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Abstract

A d-dimensional polycube of size n is a connected set of n cubes in d dimen-
sions, where connectivity is through (d−1)-dimensional faces. In this paper we
develop a theoretical framework for computing the explicit formula enumerating
polycubes of size n that span n−k dimensions, for a fixed value of k. Besides the
interest in the number of these simple combinatorial objects, known as proper
polycubes, such formulae play an important role in the literature of statistical
physics in the study of percolation processes and collapse of branched polymers.
We use this framework to prove the known, yet unproven, conjecture about the
general form of the formula for a general k, and implement a computer pro-
gram which reaffirmed the known formulae for k = 2 and k = 3, and proved
rigorously, for the first time, the formulae for k = 4 and k = 5.
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1. Introduction

A d-dimensional polycube of size n is a connected set of n cubes in d di-
mensions, where connectivity is through (d−1)-dimensional faces. Two fixed
polycubes are considered the same if one can be obtained by a translation of
the other. We consider here only fixed polycubes, and so we omit this adjective
throughout the paper. A polycube is said to be proper in d dimensions if the
convex hull of the centers of its cubes is d-dimensional. Following Lunnon [18],
we let DX(n, d) denote the number of fixed polycubes of size n that are proper
in d dimensions. Similarly, we denote by DT(n, d) the number of fixed tree
polycubes (polycubes whose cell-adjacency graph is a tree) of size n which are
proper in d dimensions. Despite the simplicity of these definitions, computing
the functions DX(n, d) and DT(n, d) has shown to be an extremely difficult task.
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Enumeration of polycubes and computing their asymptotic growth rate are
important problems in combinatorics and discrete geometry, originating in sta-
tistical physics [8]. While in the mathematical literature these objects are called
polycubes (polyominoes in two dimensions), they are usually referred to as lattice
animals in the literature of statistical physics, where they play a fundamental
role in the analysis of percolation processes [12, 25] and collapse of branched
polymers [9, 11, 16, 21]. To-date, no formula is known for Ad(n), the number of
fixed polycubes of size n in d dimensions, for any fixed value of d, let alone in
the general case. Counting polyominoes is also a long-standing problem. The
number of polyominoes, A2(n), is currently known up to n = 56 [13]. Tabu-
lations of counts of polycubes in higher dimensions appear in the mathematics
literature [1, 17, 18] as well as in the statistical-physics literature [10, 12, 22].
The main interest in the function DX stems from the fact that Ad(n) can be
easily computed using the formula

Ad(n) =

d∑
i=0

(
d

i

)
DX(n, i),

given originally by Lunnon [18]. The formula is proved by noting that every
proper i-dimensional polycube can be embedded in the d-dimensional space in
exactly

(
d
i

)
different ways (according to the choice of dimensions for the polycube

to occupy). In addition, if n ≤ d, the polycube simply cannot occupy all d
dimensions (since a polycube of size n can occupy at most n−1 dimensions),
and so DX(n, d) = 0 in this case. Hence, in a matrix listing the values of DX,
where the vertical coordinate is n and the horizontal coordinate is d, the top-
right triangular half and the main diagonal contain only zeroes. This gives rise
to the question of whether a pattern can be found in the sequences DX(n, n−k),
where k < n is the ordinal number of the diagonal. Obviously, if a simple formula
is found for DX(n, n− k) for every k, this will yield a simple formula for Ad(n)
(using Lunnon’s formula).

The growth constant of polycubes has also attracted much attention in the
literature. Klarner [14] showed in a seminal work the existence of the limit
λ2 = limn→∞

n
√
A2(n). Only 32 years later, Madras [20] proved the convergence

of the sequence (A2(n+1)/A2(n))∞n=1 to λ2, the growth constant of polyominoes
(also known as Klarner’s constant). The exact value of λ2 has remained elusive
till these days. The currently best known lower and upper bounds on λ2 are
roughly 4.0025 [6] and 4.649551 [15], respectively. In fact, the leading decimal
digit of λ was rigorously computed only recently after remaining illusive for
over 50 years. In d > 2 dimensions, λd, the growth constant of d-dimensional
polycubes, also exists [20]. It was proven [7] that λd = 2ed − o(d); moreover,
λd was estimated at (2d− 3)e+ O(1/d). It was shown [2] that λTd , the growth
constant of tree polycubes, is also 2ed−o(d) and was estimated at (2d−3.5)e+
O(1/d).

Significant progress in estimating λd has been obtained along the years in
the literature of statistical physics, although the computations usually relied on
unproven assumptions and on formulae for DX(n, n−k) which were interpolated
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empirically from known values of Ad(n).
Peard and Gaunt [24] predicted that the diagonal formula DX(n, n− k) has

the pattern 2n−2k+1nn−2k−1gk(n) (for k > 1), where gk(n) is a polynomial in
n. In fact, k has to be a root of gk(n) since DX(n, 0) = 0 for n > 1. Therefore,
the expected form is 2n−2k+1nn−2k−1(n−k)hk(n), where hk(n) is a polynomial
in n, and explicit formulae for hk(n) for k ≤ 6 were conjectured [24]. Luther and
Mertens [19] later conjectured a formula for k = 7. After a careful inspection
of the polynomials, which revealed that the leading coefficient of hk(n) has the
form 2k−1/(k − 1)!, Asinowski et al. [3] refined the conjectured formula to

DX(n, n− k) =
2n−knn−2k−1(n− k)

(k − 1)!
Pc(n),

where Pc(n) is a monic polynomial in n. It has also been conjectured [7, 19]
that the degree of Pc(n) is 3k−4. In this paper, we prove rigorously this refined
conjecture about the general form of DX(n, n− k) and the degree of Pc(n).

