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A silly example

A coin is tossed.

We know that there's a 50% chance to get �heads�.

What deterministic information does this knowledge give us?

That the coin has a �heads� side, and a �tails� side (is not a

total fake)
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The basic idea

Suppose we want to prove the existence of a combinatorial

object.

For example � a graph that has some desired properties.

We de�ne a probability space on all graphs, and show that a

graph with the desired properties has a positive probability in

that space.

This proves (nonconstructively) the existence of at least one

graph with the desired properties.

What is the di�erence between this and simple counting

arguments?

It is possible to use many results and ideas from probability

theory in order to handle the �show� part.
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History

First usage: Szele, 1943 (we'll see what he did soon enough).

Main developer: Paul Erd®s (�rst used the method in 1947)

Initially used in Graph Theory, today used in many di�erent

�elds: Number Theory, Complexity Theory, Game Theory,

Computational Geometry. . .
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Expectation

Given a random variable X , taking values in N, de�ne
E [X ] , ∑

∞
n=0 n ·P [X = n].

�Linearity of Expectation�: If X1, . . . ,Xn are random variables

(not necessarily independent), then E [∑n
i=1

Xi ] = ∑
n
i=1

E [Xi ].

If E [X ] = A then there exists ω1,ω2 in the probability space

such that

X (ω1)≤ A

X (ω2)≥ A

(Why?)
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Szele's Result

A Tournament is a directed graph such that for every x ,y ∈ V
either (x ,y) ∈ E or (y ,x) ∈ E but not both.

The idea: every two vertices play a match; (x ,y) ∈ E means x

won.

Theorem

(Szele, 43)

There is a tournament T with n players and at least n!2−(n−1)

Hamiltonian paths.
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Szele's result (cont.)

Proof.

Choose uniform distribution on all n-vertex tournaments.

X is the random variable counting Hamiltonian paths.

σ is a permutation on V . It de�nes a Hamiltonian path if and

only if (σ (i) ,σ (i +1)) ∈ E for all 1≤ i < n.

Xσ is the indicator of �σ de�nes a Hamiltonian path�.

P [Xσ ] = 2−(n−1) (why?)

X = ∑σ Xσ (why?) so E [X ] = ∑σ E [Xσ ] = n!2−(n−1).

There is a tournament for which X is equal to at least E [X ].

Presented by: Gadi Aleksandrowicz The Probabilistic Method



Introduction
Heilbronn's Triangle Problem

Greatest Angle among Points of Rd
The Local Lemma

What is the Probabilistic Method?
Two Basic Examples

Satis�ability problem

Given boolean variables x1, . . . ,xn, a 3SAT formula is a CNF

formula with 3 di�erent literals in each of its M clauses.

Example: ϕ = (x1∨ x2∨ x3)∧ (x3∨ x4∨ x2).

Problem: is a given 3SAT formula satis�able? (NP-complete).

Easier problem: Are at least half the clauses satis�able

(simultaneously)? what about three-quarters?

Theorem

For every 3SAT formula there is an assignment which satis�es 7

8
of

the clauses.
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Satis�ability problem (cont.)

Proof.

Choose a random assignment.

For clause i (1≤ i ≤M) de�ne Xi as the indicator of the

satis�abilty of i .

X = ∑
M
i=1

Xi is the number of satis�ed clauses.

P [Xi = 1] = 7

8
(why?)

E [X ] = ∑
M
i=1

E [Xi ] = 7

8
M.

Therefore, there is an assignment satisfying at least 7

8
M

clauses.
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Heilbronn's triangle problem

S is a set of n points in the unit square.

De�ne T (S) as the minimum area of a triangle whose vertices

are three distinct points from S .

De�ne T (n) = max|S |=nT (S).

T (n) is known exactly only for n ≤ 6.
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Asymptotic bounds

Heilbronn conjectured that T (n) = O
(
n−2
)
.

However, in 1982 it was proved that T (n) = Ω
(
n−2 logn

)
.

We show by a simpler argument: T (n) = Ω
(
n−2
)
.

