 \times L + \alpha_0 V)}{3\alpha_1^2}
\]

\[
\alpha_0 = \frac{\frac{3}{2}\kappa_{\text{max}} \alpha_1^2 - v_1 \times L}{V}
\]

\[
\alpha_1^2 = \frac{\frac{27}{8}\kappa_{\text{max}} \alpha_0^4 - \frac{9}{2} \kappa_{\text{max}} (v_0 \times L) \alpha_0^2 + \frac{3}{2} \kappa_{\text{max}} (v_0 \times L)^2 - (v_1 \times L) V^2}{V^2}
\]
By rearranging Equation 4.5, and applying the same process for the cases when one or both endpoints have negative curvature, we find Equations (4.1) and (4.2).

We also need to consider the case where the curve has no curvature at one of the endpoints ($\kappa(0) = 0$ or $\kappa(1) = 0$).

Corollary 3.1.1. The lengths α_0 and α_1 for which $\kappa(0) = \pm \kappa_{\text{max}}$ and $\kappa(1) = 0$ are

$$\alpha_0 = \frac{-v_1 \times L}{V} \quad \text{(4.6)}$$

$$\alpha_1 = \frac{\pm \frac{3}{2} \kappa_{\text{max}} \alpha_0^2 - v_0 \times L}{V} \quad \text{(4.7)}$$

Similarly, the lengths for which $\kappa(0) = 0$ and $\kappa(1) = \pm \kappa_{\text{max}}$ are

$$\alpha_1 = \frac{-v_0 \times L}{V} \quad \text{(4.8)}$$

$$\alpha_0 = \frac{\pm \frac{3}{2} \kappa_{\text{max}} \alpha_1^2 - v_1 \times L}{V} \quad \text{(4.9)}$$

where $S_0 = \text{sign}(\kappa(0))$ and $S_1 = \text{sign}(\kappa(1))$.

Proof. This is a direct result of Equations (4.3) and (4.4).

We can now compute the interim points that would result in a correct endpoint curvature. We must examine a number of separate cases.

In the general case, in which no two of the three line segments are parallel or anti-parallel, we solve for the two lengths by first assigning the endpoint absolute curvatures to equal κ_{max}. We can then find the solutions by solving Equations (4.1) and (4.2). By considering all four possible cases of the sign of the endpoint curvature, we get four quartic functions and 16 possible values for α_0, and associated α_1 values. This results in 16 pairs, $\{(\alpha_{0,0}, \alpha_{1,0}), \ldots, (\alpha_{0,15}, \alpha_{1,15})\}$.

We must also consider the case where only one endpoint curvature is equal to κ_{max}, and the other endpoint curvature is equal to 0. This occurs when the result of the computation is such that the first interim point is on the line passing through P_1 with orientation v_1, or the second interim point is on the line passing through P_0 with orientation v_0. By solving Equations (4.6) and (4.7), as well as solving Equations (4.8) and (4.9), we find another four possible solutions, giving us a total of 20 solution pairs.
We take all results in which both values are positive and real, and compute the resulting middle segment length, \(l_{2,i} = L + \alpha_{3,i}v_3 - \alpha_{0,i}v_0 \). We finally compute \(D_i = \alpha_{0,i} + l_i + \alpha_{3,i} \) and find \(\min(D_i) \), which selects the shortest control polygon and gives us our resulting interim points.

There are a 2 special cases that need to be considered separately.

1. \(v_0 \times v_1 \approx 0, \ v_0 \times L \approx 0, \ v_1 \times L \approx 0 \)

This is the fully degenerate case, where all three line segments are parallel, and therefore all four points of the control polygon are colinear. In this case, it is trivial to see that \(\kappa(0) = \kappa(1) = 0 \). Hence, we may select arbitrary lengths, for which we will use \(\alpha_0 = \alpha_1 = \frac{\|L\|}{3} \).

2. \(v_0 \times v_3 \approx 0, \ v_0 \times L \not\approx 0, \ v_3 \times L \not\approx 0 \)

In this case, the initial and final headings (and therefore the outer line segments) are parallel, but the middle line segment is not parallel to the outer line segments. In this case, the equations simplify to independent functions as follows.

\[
\kappa(0) = \frac{2(v_0 \times L)}{3\alpha_0^2} \\
\kappa(1) = \frac{2(v_3 \times L)}{3\alpha_3^2}
\]

We can then solve for the lengths by computing \(\alpha_0 = \sqrt{\frac{2|v_0 \times L|}{3\kappa_{\text{max}}}} \) and \(\alpha_3 = \sqrt{\frac{2|v_3 \times L|}{3\kappa_{\text{max}}}} \).

Figure 4.8 shows the results of the first two iterations of our algorithm using cubic Bézier curve segments.

3.2 Curve Length

The exact length of a Bézier curve is not computable analytically. However, the length of a Bézier curve is bounded from above by the length of the control polygon [4]. Therefore, we can use the control polygon’s length as an approximation. This length is a direct result of the construction of the curve.
This approximation is better as the control polygon approaches a straight line, as the angles approach 180°. If the angles of the control polygon are very small, it may be worthwhile to improve our approximation of the length by using the Bézier subdivision technique. A Bézier curve can be split at any point into two separate Bézier segments of the same degree. We can split the Bézier curve into two new sections, and sum up their control polygon’s lengths to get a better approximation of the actual curve length. We can repeatedly subdivide to ultimately reach the actual curve length.

3.3 Maximum Curvature

The maximum curvature should, at least theoretically, come from the construction. We see from the endpoint curvature that as the lengths of the outer segments of the control polygon get shorter, the endpoint curvature goes up. Furthermore, as mentioned above, we theorize that the number of curvature maxima of a Bézier curve, in the range $[0,1]$ is at most the number of curvature maxima of the control
polygon (in the case of a cubic, this is two). Therefore, we test the curvature slightly off the endpoints to see if the curvature is absolutely less than the endpoint curvatures. If we are still concerned about a sharp peak, we can also compute the derivative of the curvature both at and near the endpoints to make sure that we did not miss a local maximum.

This, however, is not an absolute proof of the maximum curvature. The derivative of the curvature is a quintic function with respect to t, and therefore has no analytic solution, so we cannot know for certain how many curvature maxima there are in the range of [0,1]. However, experimentally our theorem does hold true, especially as the outer segments of the control polygon get shorter relative to the middle segment, and so we will rely on it to get an approximation.

One can also use a numerical root finder to try to find roots for the curvature, and test where the maxima are, and check if these maxima are less than the maximum allowed curvature. This is safer, but experimentally not necessary.

