


Definitions

M: a set of n points in /2, M,,...,.M_, called sites.
VIM)={Xe E':6(X,M)<IX,M)),j=#i}

V(M.): The intersection of a finite number of closed
half-spaces, perpendicular bisectors of point pairs.

Vor(M): A complex of V(M) cells.

L,-general position: no sphere contains d+2 sites on
its boundary



Diagram as regions of Sphere Centers

* V(M) as the set of the center of spheres

— Boundary of contains M, interior contains no M..
— When d=2

e Voronoi Edges: centers of spheres containing exactly 2
points on their edge

* Voronoi Verteces: center of spheres containing 3 or
more points on the edge (in L,-general, exactly 3).



Voronoi Diagrams and Polytopes

e By treating points as spheres, we can describe
the diagram as a polytope in d+1 dimensions




Power of a point w.r.t. a sphere

2 : D dimension Euclidean space, origin O.
X: a point in £,

>: a sphere in 22 with center C, radius r.
2(X)=0, where: Z(X)=|XC|?-r’ (17.1)

Interior of the sphere: int(2)={X: 2(X)<0}
Exterior of the sphere: ext(2)={X: Z(X)>0}



o : Power w.r.t. origin: 2(0O) = o = |C|?-r? (17.2)

If D is any line containing X, and intersecting 2
at Aand B 2(X)=|XA|-|XB] (17.3)

When D is tangent at T, X(X)=XT? (17.4)




Representation of Spheres

* Let ¢ be a mapping that takes a sphere X in /¢
with center C, power w.r.t. O o to the point

$(2)=(C, o) in L2+,

 Allows us to treat spheres in £¢ as points in

) e

) e
#(E) L




Embedding Spheres as Points

Embed £ as the hyperplane in £*1, with
Xd+1=0'

— X4, is the vertical direction, positive is up

— Each point in £ is a sphere of radius |C]|.

X denotes a point in ¢ with vector (x,,...,x,),

X denotes a point in £*1, with vector
ISt !

Projection means a vertical projection.



Homogeneous Coordinates and
Matrix Notation

* X=(x,,...,.x,t), X=(xy,...,.% ;1)

 We can then rewrite the equation of the
sphere, 2, as X2X* = 0, with

e I, —C’
=0



Paraboloid P

* ¢ maps points in £¢, as spheres of radius 0, to
a paraboloid of revolution, P, with vertical axis
and equation:

d
A+ :inz =X-X
gl ,
* In homogenous coordinates:

KAPKZZO
R 0
A,=[0 0 -V ol 7
P i
0 - 0 L



Paraboloid P

Real spheres: non-negative radius; on or
oelow this paraboloid

maginary spheres: negative radius; above this
paraboloid.



Polarity

* Any hyperplane H in a projective space has a
homogeneous equation of the form

d+1

—MEXF thl.=0}
e Let S be the matrix S:(IS _OJ

* We let H* be the point (h,,...,h -h,.,).

={ X :H*SX' =0}



Polarity

 Chapter 7.3

 The polar set, A*: Given a point A,
A*={X: <X A> =1}
— A* the polar hyperplane of A
— A is the pole of A*

* Polarity is the duality that connects points and
planes.



Polarity w.r.t. Q

Consider the quadric Q in £9*1, defined by the

homogeneous equation: Q(X)= XA, X' =0

Points X and Y are conjugates w.r.t. Q if
Q(X.Y)=XA,Y' =0

A* ={ X :AAQlt =0},
Polarity w.r.t. Q maps hyperplane H to the
pole H*



Polarity w.r.t. P

c A*={X:AA X" =0}
e |If Q=P, and ¢(2)=(C,0), d(2)* can be rewritten
as x,,, =2C-X -0
* Since polarity preserves incidences: for point X
and hyperplane H,
Xe Hift H*e X *
— This also preserves the side of the parabola




Orthogonal Spheres

* 2,2, (centers and radii C,,C,,r,r,) are
orthogonal if
T =
%, (C)=1

 We can rewrite these equivalent equations as

1
C, -C2—5(0'1+0'2)=O

* This shows that 2 spheres are orthogonal if
their mappings are conjugate w.r.t. P.