Using Cayley trees, it can be shown (see, e.g., [7]) that

DX(n, n− 1) = 2n−1nn−3

(sequence A127670 in the Online Encyclopedia of Integer Sequences [23]). Bare-
quet et al. [7] proved rigorously, for the first time, that

DX(n, n− 2) = 2n−3nn−5(n− 2)(2n2 − 6n+ 9)

(sequence A171860). The proof uses a case analysis of the possible structures
of spanning trees of the polycubes, and the various ways in which cycles can
be formed in their cell-adjacency graphs. Similarly, Asinowski et al. [3] proved
that

DX(n, n−3) = 2n−6nn−7(n−3)(12n5−104n4+360n3−679n2+1122n−1560)/3,

again, by counting spanning trees of polycubes, yet the reasoning and the cal-
culations were significantly more involved. The proof applies the inclusion-
exclusion principle in order to count correctly polycubes whose cell-adjacency
graphs contained certain subgraphs, so-called “distinguished structures.” In
comparison with the case k = 2, the number of such structures for k = 3 is
substantially higher, and the ways in which they can appear in spanning trees
are much more varied. The latter proof provided a better understanding of the
difficulties that one would face in applying this technique to higher values of
k. The number of distinguished structures grows rapidly, the inclusion relations
between them are much more complicated, and the ways in which they can be
connected by forests are much more varied. This yields a much larger number
of terms in the inclusion-exclusion analysis. As anticipated [3], carrying this
approach beyond k=3 would create a case analysis beyond the patience of a
human, making it totally impractical to manually achieve a similar proof for
k > 3.
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In this paper we create a theoretical set-up for proving the formula for
DX(n, n − k), for a fixed value of k. Our method fully automates the man-
ual method presented in [3, 7], allowing the case analysis to be made by a
computer. For this nontrivial generalization we prove a few key observations
about polycubes that are proper in n−k dimensions. We also provide a general
characterization of distinguished structures, and design algorithms that pro-
duce, analyze, and enumerate them automatically, even for complex structures,
forests, and cycles that do not appear in the case k=3. Using our implementa-
tion of this method, we find the explicit formulae (which have never been proven
before) for DT(n, n− 4), DX(n, n− 4), DT(n, n− 5), and DX(n, n− 5), stated
in the following theorems.

Theorem 1.

1. DT(n, n− 4) = 2n−7nn−9(n− 4)(8n8− 140n7 + 1010n6− 3913n5 + 9201n4

− 15662n3 + 34500n2 − 120552n+ 221760)/6.

2. DX(n, n− 4) = 2n−7nn−9(n− 4)(8n8 − 128n7 + 828n6 − 2930n5 + 7404n4

− 17523n3 + 41527n2 − 114302n+ 204960)/6.

Theorem 2.

1. DT(n, n−5) = 2n−9nn−11(n−5)(240n11−6480n10 + 73640n9−461232n8

+ 1778615n7 − 4707195n6 + 11632070n5 − 41919528n4 + 158857920n3

− 483329520n2 + 1481660640n− 2863123200)/360.

2. DX(n, n−5) = 2n−12nn−11(n−5)(240n11−6000n10 +62240n9−356232n8

+ 1335320n7 − 4062240n6 + 12397445n5 − 42322743n4 + 150403080n3

− 535510740n2 + 1923269040n− 3731495040)/45.

2. Definitions and Notations

Integer Partition. A partition of a natural number m ∈ N is a way of writing
m as the sum of one or more positive integers, i.e., m =

∑
i ai. Two sums that

differ only in the order of their summands are considered the same, and so we
choose the canonical representation of a partition to be the list of its summands
in nondecreasing order. Let Π(m) denote the set of all partitions of the natural
number m. For example, there are two partitions of 2 and three partitions of 3:
Π(2) = {1 + 1, 2} and Π(3) = {1 + 1 + 1, 1 + 2, 3}. For a partition p ∈ Π(m),
we denote by |p| the number of summands in p, and by p[i] the ith summand of

p. In addition, we let ⊕p =
∑|p|
i=1 p[i] denote the sum of the elements of p (i.e.,

⊕p = m), and π(p) denote the number of essentially-different permutations of
the summands of p. For example, π(1, 1, 1) = 1 and π(1, 2) = 2. Finally, we
let pr = ⊕p + |p|. (Note that ⊕p + 1 ≤ pr ≤ 2 ⊕ p since 1 ≤ |p| ≤ ⊕p). For
two partitions p1 and p2, we say that p1 contains p2, and denote this relation
by p2 � p1, if there is a subpartition p∗1 of p1 (an ordered subset of the elements
of p1), such that |p∗1| = |p2| and p2[i] ≤ p∗1[i] for all 1 ≤ i ≤ |p2|. For example,
2 � 1 + 2, but 2 � 1 + 1 + 1.
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(a) Polycube P (b) Adjacency graph γ(P )
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Figure 1: A polycube P , its corresponding adjacency graph γ(P ), and the spanning trees of
γ(P ).

Graph Isomorphism. Let G = (VG, EG) and H = (VH , EH) be two directed
edge-labeled graphs with respective edge labels WG and WH , such that |VG| ≤
|VH |. G is said to be isomorphic to H if there is a bijection f : VG → VH such
that

• If for any u, v ∈ VG such that (u, v) ∈ EG, then (f(u), f(v)) ∈ EH ; and

• If for any e1 = (u1, v1), e2 = (u2, v2) ∈ EG, such that the labels of e1 and
e2 are equal, then the labels of (f(u1), f(v1)) and (f(u2), f(v2)) are equal.

An automorphism of G is a form of symmetry in which G is mapped into itself
while preserving the conditions above.