Theorem

For every n there is a set S of n points in the unit square such that

T (S)≥
(
100n2

)−1
.
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Part 1: The area of a �random triangle�

Let P,Q,R be independently, uniformly selected from U.

Let µ = µ (PQR) be the area of the triangle PQR .

We bound P [µ ≤ ε] using some calculus.

Let x be the distance between P and Q.

Then we have P [b ≤ x ≤ b+ ∆b]≤ π (b+ ∆b)2−πb2
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Part 1: The area of a �random triangle� (cont.)

When we take db to be in�nitesimally small, we get:

P [b ≤ x ≤ b+db]≤ π (b+db)2−πb2 = 2πbdb.
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Part 1: The area of a �random triangle� (cont.)

Given P,Q at distance b, where can we place R while keeping

µ ≤ ε?

Let h be the distance of R from the line PQ.

The area of PQR is hb
2
.

Therefore we have h ≤ 2ε

b
.

This means R lies in a strip of width 4ε

b
and length at most√

2.
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Part 1: The area of a �random triangle� (cont.)

Therefore the probability for a triangle with µ ≤ ε for a given

b is at most 4
√
2ε

b
.

We have that the total probability of a triangle with µ ≤ ε is

bounded by:

∫√
2

0
(2πb)

(
4
√
2ε

b

)
db = 16πε

Presented by: Gadi Aleksandrowicz The Probabilistic Method



Introduction
Heilbronn's Triangle Problem

Greatest Angle among Points of Rd
The Local Lemma

Introduction
Proof

Part 2: Choosing our points

We use an �alteration� trick.

We won't prove directly that our desired set exists, but the

existence of a �slightly �awed� set.

Then we'll show that the ��aws� can be �xed by removing

some of the �bad� elements of the set.

So, instead of choosing n points, we choose 2n points

uniformly, P1,P2, . . . ,P2n.

Presented by: Gadi Aleksandrowicz The Probabilistic Method



Introduction
Heilbronn's Triangle Problem

Greatest Angle among Points of Rd
The Local Lemma

Introduction
Proof

Part 2: Choosing our points

Let X be the number of �bad� triangles - PiPjPk with area

less than
(
100n2

)−1
.

As before, we write X as a sum of indicators, for each triplet

i , j ,k .

The probability that PiPjPk is of area less than ε =
(
100n2

)−1
is smaller than 16π

100n2
< 16·3.5

100n2
< 0.6n−2.

And so we have

E [X ]≤
(
2n
3

)(
0.6n2

)
= 6(2n)(2n−1)(2n−2)

6·10n2 < (2n)3

10n2
= 8n3

10n2
< n
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Part 3: Alteration

Since E [X ] < n, there is a choice of points such that X < n,

i.e. no more than n �bad� triangles.

Choose a point Pi from each of the �bad� triangles and remove

it from the set.

The same point may be deleted more than once, but this only

helps.

We end up with a set of at least n points, which induces no

bad triangles.
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Introduction

How large can a set of points in Rd be such that:

Every angle determined by a triplet of points from the set is

strictly less than 90◦.

Danzer and Grünbaum proved in 1962 that an upper bound is

2d .

The also conjectured that a much better upper bound is

2d −1.

This was disproven in 1983 by Erd®s and F¶redi using the

probablistic method.

Theorem

For every d ≥ 1 there is a set of at least

⌊
1

2

(
2√
3

)d⌋
points in Rd

satisfying the 90◦ condition.
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Basic observations

We'll choose points from the vertices of the d dimensional unit

cube.

First observation - the angles they can form are at most 90◦,
so it su�ces to �nd a condition as to when they are exactly

90◦ (proof - next slide).

We can think of the vertices as vectors in Fd
2
.

Associate with (a1, . . . ,ad ) the set A = {i | 1≤ i ≤ d ,ai = 1}.
Second observation (proof - the slide after the next) - the

vertices a,b,c determine right angle at c if and only if for the

corresponding sets A,B,C :

A∩B ⊆ C ⊆ A∪B
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Proof for the 1st observation

Remember that in an inner product space (such as Rd ) one

can de�ne angle between vectors u,v by:

cos(θ) =
〈v ,u〉
‖v‖‖u‖

Therefore 0◦ ≤ θ ≤ 90◦ if 〈v ,u〉 is nonnegative.
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Proof for the 1st observation (cont.)