Lemma 1/.2.1

* The set of spheres in £¢ that are orthogonal to
a given sphere is mapped by ¢ to the polar

hyperplane ¢(2)*




Paraboloid and Hyperplane

* The set of spheres that passing through X =
the set of spheres that intersect sphere with
r=0, centered at X.

* Image of these spheres is ¢(X)*

* ¢(X)* is tangent to P, since X is only sphere
with r=0 orthogonal to X



Lemma 1/.2.2

* Let X be a spherein /.

* The intersection of $(Z)* with P is the image
under ¢ of the set of spheres with radius O
that are orthogonal to 2, namely 2 itself

o d(2)* N Pin [t projeits onto X in /.




Lemma 1/.2.2

e P\ H projects onto /2 as a sphere ¢ 1(H*),
centered at the vertical projection of H*

* The points of sphere X lifted onto P in [+
belong to a unique hyperplane that intersects
P exactly at these points. This hyperplane is

$(2)*



Lemma 17.2.3

From 17.2.2, the power of X w.r.t. Z equals
square of the radius of the sphere Z,

— Orthogonal to 2, centered at X
This can be computed in [+

2, is mapped to a point / in /9% the
intersection of the vertical line passing
through X with ¢(2)*

The x,,, coordinates of ¢(X) and [ are:
X% and Z,(0)=X?%- L,(X), because ry, = 2(X)



Lemma 17.2.3

 The power of X with respect to a sphere 2
equals the signed vertical distance from the
point ¢(X) to the hyperplane ¢p(Z)*

I}




Lemma 1/.2.4

 Let Xand 2 be respectively a point and a
sphere in F¢. If His a hyperplane in £4*1, we
denote by H the half-space lying below H.

Then:

XeXedX)epgX)* = d(X)e op(X)*
XeintC) = dX)e dX)* < d(X)e d(X)*
Xeext(X) = d(X)e dX)* < d(X)e ¢(X)*



Xe o 9(X)ep)* = o(X)e ¢(X)*

Xeint() ®¢X)e o)™ < gX)e ¢(X)*

Xeext(X)o o(X)epX)* < p(X)e ¢(X)*
* Any point lying below ¢(X)* is the image of a

sphere whose interior contains X. Any point

above is the image of a sphere whose exterior
contains X.



Radical Hyperplanes

* Given %, 2,, the set of points in /¢ with the
same power with respect to 2, and %, is the
radical hyperplane H,,:

H,,: Z,(X)- Z,(X)=0

 The points that are the centers of spheres

orthogonal to both spheres

* These points are mapped to ¢(2,)* N P(2,)*



Application to Voronoi Diagrams

* By 17.2.1, ¢(M.)* denotes the polar
hyperplane tangent to P at (M)

* The set of spheres containing NO site M, is
mapped to the intersection of the half-spaces
lying above the hyperplanes



Voronoi Polytope

e The aforementioned intersection is an
unbounded polytope that contains P.

* This is the voronoi polytope, V(M)




Theorem 17.2.5

* The Voronoi Diagram of M, Vor(M), is a cell
complex of dimension d in £¢ whose faces are
obtained by projecting onto £¢ the proper
faces of the Voronoi Polytope V(M)




Proof of 17.2.5

The boundary of V(M) is a pure cell complex
of dimension d, hence so is Vor(M).

Let A be a point on a facet of V(M), that is
contained in ¢(M)*.
A is the image of a sphere centered on the

projection of A that passes through M, and
contains no other site.