3.4 Failure of Computation

Theoretically, the general case computation fails when the control polygon contains two or more parallel line segments. If $l_0 \parallel l_1$ or $l_2 \parallel l_1$ then there is only one curvature maximum, and the appropriate endpoint has curvature 0. Furthermore, if all three line segments are parallel, then the entire line segment has curvature 0. Numerically, there are also have issues when $l_0 \parallel l_2$. By including the special cases mentioned above, solutions are available as long as P_0 is not in the same location as P_1.

In all these cases, there may be no actual solution, which would mean that all solution pairs contain either a non-real or non-positive value. This is easily detected during the computation.

3.5 Improvements of the Boundedness Test

The boundedness test becomes very simple. One well known property of Bézier curves is the variation diminishing property, which states that no line can pass through the Bézier curve more times than it passes through the control polygon [10]. This means that any edge of the bounding face cannot pass through the curve without passing through the control polygon. Thus, if the control polygon is fully contained within the face, then the entire curve is contained. All we need to do is show that the two interim control points on the curve are within the face and we
Figure 4.9: A single clothoid segment. The computation is independent of the maximum curvature, so the resulting computation is the shortest clothoid segment with the given end conditions.

know that the entire segment is contained within the face. To do this, we find the length along the initial heading travelled to the initial heading block, and test to see if it is longer than the first Bézier control segment. We do the same with the final heading and final heading block. If both pass, the curve is contained. Like the curve length, this holds more tightly as the control polygon approaches linear.

4 Clothoid

In this method, we construct a path using clothoid segments. A clothoid, also known as an Euler Spiral, is a parametric curve of the following form:

\[
x(s) = x_0 + \int_0^s \cos \left(\frac{1}{2} \kappa' \tau^2 + \kappa \tau + \theta_0 \right) d\tau,
\]

\[
y(s) = y_0 + \int_0^s \sin \left(\frac{1}{2} \kappa' \tau^2 + \kappa \tau + \theta_0 \right) d\tau,
\]

where \(s \) is the arclength, \(\kappa' \) is the change in curvature, and \(\kappa \) is the initial curvature. Further, \(\theta_0 \) is the initial orientation, and \((x_0, y_0)\) is the initial location. Clothoid curves are computed using the Fresnel integrals, which are defined by Abramowitz [1]. An example of a clothoid can be seen in Figure 4.9.

There are a number of characteristics of clothoids worth noting. First, the defining characteristic of clothoids is that \(\kappa' \) is constant throughout, meaning that the curvature changes linearly over the length of the curve. Second, the curve is in arclength parametrization. Third, the curve is defined in part by the initial location and initial orientation.
4.1 Computation

We will use the derivation presented by Bertolazzi and Frego [3] to find the minimum length clothoid from an initial point and initial orientation to a final point and final orientation. Specifically, the problem they try to solve is to find the minimum positive value L such that $x(0) = x_0$, $y(0) = y_0$, $\arctan\left(\frac{y'(0)}{x'(0)}\right) = \theta_0$, $x(L) = x_1$, $y(L) = y_1$, $\arctan\left(\frac{y'(L)}{x'(L)}\right) = \theta_1$, identical to the problem we are trying to solve.

The method works as follows. The algorithm is searching for the zero of the following system of nonlinear equations:

$$
F(L, \kappa, \kappa') = \begin{pmatrix}
\Delta x - x_0 - \int_0^L \cos\left(\frac{1}{2} \kappa' s^2 + \kappa s + \theta_0\right) ds \\
\Delta y - y_0 - \int_0^L \sin\left(\frac{1}{2} \kappa' s^2 + \kappa s + \theta_0\right) ds \\
\theta_1 - \left(\frac{1}{2} \kappa' L + \kappa L + \theta_0\right)
\end{pmatrix}.
$$

By assigning $A = \frac{1}{2} \kappa' L^2$, $B = L \kappa$, $\Delta x = x_1 - x_0$, and $\Delta y = y_1 - y_0$, we can reformulate this to

$$
F\left(L, \frac{B}{L}, \frac{2A}{L^2}\right) = \begin{pmatrix}
\Delta x - L \int_0^1 \cos\left(\frac{A}{L} \tau^2 + (B - A) \tau + \theta_0\right) d\tau \\
\Delta y - L \int_0^1 \sin\left(\frac{A}{L} \tau^2 + (B - A) \tau + \theta_0\right) d\tau \\
\theta_1 - (A + B + \theta_0)
\end{pmatrix}.
$$

Since the third equation is linear, we can solve it with respect to B, $B = \Delta \theta - A$, $\Delta \theta = \theta_1 - \theta_0$, so we reduce the system of nonlinear equations to two equations in two unknowns:

$$
G(L, A) = \begin{pmatrix}
\Delta x - L \int_0^1 \cos\left(\frac{A}{L} \tau^2 + (\Delta \theta - A) \tau + \theta_0\right) d\tau \\
\Delta y - L \int_0^1 \sin\left(\frac{A}{L} \tau^2 + (\Delta \theta - A) \tau + \theta_0\right) d\tau
\end{pmatrix}.
$$

By representing in polar coordinates, $\Delta x = r \cdot \cos \phi$, $\Delta y = r \cdot \sin \phi$, we can define two new functions

$$
f(L, A) = G(L, A) \cdot \begin{pmatrix}
\cos \phi \\
\sin \phi
\end{pmatrix}, \quad g(A) = \frac{1}{L} G(L, A) \cdot \begin{pmatrix}
\cos \phi \\
\sin \phi
\end{pmatrix}.
$$
We can then use trigonometric identities to rewrite

\[g(A) = \Theta(A; \Delta \theta, \Delta \phi), \]

where \(\Delta \phi = \theta_0 - \phi \), and

\[\Theta(A; \Delta \theta, \Delta \phi) = \int_0^1 \sin(A \tau^2 + (\Delta \theta - A) \tau + \Delta \phi) d\tau. \]

We can also reduce \(f(L, A) \) as

\[f(L, A) = \sqrt{\Delta x^2 + \Delta y^2} - L h(A), \]
\[h(A) = \int_0^1 \cos(A \tau^2 + (\Delta \theta - A) \tau + \Delta \phi) d\tau = \Theta(A; \Delta \theta, \Delta \phi + \frac{\pi}{2}) \]

As a result of all this, the solutions to the nonlinear system stated above are given by:

\[L = \frac{\sqrt{\Delta x^2 + \Delta y^2}}{h(A)}, \quad \kappa = \frac{\Delta \theta - A}{L}, \quad \kappa' = \frac{2A}{L^2} \]

where \(A \) is a root of \(g(A) \). The solution for \(A \) can be found using a Newton-Raphson iterative scheme.

The results of this computation for the first two iterations of our algorithm can be seen in Figure 4.10.