For a,b,c , to determine the angle at c , one consideres

〈(a− c) ,(c−b)〉 . We have:

〈(a− c) ,(b− c)〉=〈a,b〉−〈a,c〉−〈c,b〉+ 〈c,c〉

=〈a,b〉−〈a+b− c,c〉=
d

∑
i=1

aibi −
d

∑
i=1

(ai +bi − ci )ci

= ∑
i∈A∩B

1−∑
i∈C

(ai +bi −1)

= ∑
i∈A∩B

1− ∑
i∈A∩B∩C

1+ ∑
i∈C−(A∪B)

1

= |A∩B|− |A∩B ∩C |+ |C − (A∪B)|

Since A∩B ∩C ⊆ A∩B , this is obviously nonnegative.
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Proof for the 2nd observation

By the previous calculation, we have that θ = 90◦ (and so,

cos(θ) = 0) if and only if:

|A∩B|− |A∩B ∩C |+ |C − (A∪B)|= 0

Since |A∩B ∩C | ≤ |A∩B| we have that this equation holds if

and only if:

1 |A∩B|= |A∩B ∩C | ⇐⇒ A∩B = A∩B ∩C ⇐⇒ A∩B ⊆ C

2 |C − (A∪B)|= 0 ⇐⇒ C − (A∪B) = /0 ⇐⇒ C ⊆ A∪B

And we are done.
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What now?

We remain with the following goal:

Prove the existance of a set of m =

⌊
1

2

(
2√
3

)d⌋
points such

that no three points satisfy A∩B ⊆ C ⊆ A∪B .
As with Heilbronn's triangle problem, we use the �alteration�

technique - choosing �too many� points and proving the

problems can be �xed by removing a �small� amount of points.

Therefore, we choose randomally and independently 2m

vectors in Fd
2
.

Given a,b,c , what is the probability that they satisfy the set

condition?

Turns out it's exactly
(
3

4

)d
.
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Proof of the probability

When do we have A∩B ⊆ C ⊆ A∪B?
Only if none of the following conditions hold for every

1≤ i ≤ d :

1 ai = bi = 0 and ci = 1

2 ai = bi = 1 and ci = 0

There are 8 possible choices of ai ,bi ,ci , so we have 1

4

probability this will happen for i .

Therefore, the probability it will not happen for any i is
(
3

4

)d
.
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Using expectation

There are at most 3 ·
(
2m
3

)
angles created by points in the set

(maybe less because some points might repeat).

Thus, using the standard expectation calculation we have that

the expected number of right angles is:

3

(
2m

3

)(
3

4

)d

=
(2m)(2m−1)(2m−2)

2

(
3

4

)d

<
(2m)3

2

(
3

4

)d

≤ 1

2

(
8√
33

)d (3

4

)d

=
1

2

(
8 ·3

4 ·
√
33

)d

=
1

2

(
2√
3

)d

= m

Therefore, there is a set of 2m points for which at most m of

the angles are 90◦.
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Summing it up

As with Heilbronn, we remove an o�ending point from each

right angle triplet.

We remain with m points and no right angles.

The points are all distinct, since if a = c then

A∩B ⊆ C ⊆ A∪B (for any b).
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Statement

Suppose we have n mutually independent events, each holds

with probability at least p > 0.

The probability that all of the events hold simultaneously is at

least pn > 0.

Therefore, knowing that every event has a chance to happen

tells us there's a chance all of them will happen.

Sounds trivial? It is... But what if the events are not

independent? Is there a �weak� dependency such that a similar

result holds?