Therefore, A must belong to V(M)



Implications

 Combinatorial properties of VDs follow
directly from those of polytopes
— If points are in general position, V(M) is a simple
(d+1)-polytope
* Each vertex is incident to d+1 hyperplanes
* This is the L,-general assumption

 Computing the VD of n points = computing
the intersection of n half-spaces in 1 higher
dimension



Corollary 17.2.6

 The complexity (# of faces) of Voronoi
Diagrams of n points is O(nceild/2))

* This can be computed in O(nlogn + nceil(d/2))
time, which is worst case optimal



Delaunay Complexes

Td+1
g el

b (M)




Delaunay Complexes

* Define M as before, and the mapping onto the
paraboloid P as well.

* Denote by D(M) the convex hull of the
mappings of the points M, as well as some
‘high” point O".

e K-face: a k-dimensional face:

— O-face is vertex, 1-face is a line, d-1 is a facet



D(M)

 D(M) forms the convex hull of $(M) and some
point O’ a high point on x_,, axis, such that
the convex hull is stable as O’ rises to infinity

e The faces of this convex hull that do not

contain O’ form the lower envelope of conv(}
(M))

* Del(M) is the projection of the convex hull.



Del(M)

A vertical projection of the polytope D(M) F°.

* The k-faces of Del(M)are in 1-to-1

correspondence with the k-faces of D(M) that
do not contain O’

M)




Vor(M) and Del(M)

* Exists a bijection between the faces of V(M)
and the faces of D(M) that do not contain O’

— Maps the facet of V(M) containing d(M,)* to the
point (M,).
* The bijection exists between the k-faces of

Vor(M) and the (d-k)-faces of Del(M) that
reverses inclusion relationships

* Del(M) is the dual of Vor(M).



Theorem 17.3.1

 The Delaunay complex of M is the dual to the
Voronoi Diagram.

* |ts faces are obtained by projecting the faces
of the lower envelope of the convex hull of
d(M), obtained by lifting the M onto P.

 Computing the Delaunay complex is
equivalent to computing the Convex hull



Corollary 17.3.2

* The Delaunay complex of n sites in £¢ can be
computed in time O(nlogn + ncetd/2)) time,
which is worst case optimal



Delaunay Triangulations

* In L,-general, V(M) is a simple polytope, D(M)
is a simplicial polytope, and Del(M) is a
simplicial complex.

* If not L,-general, some of the faces are not
simple (triangles).

— There could be many valid triangulations. All of
them are considered Delaunay triangulations.



Characteristic Properties

e Theorem 17.3.3

— Any d-face in the complex can be circumscribed by
a sphere that passes through all its vertices
M,...,M;, and whose interior contains no site of
M

il



Proof of 17.3.3

M, : a subset of M containing k sites

Pick a d-face, T, of Del(M), with vertices M,. T
is the convex hull of M,. The CH of $(M,) form
a d-face F of the total CH, by thm 17.3.1.

H. : the hyperplane that supports F

H NP projects onto /7 as a sphere X
circumscribed to conv(M,,...,M,), centered on
the projection of the pole, H. *.



Proof, Continued

H:* is the intersection of the polar

hyperplanes ¢(M,), and it is projected onto /¢
at C

C is the vertex of the VD that is incident to the
cells that correspond to the sites M,, and
none of the interiors can contain any other
Site.



Theorem 17.3.4

* Let M, be a subset of k sites in M. The CH of
M., is a face of the Delaunay complex iff there
exists a (d-1) sphere passing through the
vertexes M,, and such that no point in M is on
the interior of this sphere.



Proof of 17.3.4

* Necessary

— Result of 17.3.3, and sphere circumscribed to a
face also circumscribed to a subface.