3. Overview of the Method

Denote by Pn the set of polycubes of size n which are proper in n−k di-
mensions. (The value of k is fixed, therefore we omit it from the notation.) For
P ∈ Pn, let γ(P ) denote the directed edge-labeled graph that is constructed as
follows:

• The vertices of γ(P ) correspond to the cells of P ;

• Two vertices of γ(P ) are connected by an edge if the corresponding cells
of P are adjacent;

• An edge has label i (1 ≤ i ≤ n−k) if the corresponding cells have different
i-coordinates (their common (d−1)-dimensional face is perpendicular to
the xi axis); and

• The direction of the edge is from the lower to the higher cell (with respect
to the xi direction).
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See Figure 1 for an example.
Since P 7→ γ(P ) is an injection, it suffices to count the graphs obtained from

the members of Pn in this way. We shall count these graphs by counting their
spanning trees. A spanning tree of γ(P ) has n−1 edges labeled by numbers
from the set {1, 2, . . . , n− k}; all these labels are present because the polycube
is proper in n−k dimensions. Hence, n−k edges of the spanning tree are labeled
with the labels 1, 2, . . . , n− k, and the remaining k−1 edges are labeled with
repeated labels from the same set. Observation 3 characterizes all the different
possibilities of repeated edge-labels in the spanning tree of a proper polycube.

Observation 3. There is a bijection between the combinations of repeated edge-
labels and the partitions of the integer k−1. Specifically, each partition p ∈
Π(k − 1) corresponds to the combination of |p| different repeated labels in the
spanning tree (and pr repeated labels in total), in which the ith repeated label
appears p[i]+1 times. In such a case, we say that the tree is labeled according
to p.

Observation 4. Every label must occur an even number of times in any cycle
of γ(P ).

An immediate consequence of Observation 3 is that a tree can have at most
2(k− 1) repeated edge labels, in which case the repeated labels appear in k− 1
pairs.

In order to compute |Pn|, we consider all possible directed edge-labeled trees
of size n with combinations of edge labels as in Observation 3, and count only
those that represent valid polycubes. In Section 3.2 we characterize all substruc-
tures that are present in some of these trees due to the fact that there are less
dimensions than cells. By analyzing these substructures, we are able to com-
pute how many of these trees actually represent polycubes. Then, we develop
formulae for the numbers of all possible spanning trees of the polycubes, and
then derive the actual number of polycubes.

3.1. Counting

Lemma 5. [3, Lemma 7] [7, Lemma 2] The number of directed trees with n
vertices and n−1 distinct edge labels 1, . . . , n− 1 is 2n−1nn−3, for n ≥ 2.

Our approach is to based on counting polycubes by enumerating spanning trees
of their adjacency graphs. In order to apply Lemma 5 to counting spanning
trees of polycubes, we shall distinguish between the labels repeated in a tree.
As explained above, a spanning tree T of γ(P ), for a polycube P ∈ Pn, must
be labeled according to some partition p ∈ Π(k − 1). Let us, then, denote by
`1, . . . `|p| the repeated labels of T , such that `i appears p[i] times in T . We
will distinguish between the p[i] edges of T labeled with `i by relabeling them
with the (distinct) labels `i, `

′
i, `
′′
i , . . . (see, e.g., Figure 1 (c)). However, in γ(P ),

the repeated labels are not distinguished. The trees that can be obtained by
exchanging (permuting) `i, `

′
i, `
′′
i , . . ., are, in fact, also spanning trees of γ(P ).

Let, then, Tp denote the number of directed trees with n vertices that are
labeled according to p ∈ Π(k − 1).
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Figure 2: (a–f) A few distinguished structures for k = 4 (note that (d) is disconnected);
(g,h) Cycle structures. A dotted line is drawn between every pair of neighboring cells and
around every pair of coinciding cells.

Corollary 6. Tp = π(p)
(
n−k
|p|
)
2n−1nn−3.

3.2. Distinguished Structures

3.2.1. Generation

In the reasoning below, we shall consider several small structures which
may be contained in the spanning trees that we count. These structures are
interesting because the following two things may happen when we attempt to
build the polycube corresponding to a directed edge-labeled tree:

(a) Cells may coincide (Figures 4(a,b) and 2(e)). A tree with overlapping cells
is invalid and does not correspond to any polycube; and

(b) Two cells which are not connected by a tree edge may be adjacent (Fig-
ures 4(c,d) and 2(b)). Such a tree corresponds to a polycube which has
cycles in its cell-adjacency graph, and therefore, its spanning tree is not
unique.

Similarly to Observation 4, for every label of an edge along the path between
two vertices that correspond to coinciding cells, repetitions of this label occur an
even number of times on this path, and a structure that leads to a non-existing
adjacency results in a path obtained by removing one edge from a cycle of an
even length. Therefore, the length (number of edges) of a path that connects
two coinciding cells (respectively, neighboring cells) is upper bounded by 2(k−1)
(respectively, 2k − 1). Therefore, the length of a cycle in γ(P ) can be at most
2k. Moreover, the number of cycles in γ(P ) is upper bounded by k − 1.

In order to count trees correctly, we will consider several small structures
contained in the trees we count, which cause the two problems above. Follow-
ing [3], we will refer to such structures as distinguished structures. A distin-
guished structure is a small labeled graph that is “responsible” for the presence
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Figure 3: (a) A disconnected distinguished structure which has three connected components
s1, s2, s3; (b–d) A few possible configurations of s1, s2, s3.

of two coinciding or adjacent cells, as explained above. More precisely, a dis-
tinguished structure is the union of all paths (edges and incident vertices) that
run between two coinciding or adjacent cells. Every such path uses up some
repeated labels. Therefore, the number of their occurrences in the trees that
we count is limited. The enumeration of the distinguished structures is, thus, a
finite task.

A distinguished structure can be classified as one of the following:

• Basic Structures: A basic structure is formed of a path that connects
a pair of coinciding or neighboring cells. Basic structures are the building
blocks of the two other types of distinguished structures.

• Compound Structures: A compound structure is a connected structure
that contains two or more occurrences of basic structures which cover all
its edges, such that every such occurrence shares an edge with another
occurrence.

• Disconnected Structures: A disconnected structure is a collection of
edge-connected structures (basic or compound). Different components of
a disconnected structure can share a vertex, as illustrated in Figure 3.

Let DSk denote the set of distinguished structures in n−k dimensions. We
hereafter refer to the size of a distinguished structure σ ∈ DSk as the number
of its vertices, and denote this quantity by |σ|.

Observation 7. The size of a basic structure is bounded from above by 2k.