Given events A1, . . . ,An, de�ne a digraph D = (V ,E ) to model

their dependencies: Ai is mutually independent of all the

events {Aj |(i , j) /∈ E}.
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Statement (general case)

Theorem

(The Local Lemma: General Case)

If there exists real number x1, . . . ,xn such that 0≤ xi < 1 and for all

i we have P [Ai ]≤ xi ∏(i ,j)∈E (1− xj), then

P
[∧n

i=1Ai

]
≥∏

n
i=1

(1− xi ) > 0

First, a lemma:

Theorem

For any S ⊆ {1, . . . ,n}, |S |= s < n and any i /∈ S we have

P
[
Ai |
∧
j∈S Aj

]
≤ xi
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Proof of the lemma

We prove by induction on |S |= s. For s = 0 it follows trivially

from the Local Lemma's hypothesis.

Given S , assume correctness for each set of size s ′ < s = |S |.
Put S1 = {j ∈ S |(i , j) ∈ E} and S2 = S−S1. Then we have:

P

[
Ai |

∧
j∈S

Aj

]
=

P
[
Ai ∧

(∧
j∈S1 Aj

)
|
∧
k∈S2 Ak

]
P
[∧

j∈S1 Aj |
∧
k∈S2 Ak

]
This follows from the general equation
P[A∩B|C ]

P[B|C ]
= P[A∩B∩C ]

P[B∩C ]
= P [A|B ∩C ]
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Proof of the lemma (cont.)

P
[
Ai |
∧
j∈S Aj

]
=

P[Ai∧(
∧

j∈S1 Aj)|
∧

k∈S2 Ak ]
P[
∧

j∈S1 Aj |
∧

k∈S2 Ak ]

We bound the numerator by noting that since Ai is

independent of the events in S2, we have:

P

[
Ai ∧

(∧
j∈S1

Aj

)
|
∧
k∈S2

Ak

]
≤ P

[
Ai |

∧
k∈S2

Ak

]
= P [Ai ]≤ xi ∏

(i ,j)∈E
(1− xj)

For the denominator we'll have to use the induction hypothesis

in a technical way.
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Bounding the denominator

Write S1 = {j1, j2, . . . , jr}.
If r = 0 we are done (the denominator is 1). Otherwise:

P
[
Aj1 ∧Aj2 ∧·· ·∧Ajr |

∧
l∈S2 Al

]
=

(
1−P

[
Aj1 |

∧
l∈S2

Al

])
·

(
1−P

[
Aj2 |Aj1 ∧

∧
l∈S2

Al

])
· · ·

· · ·

(
1−P

[
Ajr |

∧
l∈S2

Aj1 ∧·· ·∧Ajr−1 ∧Al

])

≥
r

∏
t=1

(1− xjt )≥ ∏
(i ,j)∈E

(1− xj)

And so we have
P[Ai∧(

∧
j∈S1 Aj)|

∧
k∈S2 Ak ]

P[
∧

j∈S1 Aj |
∧

k∈S2 Ak ]
≤ xi ∏(i ,j)∈E(1−xj)

∏(i ,j)∈E(1−xj)
= xi
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Finishing the proof

Back to the local lemma itself - remember we want to bound

P
[∧n

i=1Ai

]
.

Remember also what we just proved: P
[
Ai |
∧
j∈S Aj

]
≤ xi .

And so:

P

[
n∧

i=1

Ai

]
= (1−P [Ai ])

(
1−P

[
A2|A1

])
· · ·

(
1−P

[
An|

n−1∧
i=1

Ai

])

≥
n

∏
i=1

(1− xi )
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The Local Lemma - symmetric case

Theorem

(The Local Lemma - symmetric case)

Let A1, . . . ,An be events such that Ai is mutually independent of all

the other events except for at most d events, and that P [Ai ]≤ p

for all events.

Denote e = 2.71828183 . . . as usual.
If ep (d +1)≤ 1 holds, then P

[∧n
i=1Ai

]
> 0

Proof.

We use the general local lemma with xi = 1

d+1
and using the known

inequality
(
1− 1

d+1

)d
> 1

e

Presented by: Gadi Aleksandrowicz The Probabilistic Method



Introduction
Heilbronn's Triangle Problem

Greatest Angle among Points of Rd
The Local Lemma

Statement
Proof
Simple Use
Not-so-simple use

Simple use - 2-Colorability of hypergraphs

A hypergraph H = (V ,E ) is a set V of vertices, and set

E ⊆ 2V of edges (a graph is the special case when all edges

are of size 2).