* Assume exists a (d-1)-sphere 2 that passes
through the points of M,, and has no interior
sites. Let H be the hyperplane, ¢(2)*
containing the projections of the points



Proof of 17.3.4

* The halfspace lying below H does not contain
any points in ¢(M), according to 17.2.4

* Thus, His a hyperplane supporting D(M) along
the convex hull of the k sites, and so
conv(d(M.,) .... (M, ))= H [N D(M) is a face of
D(M)

* Therefore, from 17.3.1, M, makes a face of
Del(M)



Corollary 17.3.5

* Any Delaunay Triangulation of a set of M sites
is such that the sphere circumscribed to any d-

simplex in the triangulation contains no point
of M in its interior.

e Conversely, any triangulation satisfying this
property is a Delaunay Triangulation



Characteristic of DT

* Consider any DT T(M)

¢ LetS=M,.MM,,,and S=M,..M M., be a
pair of adjacent d-simplices in T(M)
(circumscribed to %, 2,). that share a common
face F=M,..M

* (5,S,)is regularif M_,, is not in int(Z,)



Characteristics

* If Z, differs from Z,, regularity is equivalent to
M., not being in int(Z,).

* M,,,does not belong to int(z,) iff 2,(M,,,)>0.
But the hyperplane H, that supports F is the
radical hyperplane of 2, and %,



Theorem 17.3.6

* Since 2,(M,,,)=0, the half-space bounded by
H. that contains M, , (or resp. M,,,) consists
of the points whose power w.r.t. 2, is smaller
(resp. greater) than their power w.r.t. 2.

z1(I\/Id+2) 3 z2(I\/Id+2)=0

* This proves M_,, does not belong to the
interior of 2,



Theorem 17.3.6

* Consider a triangulation T(M)

 Then, T(M) is a DT iff all pairs of adjacent d-
simplices in T(M) are regular



Proof of 17.3.6

Necessary as a consequence of 17.3.3

d(S) = the k-simplex whose vertices are the
images of the vertices of a k-simplex S.

C = the union of the ¢(S)’s for all the faces S of
the DT T(M).

The sufficiency proof is to show that C is the
graph of a real valued convex function over
conv(M)



Proof, Cont.

* We consider S, and S, that share the common
face F, with circumscribing spheres 2, and %,

By 17.2.4, the regularity condition is
equivalent to ¢(M,,) being in d(Z,)**, and
vice versa.

* If(S,, S,) regular, ¢(F) is locally convex (there is
a hyperplane containing ¢(F) such that ¢(S,)
and ¢(S,) belong to the half-space above this
hyperplane)



Proof Cont

* This is true for any (d-1)-face of C incident to 2
d-faces, and so C is locally convex at any point

e Cis defined over a convex subset, the
conv(M).

e Therefore, Cis convex and is the lower
envelope of the polytope D(M) which proves
that T(M) is a DT of M.



Optimality of a DT

* Because we can triangulate in many ways, we
have many ways to define optimality

— Compactness
— Equiangularity



Compactness

 The smallest enclosing sphere of each simplex
S

* T(M) corresponds to a function 2-(M), defined
over conv(M) as the power of a point X w.r.t.
the sphere % circumscribing any d-simplex
containing X



Lemma 1/.3.7

* Let Det(M) be a Delaunay triangulation of M,
and T(M) be another triangulation. Then

— For all X'in conv(M), 2,_(X) 2 ZAX)



Proof of 17.3.7

Consider a d-simplex T in T(M) containing X, 2
the cirumscribed sphere, and ¢(T) the d-
simplex projection

By 17.2.3, 2(X) is the (negative) vertical
distance from ®(Z)* to P(X).

d(2)* is the affine hull of ¢(T)

For a given X, this signed vertical distance is
maximized when ¢(T) is a face of the convex
hull of d(M); when T is a simplex of a DT



Lemma 1/.3.8

* If Tis a d-simplex circumscribed to 2., then
minXx (X)=2.(C',)= '?

XeT
* where C’;and r’; are the center and radius of

the smaIIest enclosing sphere



Proof

* Let 2, be the sphere circumscribed to T,
centered at C; with radius r-.
— 2 (X) = XC;%-r;% is minimized when X = C;, and so
>{X) is greater than —r;°.
* If C;containedin T, X, is the smallest enclosing
sphere, and sor’;=r;



Proof, Cont.