8



(c) (d)(a) (b)

ii i′ j′jj

`

ii i′ j′jj

`

Figure 4: All members of DS2.

Lemma 8. Let σ ∈ DSk be a compound structure labeled according to some
partition p ∈ Π(i), 1 ≤ i ≤ k − 1. Then, |σ| ≤ 2(i+ 1).

Proof: By induction on i. For the basis of the induction (i = 1), the only
distinguished structures are shown in Figure 4 and there are no compound
structures. For i = 2, there are six compound structures formed by identifying
edges of two copies of the structure in Figure 4(a) or two copies of the structure
in Figure 4(b), forming a connected structure of size 6 which is labeled according
to (2) ∈ Π(2), and for which the claim holds.

The induction hypothesis is the assumption that the claim is correct for
i ≤ k − 2. We now proceed with the induction step. Let σ ∈ DSk be a
compound structure labeled according to some partition p ∈ Π(k − 1). The
structure σ can be decomposed into two compound or basic structures σ1 and
σ2 labeled according to p1 ∈ Π(j) and p2 ∈ Π(`), respectively, such that:

• 1 ≤ j, ` < k − 1;

• |σ| = |σ1|+ |σ2| − 2; and

• pr = |p|+⊕p = |p|+(k−1) = |p1|+⊕p1+|p2|+⊕p2−1 = j+`+|p1|+|p2|−1.
Hence, j + ` = k + |p| − (|p1|+ |p2|).

Note that |p| − (|p1| + |p2|) = −1 since σ1 and σ2 share an edge. Hence,
j + ` = k − 1. By the induction hypothesis, we have that |σ1| ≤ 2(i + 1) and
|σ2| ≤ 2(j + 1). Therefore, |σ| = |σ1| + |σ2| − 2 ≤ 2(i + 1) + 2(j + 1) − 2 =
2(i+ j + 1) = 2k. 2

Corollary 9. The size of a compound structure is bounded from above by 2k.

Lemma 10. Let σ ∈ DSk be a distinguished structure that is composed of c
connected components and labeled according to some partition p ∈ Π(i), 1 ≤ i ≤
k − 1. Then, pr ≤ |σ| − c ≤ pr +⊕p.

Proof: The first relation, |σ| − c ≥ pr, states that the number of edges in σ is
at least the number of repeated labels implied by the partition p. Indeed, this
condition is necessary for p to label σ. The second relation is true since the
number of unique labels in σ (labels each of which appears only once in σ) is
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bounded from above by ⊕p. This is because every repeated label `i (with p[i]+1
occurrences in σ) can add to σ at most p[i] unique edge labels. 2

The above characterization of distinguished structures allows for the design
of an algorithm for producing DSk. The algorithm begins with generating all
“free trees” (non-isomorphic trees) of size at most 2k, the upper bound specified
in Observation 7 and Corollary 9. Then, we label the edges of every free tree T
of size t according to every partition p ∈ ∪k−1

i=1 Π(i) which satisfies the relation in
Lemma 10 (pr ≤ t−1 ≤ pr+⊕p) so as to obtain a directed edge-labeled tree T ′.
Then, we check whether T ′ contains coinciding or neighboring cells by using a
simple depth-first traversal that starts from an arbitrary node and assigns every
other node its appropriate coordinate. If such cells are found, then T ′ is added
to DSk if it is not isomorphic to any structure σ ∈ DSk of size t, and at least
one of the following conditions holds:

1. T ′ contains two coinciding or neighboring cells which are connected by a
path of length t−1 (see, e.g., Figures 4(a–d) and 2(b,e));

2. T ′ is isomorphic to the union of d1, . . . , dm ∈ DSk, such that the isomor-
phic copies of d1, . . . , dm in T ′ cover all its edges (see, e.g., Figures 2(c,f)).

Disconnected distinguished structures (see, e.g., Figures 2(d) and 3) are gener-
ated by checking if every collection of edge-connected structures in DSk yields
a single disconnected structure labeled according to some p ∈ ∪k−1

i=1 Π(i).

3.2.2. Enumeration

Let us now turn to the enumeration of occurrences (i.e., isomorphic copies) of
distinguished structures in directed trees with edge labels as explained earlier.
In counting directed trees with n−1 labeled edges which have distinguished
structures as subgraphs, the following logic will be used.

Lemma 11. [7, Lemma 4] The number of ordered sequences T = (τ1, . . . , τk) of
k ≥ 1 rooted trees with a total of n−k edges and distinct edge labels 1, . . . , n−k
is nn−k−1k.

The following lemma is a generalization of the previous one.

Lemma 12. The number of ordered sequences T̃ = (τ1, . . . , τk) of k ≥ 1 rooted
trees that contain c (additional) distinguished roots (which may coincide), such
that τ1 has at least two distinguished roots, with a total of n − k edges and
distinct edge labels 1, . . . , n− k, is nn−k+c−1.

Proof: Consider a sequence T as in Lemma 11, and mark c arbitrary vertices
as the extra roots. In this way, nn−k+c−1k sequences T̃ are obtained. The
component of T̃ which has an extra root is any of τ1 . . . τk with equal probability.
Therefore, in order to get the number of sequences in which τ1 has at least two
distinguished roots, we have to divide by k, obtaining nn−k+c−1. 2

In fact, we will use Lemma 12 in order to prove Lemma 13, which provides
the formula for the number of occurrences of any structure in DSk.
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Lemma 13. Let σ ∈ DSk be a distinguished structure composed of c ≥ 1
trees s1, . . . , sc with distinct edge labels 1, . . . , |σ|−c. The number of occur-
rences of σ in trees of size n with distinct edge labels 1, . . . , n− 1 is Fn(σ) =
nn−|σ|+2c−3

∏c
i=1 |si|.