H is 2-colorable if there is a coloring of V by two colors such

that there are no monochromatic edges.

Theorem

Let H = (V ,E ) be a hypergraph in which every edge has at least k

elements and each edge intersects at most d other edges. If

e (d +1)≤ 2k−1, then H is 2-colorable.
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2-colorability of hypergraphs, cont.

Theorem

Let H = (V ,E ) be a hypergraph in which every edge has at least k

elements and each edge intersects at most d other edges. If

e (d +1)≤ 2k−1, then H is 2-colorable.

Proof.

Choose a random coloring. For f ∈ E , the probability of the event

Af in which f is monochromatic is P [Af ] = 2 ·2−|f | ≤ 2−(k−1).
Every Af is mutually independent of all other events save for at

most d others. Now use the symmetric case of the local lemma.
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Not-so-simple use - k-coloring of R

The following beautiful result is due to Erd®s and Lovász

(1975). In this paper they also proved the local lemma.

A k-coloring of R is a function c : R→{1, . . . ,k}.
We say that a subset T ⊆ R is multicolored if

c (T ) = {1, . . . ,k}.

Theorem

Let m and k be positive integers such that

e (m (m−1) +1)k

(
1− 1

k

)m

≤ 1

Then for any S ⊆ R of size m there is a k-coloring of R such that

each translation x +S ,x ∈ R is multicolored.
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Proof, part 1: Using the local lemma

First we prove the result not for all translations, but only

translations from a �nite set X .

Fix X , and de�ne Y =
⋃
x∈X (x +S). Randomally choose a

coloring c : Y →{1, . . . ,k}.
Let Ax be the event �the set x +S is not multicolored�.

P [Ax ]≤ k
(
1− 1

k

)m
(union bound on �the color i does not

participate in the coloring�).

Each Ax is independent of all other Ax ′ unless

(x +S)∩ (x ′+S) 6= /0. There are at most m (m−1) such x ′.

By the symmetric case of the local lemma, we are done.
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Proof, part 2: A reminder from topology

For a �xed x ∈ R, denote by Cx the set of all colorings of R
such that x +S is multicolored.

What we saw: For every �nite X , we have
⋂
x∈X Cx 6= /0.

We want to show:
⋂
x∈RCx 6= /0.

This reminds us (?) of a well-known result in point-set

topology: The �nite intersection property de�nition of

compact spaces.

Theorem

A topological space X is compact if and only if for every family of

closed sets such that the intersection of �nitely many sets from the

family is nonempty, the intersection of the whole family is

nonempty.
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Showing the space is compact

Remember that our space is the space of all colorings of R, i.e.
functions c : R→{1, . . . ,k}.
We can think of this space as the product space {1, . . . ,k}R of

discrete k-points spaces.

Each discrete space {1, . . . ,k} is compact, being �nite.

Hence, by Tychono�'s theorem, we have that {1, . . . ,k}R is

compact (with respect to the product topology).
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Showing that each set is closed

We wish to show that each Cx is closed (in the standard

product topology).

Recall Cx is the set of all colorings of R such that x +S is

multicolored.

The complement of Cx is
⋃
1≤i≤kD

i
x where D i

x is the set of

colorings of R for which i /∈ c (x +S) for c ∈ D i
x .

In other words,

D i
x = {1, . . . , i −1, i +1, . . . ,k}(x+S)×{1, . . . ,k}R−(x+S).

By de�nition, this implies D i
x is open, hence Cx is closed.
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For Further Reading I

N. Alon, J. Spencer,

The Probabilistic Method, 2nd edition.

New York: Wiley-Interscience, 2000.

Presented by: Gadi Aleksandrowicz The Probabilistic Method


	Introduction
	What is the Probabilistic Method?
	Two Basic Examples

	Heilbronn's Triangle Problem
	Introduction
	Proof

	Greatest Angle among Points of Rd
	Introduction
	Reformulation
	Enter Probability

	The Local Lemma
	Statement
	Proof
	Simple Use
	Not-so-simple use