It C; not contained in T, the smallest

containing sphere is centered on a k-face (k<d)
F, the face such that the orthogonal project of
C;onto the plane that supports F falls inside F.

r’; of this sphere is that of the (k-1)-sphere
circumscribed to F

C’; minimizes XC;. XC; when Xisin T

R e
CCF+ry=ry



Most Compact Triangulation

e The maximum min-containment radius of
T(M): c(T(M))= max r',

TeT (M)

 The most compact triangulation minimizes
C(T(M)).



Theorem 17.3.9

* Delaunay Triangulations are the most compact
among all triangulations

— Other triangulations might also be the most
compact, even if not Delaunay



Proof of 17.3.9

Define T(M), Det(M)
X is the point minimizing 2/(X), and similarly X,_,.

X;is the center of the smallest sphere
circumscribed to the simplex containing X, (by
17.3.8)

We denote the radii as r’rand r’,,.
C(T(M))=r’";, C(Det(M))=r"p.,

By 17.3.7 and 8:

2{X7) =17 < 2lXger) S ZpedXper) =1 per”



Equiangularity (d=2)

Given a triangulation T(M), the angle vector is

Q(T(M)) = (a,,...,a3,), where each a is an angle
of the t triangles, sorted by increasing value.

We know that the sum of the angles = trt

A triangulation that maximizes the angle
vector for the lexicographic ordering also
maximizes the smallest ordering

This is a globally equiangular triangulation



Theorem 17.3.10

* A globally equiangular triangulation of a set of
M sites in the plane is always a DT




Proof of 17.3.10

* Consider 2 triangles T,=ABC, and T,=BCD,
where ABCD is a strictly convex quadrilateral
(all vertices of the convex hull)

 We can flip diagonals to increase
equiangularity

— This is a regularization rule, since it changes a pair
of adjacent triangles into a regular pair of triangles



* Let 2, and Z, be the circumscribing circles.
— AD is flipped only if Z, contains D

e Let abcd be the angles at the vertices ABCD,
and b and c are splitinto b,, b,, c; and c,

— We also splitaand d into a’,, a’,, b’,, b’, for the
potential split




If a is the smallest angle, then we don’t flip, but
d=mn-b,-c, < -a, so that a+d< mt, so A is not inside
z2

If b1 is the smallest, then we flip only if d’2 is
greater, which only happens when D in %,

Parallels for all other smallest angles
After we flip, Q(T,(M))>Q(T(M))

Progressive flippings increases the angle vector.
Since there are a finite number of triangulations,
we must reach a maximum, with only regular
pairs of adjacent triangles, and is a DT by 17.3.6



Higher Order Voronoi Diagrams




Higher Order Voronoi Diagrams

e Level-k

— A point is at Level k of an arrangement A if it
belongs to exactly k open half-spaces, d(M.)*",
such that each half-space does not the reference
point (the origin).



Voronoi Diagram of Order k

* Let M, be a subset of M of size k.

* V,(M,): the region or points that are closer to
M, than any other sites

V(M) ={X :VM, e M,,.VM, e M\M, | xM | <|xM |}

* The union of V, forms Vor, (M)
* Vor,(M) = Vor(M).



Theorem 17.4.1

* Vor, (M) is a cell complex of dimension d in 2.
The cells of this complex correspond to the
cells at level k in the arrangement A of the

hyperplanes induced by the proj

points. A cell in the diagram is o
projecting the corresponding ce

ections of the
otained by

| in the

arrangement. The /-faces of Vor (M) are
obtained by projecting the /-faces common to
cells at level k in arrangement A.



Proof of 17.4.1

* The proof relies onlemma 17.2.4

* A sphere whose interior contains k points is
mapped by ¢ to a point at level k in the
arrangement A of the hyperplanes.

e This is easily verifiable.