Proof: For a distinguished structure σ, which has a single connected component
(c = 1), we obtain |σ|nn−|σ|−1 occurrences, as in Lemma 11, which equals the
number of ordered sequences of |σ| rooted trees that can be attached to the ver-
tices of σ. For a distinguished structure that has c > 1 connected components,
as in Lemma 12, there has to be a sequence t̃ of |σ|−(c−1) trees, with c−1
additional distinguished roots that are needed to connect the c components of
σ, as follows. The factor

∏c
i=1 |si| stands for the number of options for choosing

the connectors: The vertices through which the components of σ are connected.
The vertices of s1 are attached to the first |s1| roots, such that the connector of
s1 is attached to τ1 (from Lemma 12). (This is why τ1 must have at least two
distinguished roots). Then, the vertices of rest of the components si (except
their connectors) are attached to the remaining roots. Finally, the c−1 con-
nectors are attached to the c−1 additional chosen roots. Applying Lemma 12
yields the claimed formula. 2

A special case of Lemma 13 is provided in the Appendix.
Let now Fn(σ) denote the number of occurrences of σ in directed edge-labeled

trees of size n.

Corollary 14. Fn(σ) = 2n−|σ|+c−1Fn(σ).

Let σ ∈ DSk be a distinguished structure labeled according to p′ ∈ ∪k−1
i=1 Π(i).

Let us denote by Op(σ) the number of occurrences of σ in directed trees of size
n that are labeled according to p ∈ Π(k − 1).

Observation 15. If p′ � p, then Op(σ) = 0.

The computation of Op(σ) involves the following steps:

• Choose the |p| repeated labels of the tree out of the possible n−k labels.

• Choose the |p′| repeated labels of σ out of the |p| repeated labels of edges
of the tree.

• Choose the unique labels of σ (e.g., the label ` in structures (b,c) in
Figure 2), if there are any.

• Calculate the number of essentially-different structures that can be pro-

duced out of the
∏|p′|
j=1(p′[j]!) possible configurations of the repeated labels

of σ. For example, for structure (a) in Figure 4, all the configurations yield
the same structure, whereas for structure (b), there are two essentially-
different structures. In one structure, the edge labeled i is attached to the
head of the edge labeled `, whereas in the other structure, the edge labeled
i′ is attached to the head of the edge labeled `. Lastly, for structure (a)
(Figure 2), there are six different configurations of the labels i, i′, i′′ which

11



Figure 5: The six different configurations of the structure in Figure 2(a).

yield six different structures (shown in Figure 5). This number can be
obtained by computing the number of symmetries (automorphisms) of σ.

• Finally, multiply the numbers obtained in the previous steps by Fn(σ).

Here are two detailed examples.
We demonstrate the computation of Op(σ) with two of the structures shown

in Figure 2. The first structure, σ1, is the one shown in Figure 2(a). σ1 is
labeled according to (3) ∈ Π(2). Therefore, for the case k = 4, σ1 may appear in
trees labeled according to (2, 3), (4) ∈ Π(3), but not according to (2, 2, 2) ∈ Π(3)
since (3) � (2, 2, 2). Let us detail the computation of O(2,3)(σ1). First, there are(
n−4

2

)
options to choose the two repeated labels `1, `2 in the tree. We multiply

by π((2, 3)) = 2 (either `1, `
′
1, `2, `

′
2, `
′′
2 or `1, `

′
1, `
′′
1 , `2, `

′
2). The label i that is

repeated three times in σ1 is thus determined uniquely. Assume without loss
of generality that i is assigned the label `1. There are n−4 options to choose
the label `: it must be different from `1, `

′
1, `
′′
1 (but may be equal to `2 or `′2).

There are three options for choosing which label of `1, `
′
1, `
′′
1 is attached to the

head of `, then two options for choosing the label that is attached to the tail
of `. This number is calculated from the number of automorphisms of σ1. To
complete the computation of O(2,3)(σ1), we multiply by Fn(σ1).

The second structure, σ2, is the one shown in Figure 2(e). σ2 is labeled
according to the partition (2, 2) ∈ Π(2). Hence, it may appear in trees labeled
according to (2, 2, 2), (2, 3) ∈ Π(3), but not according to (4) ∈ Π(3) since (2, 2) �
(4). For computing O(2,2,2)(σ2), there are

(
n−4

3

)
options for choosing the three

labels repeated in the tree. This uniquely yields the labels `1, `
′
1, `2, `

′
2, `3, `

′
3

(note that π((2, 2, 2)) = 1). Then, there are
(

3
2

)
options to choose the repeated

labels i, j. Assume without loss of generality that the chosen labels are `1 and
`2. Note the symmetry in this structure: It does not matter if i is assigned
the label `1 and j is assigned the label `2, or vice versa, since the two options
yield the same structure. Again, the number of symmetries of σ2 is calculated
using the number of its automorphisms and the computation is completed by
multiplying by Fn(σ2).

12



4. Inclusion-Exclusion Graph

When counting the occurrences of a distinguished structure σ ∈ DSk, other
distinguished structures which contain multiple occurrences of σ are counted
multiple times. Obviously, if a distinguished structure σb contains c occur-
rences of a smaller structure σs, then σb is accounted for c times when counting
the occurrences of σs. The inclusion-exclusion principle is applied to resolve
this dependency between the different structures. In order to obtain the num-
ber of trees that contain σ as a subtree (using the quantity Op(σ)), we build
an inclusion-exclusion graph IE = (V, E). This graph contains a vertex corre-
sponding to each structure σ ∈ DSk. There is an edge e = σ1 → σ2 labeled
with c if σ1 contains c occurrences of σ2. Let `(e) denote the label of the
edge e, h(σ) denote the length of the longest path from σ to a root of IE, and
I(σ2) = {σ1 ∈ V : (σ1, σ2) ∈ E}. The set of roots R = {v ∈ V : I(v) = ∅}
of the IE graph contains all the structures that are not contained in any other
structure; in a sense, those are the “big” structures. Figure 6 shows a subgraph
of the IE graph for k = 4. Let us denote by Tp(σ) the number of trees of size n
labeled according to p ∈ Π(k−1) that contain σ but no σ′ ∈ I(σ) as a subtree.