![Figure 4.10: The first two iterations of the clothoid spline graph and path](image)

(a) The initial graph (b) The initial path (c) The second iteration graph (d) The second iteration path

4.2 Curve Length

This is a direct result of the computation, and is known exactly.
4.3 Maximum Curvature

This is also a direct result of the computation. It is the greater of $|\kappa_0|$ and $|\kappa_0 + L \cdot \kappa'|$.

4.4 Failure of Computation

The algorithm will return a negative length if the computation fails. This occurs when the entire segment is linear.

4.5 Improvements of the Boundedness Test

Because of the form of the curve, there is no real improvements that can be made.
Chapter 5

Analysis of the Algorithm

1 Correctness and Completeness

For the most part, it is trivial to show that the algorithm is both correct and complete. The fusion of two convex regions, the construction and maintenance of the search graph, and the initial path approximation do not require clarification. The path-augmentation methods have all been shown already. There are a few portions of the algorithm that are not so simple, and here we explain those portions.

1.1 Finding an Axis of Monotonicity

Preparata and Supowit [24] proved the correctness of this algorithm on a single face. From the definition of monotonicity, we know that a vertex that is convex in the polygon will not affect monotonicity, so we restrict our search to concave vertices. Furthermore, the definition also tells us that any straight line perpendicular to the axis of monotonicity intersects the polygon at most twice, so for two adjacent edges that meet at a concave vertex, a straight line can only pass through at most one of the two edges. Any line that passes through the vertex, and is between the two edges, has a slope such that any line parallel to it will intersect at most one of the two edges. Therefore, any such line can be perpendicular to an axis of monotonocity. This creates a closed range of possible slopes for the axis of monotonicity. A scan of all vertices of the polygon finds all such ranges. As described above, we can use these ranges to determine if an axis exists, and if so what it is. The algorithm used has been proven correct, and so this algorithm is correct. This algorithm is also complete in that every single vertex is tested, and so every range of slopes is found.
1.2 Concave clipping

Theorem 1.1. The concave clipping algorithm described above is correct and complete.

Proof. In the case of a non-monotone polygon, all of our options have already been proven to be complete and correct. Every simple polygon has diagonals, can be triangulated, and can be decomposed into monotone regions. These are all well known algorithms, and can be found elsewhere [2].

The monotone-decomposition algorithm is correct and complete, as a variant of the traditional algorithm. The algorithm in the literature is designed to fully triangulate the polygon, while our variant separates a monotone polygon into convex regions but skips adding unnecessary edges. We assume that the polygon is x-monotone, and we begin at the leftmost vertex. Because the polygon is x-monotone, this vertex is guaranteed to be convex. As we advance each iterator, if we reach a convex vertex, then no new gate is necessary. Each previously-visited vertex is convex, and so the new gate would be splitting two convex vertices, and would be removed immediately.

Once a concave vertex is reached, we have two case; either the two vertices are not adjacent or they are. The difference between the two cases is that in the first case a diagonal can be added to the polygon, and in the second no diagonal can be added because the diagonal would be the boundary edge or a previously-added diagonal. In the first case, since we have not reached our stopping condition on the second iterator, we can add a diagonal to the polygon connecting the concave vertex to the second iterator’s vertex, and create a convex angle to the left of the added diagonal. Once this occurs, any of the other potential diagonals would again be splitting two convex vertices and as such is not necessary. However, if we have not yet reached the stopping condition, that means that a later diagonal would create a convex vertex to the left of the diagonal, and adding a diagonal now would retroactively split two convex vertices, and would ultimately become unnecessary.

In the second case, because no new diagonal can be added using our method, we use the standard triangulation algorithm, which is correct and complete. If we reach a point when the stack consists of two adjacent convex vertices (and no other vertices), then we can begin our algorithm again. \blacksquare
1.3 Path Creation and Updates

It is trivial to see that the initial path finding is correct and complete. If there is a path from the robot to target, then by the correctness of the decomposition algorithm there is a sequence of convex regions that leads from the robot to the target. Therefore, there must be a sequence of gates that separate the regions, and thus a sequence of nodes in the graph connected by edges that lead from the robot to the target.

Theorem 1.2. Under the update process we apply to the linear path, the complete path length always tends towards a local minimum.

Proof. It is trivial to see that the passthrough function finds the shortest path between two points that passes through a gate.

The length of the underlying linear path is equal to the sum of the path lengths. During each iteration we pass over the entire path, and perform an update operation on each node in the path. If the node’s location is either already at the passthrough point, in which case no local improvement can be made to the path, or else the node’s location is not at the passthrough point, in which case moving the node’s location will shorten this portion of the path, thus shortening the entire length of the path. Therefore, we have a monotone decreasing function, which is certainly bounded from below, so the total path length always converges to some value. ■

In practice, the convergence is very fast, and the limit indeed appears to be the best possible (smallest) path length, or a very good approximation thereof.

2 Complexity

Let us denote by \(n \) the complexity of the model, the total number of vertices of the workspace and the obstacles. Formally, \(n := |W| + \sum_{i=0}^{b} |B_i| \) (since each obstacle moves rigidly, its complexity does not change over time, so we ignore the time parameter).

The space complexity of the entire algorithm is \(O(n) \). The DCEL structure used for the convex decomposition requires storing the vertices, edges, and faces. Since the graph is planar, the size of all these lists are linearly related. Similarly, because we prune the search graph, the size of the search graph is a linear function of \(n \), and so the entire space requirement is linear with respect to \(n \).
Before discussing runtime complexity, we begin with a lemma to help our analysis.

Lemma 2.1. *If an operation can be performed on a single face of the convex decomposition in time linear with the complexity of the face, then the same operation can be performed on all faces in the convex decomposition in time linear with respect to the complexity of the entire model.*

Proof. The claim follows immediately from the fact that the convex decomposition is a planar graph, and hence its complexity is of the same order as the sum of complexities of the individual faces. (Some multiplicative constant may be involved since every edge is shared by one or two faces, and since in a planar graph, the numbers of vertices, edges, and faces are all linear with each other.)

2.1 Convex Decomposition

Maintaining the convex decomposition consists of testing each face for convexity, finding an axis of monotonicity for each concave face (if any axis exists), and removing any gates that split two convex vertices. It is important to mention that because the obstacles cannot intersect, and because the gates cannot intersect, the entire model is always planar. This is important, because the number of edges and faces of a planar graph are known to be a linear function of the number of vertices. Testing each face for convexity is a linear-time operation with respect to the complexity of the face. This means that we must visit each bounding halfedge $O(1)$ times, and so testing the entire model means visiting each halfedge twice that, which results in a complexity of $O(n)$ over the entire model.

Theorem 2.2. *Finding axes of monotonicity for all faces is the decomposition is an $O(n)$-time algorithm.*

Proof. Preparata and Supowit [24] prove that an axis of monotonicity can be found in optimally linear time using a sequential algorithm. We previously described the algorithm in Section 4.2, and showed an implementation in Figure 3.4. Therefore, by Lemma 2.1, we know that all faces can be processed in $O(n)$-time.

We can also apply similar logic to removing unnecessary edges. Each gate must be visited once, and requires a constant-time operation to skip or remove. Since there are a linear number of gates (with respect to n), this step also has a runtime complexity of $O(n)$.

64
Decomposing monotone regions, given the axis of monotonicity, is a linear time algorithm, as shown above. While processing each face, we visit each bounding halfedge once, and so overall we visit each edge at most twice, meaning the entire algorithm runs in $O(n)$ time. Decomposing non-monotone regions is theoretically a linear time algorithm, because we can theoretically triangulate the polygon in linear time [8]. However, as we are not aware at this point of any successful implementation of Chazelle’s algorithm, we must use one of our other methods. Performing a monotone decomposition is known to be an $O(n \log n)$-time algorithm.

As a result of all this, maintaining the convex decomposition takes theoretically $O(n)$ time. In reality, the algorithm requires $O(n)$-time test if all faces of the decomposition are monotone. If they all are monotone, then maintaining the decomposition takes $O(n)$ time; otherwise, maintaining the decomposition takes $O(n \log n)$ time.

2.2 Search Graph Construction and Maintenance

Constructing a single node of the graph is a constant-time operation. We already have the nodes and just need to compute the endpoint, which is a constant-time operation. Similarly, updating the endpoints of a single node requires constant time, because we just need to perform a constant-time operation to compute the initial point.

If a node was removed due to the child’s exit gate being removed, merging the list of children into the parent’s list of children can be done in constant time. This can be done by storing the children as a linked list, along with pointers to the first and last elements of the linked list.

Last, if a gate was added to the tree, we need to insert nodes into the search graph and split edges. This can be done in $O(n)$ time over the entire graph.

Theorem 2.3. All nodes can be inserted into the search graph, and the correct updates made to the edges, in time linear with respect to the size of the entire search graph.

Proof. We present a proof by construction.

For an edge of the search graph, e, splitting $e.children$ can be done in time linear with respect to the size of $e.children$, as follows.
By construction, for a search graph edge \(e \), the edges in \(e.children \) are ordered such that their end node edges are ordered counter-clockwise about the adjacent face of \(e.end.g.twin \), which we will call the output face. As we construct the children, we create the edges as we iterate about the output face, and thus the initially created children are in counter-clockwise order. When a node is removed, the outgoing edges are already in counter-clockwise order, and by using the above process the ordering can be maintained.

Furthermore, we allow each gate in the model to maintain a pointer to the incoming edge of the search edge, and a record of whether the gate was created this iteration or in an previous iteration. Since we prune the tree, and don’t allow two incoming edges of the search graph to the same gate, we only need to maintain one incoming edge, and it can be updated very simply in constant time.

To insert a node, and then split \(e.children \) correctly, we begin by maintaining a new list to the side, \(unseen \), which begins initialized to \(e.children \), in order. We also maintain a stack of added gates that we reach \(added \) (initialized to empty), and a pointer to a current edge \(c \) (initialized to \(e \)). We begin by iterating counter-clockwise about the output face of \(c \), checking each bounding edge \(f \) to see if \(f \) is

- An old gate,
- A new gate, or
- \(c.end.g.twin \).

If \(f \) is an old gate, then we check if \(f \)’s incoming search-graph edge is the head of \(unseen \); if yes, then we remove the head of \(unseen \), and add it to the end of \(c.children \).

If \(f \) is a new gate, then we create a new node, and a new incoming edge, \(c' \). We set \(c'.parent := c \), and add \(c' \) to the end of \(c.children \). We then push \(c \) onto \(added \), and set \(c \) to point at \(c' \).

Last, if \(f \) is the twin of \(c \)’s ending edge, then we set \(c := added.pop \).

We continue this process until we attempt to pop from \(added \) when \(added \) is empty, meaning we have reached the twin of \(e \)’s ending edge. Once this whole process has been completed, every children list is still ordered correctly, by construction, and each list of children contains the correct set of children (as can be trivially seen).

Because we prune the tree, as mentioned above, each gate halfedge can have only one incoming search graph edge, meaning that any face of the convex decomposition
can only be the bounding face of the children of one edge of the search graph. This means that each halfedge is visited at most once, and so the entire process is completed in $O(n)$ time.

Since each of the above components is a linear-time operation, the entire maintenance of the search graph is a linear-time algorithm.

2.3 Path Augmentation

As can be seen above, augmenting each section of the path is a constant-time operation, as is testing the curvature of each section, and testing to see if the section is bound to the correct face. However, finding the heading blocks is not linear. While we can try to speed up the process as much as possible, and usually we can maintain the same heading block from iteration to iteration, this process is an $O(n^2)$-time operation, because for each gate we must check every edge on the boundary of the bounding face.

2.4 Total Complexity

As can be seen above, the convex decomposition requires linear time to test if the all regions are convex or monotone, and at worst $O(n \log n)$-time to maintain the convexity. However, we only must use the more complex decomposition method in cases of non-monotone polygons. As we will see in Sec.2.1, most regions are monotone. Therefore, most iterations can be completed in linear time, and even in situations where we must use the more complex decomposition, we only must use the non-monotone decomposition for a few faces, rather than for the entire decomposition.

Maintaining the optimality of the convex decomposition, fusing the regions into larger convex regions, can be completed in linear time, as can maintaining the search graph. Therefore, we can compute and maintain a piecewise-linear path in $O(n \log n)$-time in the worst case, but usually in $O(n)$-time.

The final portion of the algorithm, augmenting the path, is an $O(n^2)$-time operation, due to the heading blocks. However, the heading blocks must only be changed in two cases. The first is when the bounding face has transformed sufficiently over time to change the heading block; because of the smoothness of the obstacle motion, this does not happen too frequently. The second case when we must change
the heading block is when one of the heading blocks gets removed due to the maintenance of the convex decomposition. As we see in Sec.2.1, this does not happen to frequently, and then only to a small number of regions. Therefore, while the complexity bound is correct, it is generally far beyond the observed runtime.
Chapter 6

Results

We present results to show the performance of the algorithm. To test the algorithm, we randomly generated 470 scenarios with a polygonal workspace, polygonal obstacles, and a starting point and target point in the initial freespace.

1 Implementation

We implemented the algorithm in C++, using the Microsoft Foundation Class (MFC) libraries for the user interface. The inputs for the system are configuration files that contain the model information. The files list the number of obstacles, followed by the complexity of the workspace, and then the vertices of the workspace in counter-clockwise order. Next, for each obstacle, the file lists the complexity of the obstacle, followed by the vertices of the obstacle listed in counter-clockwise order. Last, we list the source point and target point. Each item is listed individually on a line. Figure 6.1 shows the configuration file for a sample model.