Lemma 16. Tp(σ) = Op(σ)−
∑
σ′∈I(σ) `((σ

′, σ))Tp(σ
′).

Proof: By Induction on h(σ).

• The roots of the IE graph σ ∈ R, for which h(σ) = 0, represent distin-
guished structures that are not contained in any other structure. There-
fore, for any partition p ∈ Π(k− 1), the number of trees that contain σ as
a subtree equals the number of occurrences of σ in directed trees labeled
according to p. Thus, Tp(σ) = Op(σ).

• Induction hypothesis: The claim is correct for vertices of height h < h0.

• Induction step: Let σ ∈ V be at height h0 (h(σ) = h0), and let σ′ ∈ I(σ).
The trees that contain σ′ as a subtree are counted `((σ′, σ))Tp(σ

′) times
in Op(σ). Therefore, subtracting `((σ′, σ))Tp(σ

′) from Op(σ) excludes
all the trees that contain σ′ as a subtree. Thus, Tp(σ) = Op(σ) −∑
σ′∈I(σ) `((σ

′, σ))Tp(σ
′).

2

A simple bottom-up procedure traverses the IE graph, computing Tp(σ) for
every structure σ ∈ V.

5. Counting Polycubes

A proper tree polycube is a polycube P ∈ Pn for which γ(P ) is a tree. The
other polycubes P ′ ∈ Pn are those for which γ(P ′) contains cycles.
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Figure 6: A snapshot of the IE graph for k = 4.

5.1. Trees

Every tree polycube gives rise to a unique spanning tree. For every choice
of repeated labels p ∈ Π(k − 1), let DTp(n) denote the number of proper tree
polycubes which corresponding (unique) spanning trees are labeled according to
p. Corollary 6 specifies Tp, the total number of directed trees with n vertices that
are labeled according to p. Every such tree corresponds to a tree polycube in Pn
unless it contains a distinguished structure as a subtree. (Indeed, it can neither
contain a distinguished structure that has coinciding cells because the latter is
illegal, nor can it contain a distinguished structure that has neighboring cells
since it is a tree.) Therefore, all the trees that contain a distinguished structure
as a subtree must be excluded. Hence,

DT(n, n− k) =
∑

p∈Π(k−1)

DTp(n) =
∑

p∈Π(k−1)

Tp −
∑
σ∈DSk

Tp(σ)∏|p|
j=1 p[j]!

(1)

The division by
∏|pi|
j=1(pi[j]!) is because each tree polycube is counted that many

times.

5.2. Nontrees

Let σ ∈ DSk be a distinguished structure which contains only adjacent cells
and no coinciding cells. Let σc denote the graph that is constructed by adding to
σ all the missing cycle-edges between every pair of adjacent cells. The structure
σc is a cycle. For example, the distinguished structure shown in Figure 2(b)
is a spanning tree of the cycle shown in Figure 2(h). Two cycle structures c1

14



and c2 are considered distinct if either c1 is not isomorphic to c2, or c2 is not
isomorphic to c1. Let C denote the set of all cycle structures of polycubes in
Pn. The set C can be found using DSk as described. Note that two different
distinguished structures may be spanning trees of the same cycle. For every
cycle Ci ∈ C, let PCi denote the number of polycubes P ∈ Pn that contain
Ci in their cell-adjacency graph γ(P ). Suppose that a distinguished structure
σ ∈ DSk has c occurrences in Ci. Then, we have that

PCi =
∑

p∈Π(k−1)

Tp(σ)

c
∏|p|
j=1 p[j]!

. (2)

This follows from the definition of Tp(σ). Finally, we reach the desired formula.

DX(n, n− k) = DT(n, n− k) +

|C|∑
i=1

PCi . (3)

Theorem 17. The general pattern of DX(n, n − k), for a fixed k > 0, is
2n−k

(k−1)!n
n−2k−1(n−k)P3k−4(n), where Pc(n) is a monic polynomial in n of order

c.

Proof: From the discussion in Sections 3 and 4 about the terms of the inclusion-
exclusion formula and equations (1), (2), and (3), we conclude that for any
p ∈ Π(k−1), by Corollary 6, the degree of Tp is at least n−3, and that the highest

power of n, namely, n+k−4, is contributed by T(2,2,...,2) =
(
n−k
k−1

)
nn−32n−1: The

edge-repetition configuration in the labeled tree, corresponding to the partition
(1, 1, . . . , 1) ∈ Π(k−1), contains k−1 pairs of repeated edge labels. The power
of n contributed by Tp′ , for all the other partitions p′ ∈ Π(k−1), is smaller than
n+k−4.

Now let σ ∈ DSk be a distinguished structure composed of c connected
components, and labeled according to some partition p′ ∈ ∪k−1

i=1 Π(i). Let u
denote the number of unique labels in σ. We claim that the power of n in
Op(σ), for any partition p ∈ Π(k − 1) for which p′ � p, is bounded by n−2k−1
from below and by n+k−5 from above. As a result, since Tp(σ) consists of
linear combinations of Op(σ) and Op(σ′) for other structures σ′ ∈ DSk (where
the coefficients of the combinations are functions of k only), the power of n in
Tp(σ) is also bounded by n−2k−1 from below and by n+k−5 from above.

The power of n in Op(σ) is contributed by the following three factors:

•
(
n−k
|p|
)
: This factor corresponds to choosing |p| repeated labels, and it

clearly contributes at most |p| powers of n to Op(σ).

• Fn(σ): The power of n contributed by Fn(σ) is n−|σ|+2c−3 (Lemma 13).

• u: Naturally, the power of n contributed by the choice of these u unique
labels can be at most u.
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Upper bound. The power of n is bounded from above by the sum of these three
factors. We now prove that n−|σ|+2c−3+u+|p| ≤ n+k−5:

1. By Lemma 10, |σ| − c ≥ p′r. Moreover, |σ| − c = p′r + u since, clearly, the
number of edges in σ (|σ| − c) equals the total number of edge-labels in it
(p′r + u).