The system contains three main modules. There is a navigator, in charge of running the algorithm described in this thesis. Second, there is a set of mobile obstacles. Last, there is a manager to oversee the entire process. The primary purpose of the manager is to maintain consistency between the vertices of the obstacles and workspace, and the vertices the navigator uses. During each iteration of the algorithm, the manager synchronizes the vertices, then signals the navigator to update the navigation. The navigation manager also maintains various structures for testing and debugging purposes, such as the visibility graph, so that we can compare our results to the shortest path.
The obstacles are responsible for managing their own movement. Each obstacle is a rigid polygon that translates and rotates smoothly over time. Given the workspace and the other obstacles, each obstacle moves while ensuring that it does not intersect with the other obstacles or the bounds of the workspace.

The user interface allows for configuration selection, as well as enabling various visual cues to show the user various aspects of the algorithm. The obstacles, workspace, robot, and target are always visible, but the user can enable and disable visibility of the gates, the panic cone and panic bounding disks. The user can also display the path or the entire search graph. If the path is a Bézier curve, the user can also display the control polygons. Last, the interface allows the user to enable or disable movement by the robot and by the obstacles.
2 Convex Decomposition

As mentioned above, the entire process is theoretically an $O(n)$-time algorithm. However, the decomposition of a non-monotone convex region only theoretically takes $O(n)$ time, and is in reality at best $O(n \log n)$. Furthermore, because the algorithm must run in real time, our concern is also with actual speed. Obviously, we must be able to subsume all costs of the algorithm, but it is worthwhile to know how frequently we must perform each of the operations.

To this end, we ran each scenario for approximately 60,000 iterations. We recorded data for each iteration, and plotted the data against four possible factors. The data examined are the following:

- The average number of regions in the decomposition (after the maintenance phase);
- The average complexity of the polygons in the decomposition;
- The maximum complexity of all polygons in the decomposition;
- The number of gates added;
- The number of gates removed;
- The number of convex regions at the beginning of the maintenance phase;
- The number of x-monotone regions at the beginning of the maintenance phase; and
- The number of concave (and not x-monotone) regions at the beginning of the maintenance phase.

We compare these eight different data points to four different possible factors, in an attempt to identify any patterns to the results. The four factors are

- The number of obstacles;
- The complexity of the workspace;
- The complexity of the entire model; and
- The percentage of the workspace covered by the obstacles (the total area of all obstacles divided by the total area of the workspace).
For simplicity, in each set of graphs, we plot against the four different factors in the order listed above, going left to right; the x-axis of the leftmost graph is the number of obstacles, followed by the complexity of the workspace, and so on.

2.1 Average Numbers of Polygonal Regions

Figure 6.3: The number of polygons in the decomposition
Figure 6.4: The number of convex polygons, before the maintenance stage
Figure 6.5: The number of monotone polygons, before the maintenance stage

Figures 6.3 through 6.6 show that the number of regions is clearly a linear function of both the number of obstacles and of the complexity of the entire model. There also appears to be a weaker correlation between the order of the workspace and the number of regions, as well as between the percentage of the workspace covered by obstacles (the ratio of the total area of the obstacles to the area of the workspace). In both of these datasets, the minimum average number of regions stayed fairly constant while the maximum observed averages rose with the independent variable.

Next, we examine the number of convex, monotone, and concave regions in the decomposition after the obstacles have moved, but before the convexity has been maintained (at the beginning of each iteration of the algorithm). We see that
the number of convex regions very closely matches the number of polygons in the maintained decomposition, and so we can assume that the majority of the time no polygons need to be decomposed.

When examining the number of \(x\)-monotone polygons, we see similar results to that of the convex regions, but on a significantly lower scale, averaging less than one \(x\)-monotone region for every two iterations of the algorithm. The number of incidences rises as a function of the number of obstacles, and the order of the model, and the maximum average rises as a function of the order of the workspace, and the area ratio of the obstacles to the workspace.

The number of concave (not \(x\)-monotone) polygons, however, reacts differently. The minimum average, in all plots, stays constant at approximately zero, meaning there are some scenarios in which we rarely violate \(x\)-monotonicity. However, the maximum observed averages rises with all independent variables.

We can draw a number of conclusions from these data. First, we see that we very rarely have to process a large number of non-convex polygons in any single iteration. Second, the number of non-monotone polygons (with respect to the \(x\)-axis) varies largely, while the number of monotone polygons behaves in a more coherent manner. The implication of this is that \(x\)-monotonicity is very much a function of the overall scenarios. Some scenarios will lend themselves more strongly to \(x\)-monotone polygons, but some scenarios will specifically not lend themselves to this axis of monotonicity. It is reasonable to assume that there are scenarios that would lend themselves to other axes of monotonicity. Therefore, using an implementation that captures other axes of monotonicity, or selecting an axis of monotonicity tuned to the scenario would be helpful to improve the running time.

2.2 Complexity of the Polygons in the Decomposition

It is worthwhile to examine the efficacy of our algorithm in preventing a full triangulation of the freespace. A complete triangulation would be convex, but this creates
an unnecessary large number of gates, and thus a large number of nodes in the dual graph. For this reason we would prefer to create a decomposition consisting of fewer polygons of higher order.

As we can see in Figures 6.7 and 6.8, the average complexity stays fairly low, generally below four, and frequently close to three. However, the maximum observed is always above four, and is in some cases over ten. The meaning of this is that we almost always improve over a complete triangulation. Furthermore, while we do tend to create triangular regions, we do allow regions of much higher complexity, and in fact can achieve such regions. Interestingly, a more complex workspace, with more obstacles, more vertices, and more covered area, generally results in a higher maximum, even while keeping averages fairly low. This means that the system tends to support a few high-complexity polygons amidst a large number of triangles.

3 Construction of the Spline Tree

As above, we consider various aspects of the spline tree construction and maintenance against the four properties of the workspace. The complexity of maintaining the tree is based on two different aspects. The first aspect to consider is the size of the tree, that is, how many branches the tree contains. One thing that must be mentioned is that due to the random construction of the workspace, we can find starting and final points very far apart, separated by a large number of obstacles, and therefore likely to create complex trees, but we can also find points very near together, which would result in very simple trees.
The minimum average tree size stays constant, around one, meaning that in many scenarios, no matter how complex, we can create very simple trees. However, the maximum average tree size does rise with all four factors.

The second aspect of the tree that affects the complexity of the algorithm is the number of tree operations that need to be performed. This is the number of branches that must be created or removed.

We see results proportional to the number of polygons, but at a significantly small scale (approximately one twentieth of the number of polygons). As the workspace gets more complex, the number of gates created or destroyed rises. While many of these edges will not affect the tree in any way, many of these edges will result in tree operations being performed. Therefore, a complex workspace may not affect the complexity of the tree, but it can affect the number of changes to the tree.

The conclusion to be drawn from this is that no matter what the scenario is, it is always beneficial to limit the complexity of the workspace.

We also examined how the linear path differs from the shortest possible path, the result of the visibility graph search. To test this, we stopped the robot and
the obstacles from moving, and ran the algorithm until the path converged to the shortest path. In every instance, the path successfully converged to a difference of path length of 0.001. Examining the results shows that the initial path estimate and converged path estimate are, on average, 0.3% longer than the shortest path. The worst example we saw was an initial estimate approximately 15% longer than the shortest path. The 0.3% difference after the convergence is caused by an implementation issue. In order to handle numerical issues, we force the passthrough points to be offset from the vertices by a small amount (in our case, 0.001).

4 Path-Augmentation Methods

Consider curve segment scenario in Figure 6.12. The initial and final points are P_0 and P_1, respectively, L is the line segment connecting P_0, P_1, with magnitude $|L| = l$, α is the angle between v_0 and L, and θ is the angle between v_0 and v_1.

![Figure 6.12: A labeled curve scenario](image)

4.1 Minimum Length

For a given pair of angles, we can compute the minimum l such that the resulting curve has a maximum curvature less than a given value κ_{max}. Since we are concerned with absolute curvature, the result is equivalent for $\pm \alpha$, and so we only compute the length for $\alpha \in [0^\circ, 180^\circ]$, when v_0 points directly towards P_1, moving counterclockwise until v_0 points directly away from P_1. However, this symmetry does not apply for θ, and so we perform the computation for $\theta \in [0^\circ, 360^\circ]$.

Circle-to-Circle minimum length

As mentioned above, there is no minimum length for which there is no CtC spline. That is not to say that there is no minimum length at which we can get a usable
Figure 6.13: (a) The minimum lengths with $\kappa_{\text{max}} = 1$, and (b) viewed as a “heat map.”

CtC spline for our purposes. A short length may result in a path that forms a very tight lemniscate (two loops attached a single central point), which will clearly pass out of any convex region, but with no regard for that condition we can always create a path between the two points with the correct initial and final heading.

Bézier Minimum Length

The result of the minimum length computation can be seen in Figure 6.13, where blue represents shorter lengths and red represent longer lengths.

We can make a few observations. First, there are large regions of the angle plane for which the minimum length is extremely high. Any region that is not dark blue requires a length significantly longer than the radius of curvature. Functionally, these regions are not usable for a path segment, because the path will never adhere to the maximum curvature constraints. However, in the majority of cases the angles will sit in the dark blue range, meaning that the resulting segment would adhere to the curvature constraints.

Clothoid Minimum Length

The result of the clothoid minimum length computation can be seen in Figure 6.14.

There are a number of observations worth noting. First, we see some interesting things about the minimum length. The shortest minimum length occurs as θ approaches 2α, and can be extremely low. Empirically, the maximum observed length is less than 10 times the minimum radius of curvature, which means that while this does require some space to maneuver, it is not as constricting as the Bézier method.
We also observe two maximal regions, when θ approaches 90° and α approaches 180°, and when θ approaches 270° and α approaches 90°.

Second, we can clearly see the result of scaling the maximum curvature. The computations in these examples are done with $\kappa_{\text{max}} = 1$ and $\kappa_{\text{max}} = 10$, and result in an inverse linear scaling of the minimum length; a scaling of κ_{max} by ten results in a scaling of the minimum length by 0.1. Other maximum curvatures result in similar scaling effects.

4.2 Full Path Length

The three different paths we examined resulted in very minimal differences in path length overall, when averaged over all the iterations. CtC paths were generally the shortest paths, and clothoid paths were generally the longest, but when averaged over many iterations these differences were minimal. This is due to the scenarios we tested. We assume that the robot begins by heading directly towards the target, and that the workspace is generally free with a few scattered obstacles. As long as the robot has a direct line to the target, the robot will follow the shortest path in all cases. Changing those conditions, such as changing the initial heading, or by changing the workspace to require more turns (such as setting the problem in a set of hallways, or using much larger obstacles), will force more turns and therefore force differences in the path length.
4.3 Algorithmic Failures

There are a number of possible pitfalls with the algorithm. The first such issue is situations in which the complexity of the workspace gets extremely high. Our algorithm requires a complete processing of the entire workspace every iteration. We could potentially have a scenario in which there are an extremely large number of obstacles, so much so that we cannot fully process the workspace in real time. If any individual obstacle has a large number of vertices, we can approximate the obstacle as a simpler polygon. If, however, there are a large number of obstacles, we cannot simplify the model without artificially merging obstacles. This situation is more problematic with curves such as the clothoid, due to the expensive computation of the curve segments, but can be an issue with any curve type, if the number of obstacles can get high enough.

A number of potential methods for handling these situations exist. We could follow the approach of the local methods, and limit our search graph to a fixed number of steps, or we could only augment the actual path, rather than the entire graph. These methods are useful, but in the case of extremely large numbers of obstacles, these actions may not be enough. A more extreme method is to bound our work to a subspace of the workspace. This will violate many of our assumptions, specifically that the workspace is static and that the obstacles remain fully bounded within the workspace, but adaptations can be made to handle these cases.

A second potential issue with the algorithm is the case where the robot gets cornered in a position such that the robot cannot move without violating the curvature constraint. We try to prevent this by using the panic mode, and by disallowing travel through gates that we deem too short, but even so we may still become trapped. This would be because we moved towards a gap that suddenly closed. How these cases will be handled must be determined by the user of the system. The user may choose to allow violations of the curvature constraints, or may allow the robot to reverse.
Chapter 7

Conclusions

We have developed a new framework for motion planning around mobile obstacles. While previous methods are variants on the case of stationary obstacles, our new method is specifically designed to operate in the dynamic case. We have shown that the geometric framework upon which the path is built is correct, and stable. We have also shown that each iteration can be done in linear time, with respect to the complexity of the workspace, and each iteration results in a fully correct geometric framework that is similar to the previous iteration but correct for the current layout. The resulting linear-path graph can then be maintained and iteratively improved and corrected in linear time as well. The linear path can then easily be augmented to allow for a minimum radius of curvature, with a variety of path types based on the users needs and constraints.