2. Trivially, |p| ≤ k − 1.

Therefore, n− |σ|+ 2c− 3 + u+ |p| ≤2 n− |σ|+ 2c+ u+ k − 4. To show that
n− |σ|+ 2c+ u+ k− 4 ≤ n+ k− 5, it suffices to show that −|σ|+ 2c+ u ≤ −1.
By multiplying this relation by −1, we obtain |σ| − 2c − u ≥ 1. We have that
|σ| − 2c− u ≥1 p

′
r + u− c− u = p′r − c. We now claim that indeed p′r − c ≥ 1.

This is because every connected component in σ must have at least one pair of
coinciding or neighboring cells, and in order to have such cells, every connected
component must have at least two repeated labels, implying that the difference
between p′r (the total number of repeated labels in σ) and c (the number of
connected components of σ) is at least 1.

Lower bound. In order to show that the power of n in Op(σ) is bounded from
below by n−2k−1, we prove that the power of n contributed by the second
factor, namely, n−|σ|+2c−3, is at least n−2k−1, that is, −|σ|+2c ≥ −2(k−1).

Lemma 18. Let σ ∈ DSk be a distinguished structure composed of c connected
components and labeled according to some partition p′ ∈ ∪k−1

i=1 Π(i). Then,
−|σ|+2c ≥ −2i.

Proof: By induction on i.

• Induction basis (i = 1): The only structures labeled according to Π(1) =
1 are two paths of length 2 and two paths of length 4 (all shown in Fig-
ure 4), for which we have −|σ|+ 2 ≥ −2.

• Induction hypothesis: The claim is correct for structures labeled ac-
cording to i ≤ k − 2.

• Induction step: Let σ ∈ DSk be labeled according to p′ ∈ Π(k−1). If σ
is a basic or compound structure, then, by Corollary 7 and Lemma 8, we
have that −|σ|+2 ≥ −2k+2 = −2(k−1). Otherwise, σ can be decomposed
into two structures σ1 and σ2 with c1 and c2 connected components, that
are labeled according p1 ∈ Π(i) and p2 ∈ Π(j), respectively, such that

– 1 ≤ i, j < k − 1;

– |σ| = |σ1|+ |σ2|;
– c = c1 + c2;

– pr = ⊕p+|p| = (k−1)+|p| = ⊕p1+|p1|+⊕p2+|p2| = i+j+|p1|+|p2|;
thus, i+ j = (k − 1) + |p| − (|p1|+ |p2|).
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By the above and the induction hypothesis, −|σ|+ 2c = −(|σ1|+ |σ2|) +
2(c1 + c2) ≥ −2i−2j = −2(i+ j) ≥ −2(k−1). The last relation is correct
since, clearly, |p| ≤ |p1|+ |p2|.

2

We return to the proof of the main theorem.

In Equation (1), T(2,2,...,2) is divided by 2k−1 (
∏|k−1|
j=1 2). Thus, the coefficient

of the highest power of n is 2n−k

(k−1)! . Hence, we obtain a global formula of the

form 2n−k

(k−1)! (n
n+k−4 + · · · + cnn−2k−1), where c is some constant independent

of n. We can now factor out the quantity nn−2k−1 to obtain a formula of the

form 2n−k

(k−1)!n
n−2k−1P3k−3(n). Finally, k must be a root of DX(n, n− k) since a

polycube of size n = k cannot span n − k = 0 dimensions (unless n = k = 1).
Factoring out n−k yields the claimed pattern. 2

Note that 3k − 3 known values of DX(n, n − k) (for a specific value of k),
including the two trivial values DX(k, 0) = 0 and DX(k + 1, 1) = 1, suffice
for interpolating uniquely P3k−4(n). However, a “physical” argument [19] im-
plies that as few as k values suffice for interpolating the polynomial.1 In a
nutshell, this argument is based on the unproven assumption that the “free
energy” ((log CX(n, d))/n) has a well-defined 1/d-expansion whose coefficients
depend on n and are bounded when n tends to infinity. Then, the powers of n in
the terms of the expansion are tuned so as to avoid the explosion of the terms,
thereby imposing constraints which allow the computation of DX(n, n − k) by
knowing only k values of it.

6. Results

The method outlined in the preceding sections was fully implemented in a
parallel C++ program, using Wolfram Mathematica for simplifying the final
formulae. All calculations were performed on a supercomputer with 132 GB of
RAM and 20 processors.2 Our results, summarized in Table 7, agree completely
with the formulae conjectured in the literature of statistical physics. The pro-
gram produced data files which document the entire computation, serving as
proofs of the formulae. This completes the proof of Theorems 1 and 2.

7. Conclusion

In this paper, we present a theoretical setup and an automatic tool for
computing the diagonal formula DX(n, n− k) for any k > 0. Using this setup,
we prove the known conjecture about the form of DX(n, n − k) for a general

1The cited reference actually claims that k + 1 values are needed, not taking into account
that k is a root of the polynomial (except in the first diagonal formula).

2The results reported in the conference version of this paper [4] were obtained by running
the program on a different computer, hence the difference in the reported running times.
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k = 3

|DS3| 147

|C3| 13

DT(2,2)(n) 2n−6nn−7(n−3)(n−4)(4n4−28n3+97n2−200n+300)

DT3(n) 2n−3nn−7(n−3)(2n2−21n3+106n2−282n+360)/3

DT(n, n−3) 2n−3nn−7(n−3)(2n4−21n3+106n2−282n+ 360)/3∑13
i=1 PCi 2n−6nn−7(n−3)(n−4)(4n3−17n2+11n+70)