The path-augmentation methods each have strengths and weaknesses, and are by no means the only possible augmentation methods. The CtC method results in the shortest paths, and is the most stable for computation. However, the sudden changes of curvature are difficult for people to handle, which is why roads, roller coasters, and other paths are designed with a gradual change in curvature. Therefore, for manned autonomous vehicles this is not a feasible method. Furthermore, no robotic system can truly do the sudden changes of curvature, so it is an approximation at best. The Clothoid curve is the smoothest, so best suited for people. However, it results in the longest path, and is the heaviest to compute. The Bézier curve is a good intermediate in terms of change in curvature and curve length, but in many cases a result cannot be computed that adheres to our curvature constraints. Therefore, each method would work best in specific circumstances, such as using the Bézier curve in a scenario with small, fast-moving obstacles, or using the CtC in
unmanned vehicles, and using the Clothoid in cases when a smooth ride is prioritized. Other methods will have their own pros and cons, and should be considered as well.

There are many avenues of future research. The framework we developed assumes a point robot in the plane, a fixed workspace, and rigid obstacles that are always bounded by the workspace. Future development could focus on removing any of these assumptions. We could advance the framework to work with polygonal robots, to work in three dimensions, or allow robots that are not rigid, or that can enter and exit a workspace that can be static or changing.
Bibliography

There are many possibilities for extending the research and development work. We can assume that the robot is a polygon, the obstacles are not rigid, or extend the research to three dimensions. In addition, we can develop additional types of tracks to work with the system.

Bibliography

It is not possible to calculate exactly the length or the extremal curvature of a Bézier arc. But we can calculate a reasonable length.

It is known that the curvature of a Bézier arc is bounded above by the curvature of the control polygon (a sequence of control points). We assume that there are at most two curvature extremes inside the arc, and we give an example of this by means of experiment.

Therefore, if the curvature of the arc has a local maximum at the beginning and end of the arc, there is a global maximum curvature at the beginning and end of the arc.

By construction, the curvature at the beginning of the arc is equal to the value we set, and also at the end of the arc.

Another property of Bézier curves is that they are Variation Diminishing. This property means that a line cannot intersect the curve more than the number of intersections with the control polygon. In other words, if all four control points are inside the polygon, then the entire arc inside the polygon, and we need to check only the middle control points.

We can check this easily by means of constraints.

The third arc is a spiral or Euler spiral. The spiral is a parametric function characterized by a curvature that changes linearly.

The equation of the arc is of the form:

\[x(s) = x_0 + \int_0^s \cos \left(\frac{1}{2} \kappa \tau^2 + \kappa \tau + \theta_0 \right) d\tau \]

\[y(s) = y_0 + \int_0^s \sin \left(\frac{1}{2} \kappa \tau^2 + \kappa \tau + \theta_0 \right) d\tau \]

We found a formula by Frego and Bertolazzi that allows us to calculate the shortest arc that starts in a given point with a given direction, and ends in a given point with a given direction, and that is exactly the problem we have.

The results of the calculations are the length of the arc, the initial curvature, and the change in curvature along the arc.

The length of the arc is a result of the calculation, and the maximal curvature is either at the beginning or at the end.

There is no way to check the extremum.

We found that our algorithm works efficiently; most iterations end in linear time in \(n \), and in the worst case the algorithm runs in \(O(n^2) \) (where \(n \) is the number of nodes in the environment and obstacles).

The path shown after one iteration is a good approximation of the shortest path, and it converges to the optimal path after a small number of iterations.

We can see that each type of path has its advantages and disadvantages.

The path based on circles can be calculated quickly and is the shortest path for all the tested methods, but the path does not include a part and is not suitable for human transport.

The spiral gives us the shortest path, and we know exactly the details of each part, but the calculation is difficult and the path is longer than the paths tested.

Of course, the calculation of the length is not dependent on the curvature; we just need to check the solution.

Bézier curves are a compromise between easy calculation and the ease of checking the extremum. The path is longer than the path obtained from circles, and shorter than the paths based on spirals.

The disadvantage of Bézier curves is that we do not know exactly the length of the path and the curvature of each part.
ניתן לעדכן את המיקום הסופי וההתחלתי של הקטע גם בדיקה והבנה של התוויות.арт ההיקוית או ראו המירה.אחות, אם, העריך על כל תוארי הקשת והמסכים בבריתו או הרשה ניסים.

שידי נוכחיים.

הitmap של הגנת מכון התוויות וה.parents, וה舰队ת התוויות והמסכים.אם, בכרונולוגיה ליצוא לבוכם את הקטנות והיציאות,

הסמס וברועה את השמות והמסכים של הסדרה.ואחר שהיתלות אלה ממיר את הרשויות והסמכות, א ürünü רעצו והסמכות של השמות והמסכים.

הוא משימה בדיקה של כל התוארים מҺ.בוס.

אם העשויה עלייה של בוכם התוויות של התוויות המה אזורית של התוויות.אני, על האור התוויות, ומוקדם אשר התוויות הם מתتحرير של התוויות והמסכים.

אנו בוחרים בזוג שאור יאכילה את הקשתות של שני כיון והמסכים.אנו בוחרים בזוג שאור יאכילה את הקשתות של שני כיון והמסכים.

uciones המברברים של שלושה אזורים של הקשתות, בעברה ומסとに חס抗氧化 של התוויות.אני, על האור התוויות, ומוקדם אשר התוויות הם מתتحرير של התוויות והמסכים.

או פיתחינו במערכת שלנו שלושה סוגים של עקומות, עבורם אנו מסוגלים לחשב את ההע🆖ים הסופיים והעקמומיות של לשון התקון.

העקומה הראשונה היא 'מעגל למעגל'.המאפיין שלה היא פניה בעקמומיות המקסימלית, ומשך התנועה בכוון ישר, ואז פניה בשתי.אנו בוחרים בזוג שאור יאכילה את הקשתות של שני כיון והמסכים.

העקומה השנייה היא עקומת Bézier מדרגה שלוש.העקומה בנויה מאינטרפולציה של ארבע נקודות שליטה.הנקודה הראשונה של העקומה היא הנקודה ההתחלתית של הקטע, והנקודה האחרונה היא הנקודה הסופית.