DX(n, n− 3) 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3

k = 4

|DS4| 8,397

|C4| 179

DT(2,2,2)(n) 2n−7nn−9(n−4)(n−5)(n−6)(8n6−84n5+438n4−1543n3+4236n2

−9020n+19040)/6

DT2,3(n) 2n−4nn−9(n−4)(n−5)(4n6−56n5+383n4−1654n3+5106n2−10920n
+14112)/6

DT4(n) 2n−5nn−9(n−4)(4n6−84n5+851n4−5191n3+20190n2−47552n
+53760)/6

DT(n, n−4) 2n−7nn−9(n−4)(8n8−140n7+1010n6−3913n5+9201n4−15662n3

+34500n2−120552n+221760)/6∑179
i=1 PCi 2n−7nn−9(n−4)(n−5)(12n6−122n5+373n4+68n3 − 1521n2−578n

+3360)/6

DX(n, n−4) 2n−7nn−9(n−4)(8n8−128n7+828n6−2930n5+7404n4−17523n3

+41527n2−114302n+204960)/6

k = 5

|DS5| 652,060

|C5| 3,680

DT(2,2,2,2)(n) 2n−12nn−11(n−5)(n−6)(n−7)(n−8)(16n8−224n7+1560n6

−7544n5+29089n4−98032n3+319752n2−819200n+2324880)/3

DT(2,2,3)(n) 2n−8nn−11(n−5)(n−6)(n−7)(8n8−140n7+1206n6−6917n5

+30322n4−107966n3+333720n2−816696n+1321920)/3

DT(3,3)(n) 2n−7nn−11(n−5)(n−6)(8n8−168n7+1730n6−11736n5+59912n4

−238071n3+722025n2−1517688n+1814400)/9

DT(2,4)(n) 2n−8nn−11(n−5)(n−6)(8n8−196n7+2338n6−17731n5+95521n4

−384154n3+1161728n2−2462976n+2903040)/3

DT(5)(n) 2n−6nn−11(n−5)(4n8−140n7+2375n6−25215n5+183076n4

−932080n3+3256940n2−7149000n+7560000)/15

DT(n, n−5) 2n−9nn−11(n−5)(240n11−6480n10+73640n9−461232n8+1778615n7

−4707195n6+11632070n5−41919528n4+158857920n3−483329520n2

+1481660640n−2863123200)/360∑3680
i=1 PCi 2n−12nn−11(n−5)(n−6)(32n9−568n8+3592n7−8001n6−5009n5

+20971n4+98945n3+30014n2−3298664n+9648576)/3

DX(n, n−5) 2n−12nn−11(n−5)(240n11−6000n10+62240n9−356232n8+1335320n7

−4062240n6+12397445n5−42322743n4+150403080n3−535510740n2

+1923269040n−3731495040)

Table 7: Results for k = 3, 4, 5.
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fixed value of k. As k grows, the number of distinguished structures grows
too, and the complexity of the calculations grows as well. We implemented the
entire method so that the formulae are obtained completely automatically. As
a byproduct, our software also provides a full proof of the formula: A complete
listing of all structures, all the intermediate computations, a full description of
the inclusion-exclusion relations between the structures, and a detailed account
of all the calculations. We applied our method to the cases k ≤ 5, reaffirming
the known formulae for k = 2, 3 and proving rigorously for the first time the
conjectured formulae for DX(n, n− 4) and DX(n, n− 5). Running the program
for higher values of k will be done in future work. However, given that already
for k = 5, the number of distinguished structures surpasses half a million, we
do not believe that going beyond k = 7 will be feasible.
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Appendix

The theorem given in this appendix considers the given structure σ to be
fixed, in the sense that if σ is disconnected, then the different ways in which the
connected components can share a vertex (as illustrated in Figure 3) are not
taken into account, and the number of occurrences of σ, when the components
of σ cannot be connected directly by sharing a vertex, are computed. In a sense,
this theorem is a special case of Lemma 13.

The original version of our program generated all possible configurations in
which the connected components of a disconnected structure σ may be con-
nected, considering every such configuration to be a different distinguished
structure. In fact, the number of distinguished structures and cycles reported
in Figure 7 include such structures. Clearly, for every disconnected structure σ,
summing up the expressions for the number of occurrences for every configura-
tion of σ (provided by the following theorem) yields the exact expression for σ
stated in Lemma 13.

Theorem 19. Let σ be a distinguished structure composed of c ≥ 1 trees s1, . . . , sc
with distinct edge labels 1, . . . , |σ| − c. The number of occurrences of σ in trees
of size n with distinct edge labels 1, . . . , n− 1 is

Fn(σ) = (n−|σ|+c−1)!
(n−|σ|)! nn−|σ|+c−2

∏c
i=1 |si|.

Proof: We proceed by double counting, enumerating in two ways the different
sequences of directed edges that can be added to a graph composed of the union
of n−|σ| vertices and the distinguished structure σ, so as to form a rooted tree
with n vertices.

One way to count these sequences is to add the edges one by one, and to
count the number of options available at each step. There are N =

∏c
i=1 |si|

ways to choose a root for each component si of σ. At the beginning, we have a
forest with n−|σ|+c rooted trees. After adding a collection of edges, forming a
rooted forest with i trees, there are n(i − 1) options for the next edge to add:
Its origin can be any one of the n vertices of the graph, and its terminus can be
any one of the i−1 roots other than the root of the tree containing the origin.
Therefore, the total number of options is

N
n−|σ|+c∏
i=2

n(i− 1) = Nnn−|σ|+c−1(n− |σ|+ c− 1)!. (4)
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An alternative way to count these edge sequences is to start with one of the
Fn(S) possible unrooted edge-labeled trees which contains σ, choose one of its
n vertices as a root, and choose one of the (n−|σ|)! possible sequences, say, η,
then label the (n−|σ|) vertices of the tree according to η (the vertices that do
not belong to σ), and “shift” each vertex-label to the incident edge towards the
root, producing an edge-labeled tree. The total number of sequences that can
be formed this way is

nFn(σ)(n− |σ|)!. (5)

Finally, we conclude from Equations (4) and (5) that the number of occurrences
of σ in unrooted trees with edge labels 1, . . . , n− 1 is

Fn(σ) =
(n− |σ|+ c− 1)!

(n− |σ|)!
nn−|σ|+c−2N .

2
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