אנו בוחרים בזוג שאור יאכילה את הקשתות של שני כיון והמסכים.
הפירוק
ואם הפאה קעורה מחלקים אותה לשתים (או יותר) פאות קמורות.
اذן עוברים על כל השערים ומבטלים את השערים המיותרים.
בצעד השני אנו בונים את גרף החיפוש.
כל קשת צריכה לזכור את האב ואם רשימת הצאצאים שלה.
לכל קשת בעלת צאצאים, בוחרים את הצאצא הטוב ביותר, זה אשר יביא אותנו ליעד במסלול הקצר ביותר.
בדרך כלל, הצמתים של גרף החיפוש הם נקודות בסביבת העבודה.
הצמתים שלנוofi נקודות אלא קטעי קווים.
לכן, על כל קשת לשמור את המיקום הראשון והאחרון שלה בשערים.
כשמוסיפים קשתות לגרף, מתחילים מהרובוט.
מוסיפים את הקשתות עד שמתקרבים למסלול הקצר ביותר.
מרכיבים את נקודת הכניסה ליציאתו של האב, ומצבים את נקודת היציאת לנקודה בשער היציאה שממזער את המרחק מנקודת הכניסה ליעד דרך השער הנוכחית העוברת דרך השער.
כשהקשת כבר קיימת, אנו משפרים את המסלול.
לכל קשת אנו מטפלים בכל הצאצאים,
צבים את היציאה, מחשבים את הכניסה, ורק אז עוברים לאב.
אם היציאה היא היעד, אין צורך לעשות דבר.
אם אין לקשת צאצאים, אז מחשבים את היציאה כמו שעשינו כאשר הוספנו את הקשת לגרף.
אם יש לה צאצאים, בוחרים את הצאצא האופטימלי, ושים את היציאה על הכניסה של הצאצא הנבחר.
אחר שקבענו את נקודת היציאה, קובעים את הכניסה להיות המיקום שממזער את אורך המסלול מכניסתו של הקשת הנוכחית העוברת דרך השער.
אנו מעדיפים את כל הקשתות.
מצבים את כל הצאצאים, ואנו מעדיפים את כל קשתות ההודעה ודרור השער.

בשלב השטיחים, ארבעה ביטים מוסלמים חיו בסמוך לגבול.
ו Goodman שיצר קותしく ש孱קＫ קותשק.
ו Goodman שיצר קותשק ש孱קＫ קותשק.

בעבר השלימו ארבעה ביטים מוסלמים חיו בסמוך לגבול.
ול Goodman שיצר קותשק ש孱קＫ קותשק.

ניתן לסדר את הגיהכה, אך זה האישי.
ול Goodman שיצר קותשק ש孱קＫ קותשק.

יתן לסדר את הגיהכה, אך זה האישי.
ול Goodman שיצר קותשק ש孱קＫ קותשק.
תקציר

"תכנון תנועה" הוא תהליך של בניית רצף של תנועות שיביא רובוט ממיקוםו הראשוני עד יעדו הסופי. בהינתן אזור תחום במישור, מכונה "סביבת עבודה", מכשולים ויעד, בונים מסלול שיושב בתוך סביבת העבודה ואינו מתנגש באף אחד מהמכשולים. קיים מגוון פתרונות לבעיית תכנון תנועה בנוכחות מכשולים נייחים. זאת מכיוון שדבר לא משתנה מתחילת התנועה, ולכן ניתן לחשב את המסלול האופטימלי (לכל הגדרת אופטימליות נדרשת מודל כרונולוגי). בניגוד לכך, כאשר המכשולים ניידים, אין פתרון אופטימלי שרץ בזמן אמת. האלגוריתמים הקיימים הם וריאציות של האלגוריתמים הסטטיים המחשבים כל פעם מחדש את הפתרון בהתאם לשינויים במכשולים. האלגוריתמים הקיימים הם וריאציות של האלגוריתמים הסטטיים המחשבים כל פעם מחדש את הפתרון ב зависимости מהשינויים במכשולים. בסופו של דבר, לא קיים פתרון אופטימליأجرény מקסימלית של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם שינויים כך שבכל איטרציה נוכל לחשב את המסלול מחדש. בניגוד(interval), אנו מפרקים את האזור הפנוי לפאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים ב модель, על בתי של גובים של מצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים של מצולע הפירוק. בסופו של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימלית של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם שינויים כך שבכל איטרציה נוכל לחשב את המסלול מחדש. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים ב модель, על בתי של גובים של מצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים שלמצולע הפירוק. בסופו של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימלית של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם שינויים כך שבכל איטרציה נוכל לחשב את המסלול מחדש. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים ב модель, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים שלמצולע הפירוק. בסוף של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימלית של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם изменения כך שבכל איטרציה נוכל לחשב את המסלול מחדש. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים ב модель, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים שלמצולע הפירוק. בסוף של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימالية של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם изменения כך שבכל איטרציה נוכל לחשב את המסלול מחדש. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים בmodelName, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועליםפחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים שלמצולע הפירוק. בסוף של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימالية של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם изменения כך שבכל איטרציה נוכל לחשב את המסלול מחדש. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים ב модель, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים שלמצולע הפירוק. בסוף של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימלית של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם изменения כך שבכל איטרציה נוכל לחשב את המסלול再造. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים במודל, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי למקוטעין, ובחרון של מדריד לאטרופית גובים שלמצולע הפירוק. בסוף של דבר, לא קיים פתרון אופטימלי עבור בшлоות של חסם על עקמומיות מקסימלית של האלגוריתמים הסטטיים ב зависимости מהשינויים במכשולים. לכן יש צורך לערוך בהם שינויים כך שבכל איטרציה נוכל לחשב את המסלול再造. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו מוסיפים "שערים"شهدים במודל, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועלים פחות או יותר באותו אופן. האלגוריתמים בונים גרף חיפוש שמכסה את האזורים הפנויים, והצמתים בגרף חיפוש הם צמתים בגרף של הגרף בודק את הקשתות המחברות בין צמתים בגרף. האלגוריתם שלנו מאפשר החלקה יעילה של המסלול לקמוס הפנוי LMDL. בניגוד(interval), אנו מפרקים את האזור הפנוי לפיאות קמורות. כדי לאפשר את הפירוק, אנו MUSIONS ה Цена עבור בixo de aquisição.meyeור של מודל, על בתי של גובים שלמצולע הפירוק. האלגוריתמים הקיימים פועליםפחות או יותר באותו אופן. האלגוריתמים B Chia sẽ cho người dùng phân tích dữ liệu và tạo ra những công việc chuyên sâu và hiệu quả hơn. Bücher MUSIONS Với từ ngữ dễ hiểu và dễ tiếp cận, sách này sẽ giúp người đọc hiểu rõ hơn về cách tư duy và hành động của những người thành công, từ những nguyên tắc cơ bản cho tới những bài học thực tế. Bücher MUSIONS Với từ ngữ dễ hiểu và dễ tiếp cận, sách này sẽ giúp người đọc hiểu rõ hơn về cách tư duy và hành động của những người thành công, từ những nguyên tắc cơ bản cho tới những bài học thực tế.
המחקר נעשה בהנחיית פרופ' גל ברקת פקולתライフאינגיינריים והנ_shuffle

המחקך נמענה בהנהלת פרופ' גל ברקת פקולת לימודי המחשבים

הוגש לפנט טכנולוגיה - מכון טכנולוגי לישראל
אב תשי"ח, דווה, יולי 2015
תכנון תנועה בנוכחות מכשולים ניידים

אבי (אברם) סטיפל