Vor, (M)

* Once constructed, easy to find k-nearest
neighbors, by finding the region of the
arrangement containing the point.

e Theorem 17.4.2

— The overall complexity of the first k voronoi
diagrams of a set of n points is
O(nceillld+1)/2)geeill(d+1)/2)) - The k diagrams can be
computed in time O(nceill(d+1)/2)gceil((d+1)/2)) for d>3,
or O(nk?log(n/k)) for d=2



Examples

* Vor, (M) is the furthest-point Voronoi
Diagram.

* Vor,, Vor,




Projection of Vork(M)

.'..".l,.]
Vol M Mz) Vo MpMy) o Vol MaMy)




Non-Euclidean Metrics



Power Diagrams

Let S={Z,,..., 2.} be a set of spheres in /°.

P(Z.) = all points whose power w.r.t. . is
smaller than power w.r.t. any other sphere.

P(E)=1X e E*:Vj #i,Z,(X) <X ,(X)]
The region P(Z,) is a convex polytope, the
intersection of a finite set of half-spaces
bounded by radical hyperplanes.

The complex is called the Power Diagram of S,
Pow(S).



Power Diagrams

* As before, we map the spheres to a point in
1. However, these points are not on the
paraboloid. The faces of the Power diagram
are obtained by projecting the intersections of
the polar hyperplanes.




Order-k Power Diagrams

e Asimilar parallel to the previous.



Affine Diagrams

Defined for sites and for a distance such that
the set of points equidistant from 2 objects is
a hyperplane.

We can extend the idea of VDs to more
general sites, non-Euclidean distances.

VD’s and Power Diagrams are Affine Diagrams,
and any affine diagram is a power diagram.

We can also derive many nonaffine diagrams
from affine diagrams



Affine Diagrams

Cells of AD’s are convex polytopes.
To any AD of n objects corresponds a set of @
perpendicular bisectors, H;, 1 <i<j<n

These hyperplanes must satisfy
def

HN"H,=H,"nH, =H, "H, =1,
Forany1<i<j<k<n

The diagram is simple if the /;;, are disjoint and
nonempty



Theorem 18.2.1

* Any simple AD in /2 is the power diagram of a
set of spheres in /.

* Proof:
— We embed £ in £4*1 as the hyperplane of x,,,=0.

— We construct a set of n hyperplanes in £4*1 such
that the projection of the intersections is exactly
the hyperplanes H;



Proof of 18.2.1

We construct n hyperplanes, P,,...,P,, in F9*
We ensure that the vertical projections of P,
for any i<j is exactly H;

Each P. is the polar hyperplane of a sphere
2.=g1(P*), which is the projection of P, 1 P.

So H;; is the radical hyperplane of 2; and 2,. So
the affine diagram is the power diagram



Constructing P,

* Denote h; the vertical projection of H; onto P..

* Take P, and P, as non-vertical hyperplanes
that intersect P, along h,,. For any k>2, we
must take P, that make the appropriate

intersections with P, and P,. If I ,, exists, then
P, must exist.



Proof Cont.

 We show that the projections of the
intersections are H;.

* We have constructed H,,, H,,, and H,, for one
k.

* If the other cells [ exist, then their
intersections much exist



Theorem 18.2.2

* The affine diagram with Hyperplanes H;; and
equations of hyperplanes

-2(C-C)-X+0;-0,=0
is the power diagram of the spheres %..

* Proof: We can rewrite the equation of the
hyperplane as Z,(X)- 2;(X)=0



Diagrams for General Quadratic
Distance

e Consider 2 points X and A in Z.
e The General Quadratic Distance is defined as:
0,(X,A)=(X —A)A(X —A) + p(A)

* Where A is a real symmetric d x d matrix and
where p(A) is a real number



Diagrams

VD is when A is the identity matrix and p(X)=0

e Furthest point diagrams (VD of order n-1) are
when A is the negative identity matrix, and
p(X)=0.

 Power Diagrams are when A is the identity
matrix and p(X) does not equal O.



General Quadratic Distance

e |f A, B are points, then the formula for the
hyperplane can be rewritten as

H ., :2(B—A)AX'+AAA' — BAB' + p(A)— p(B) =0

 Therefore, the VD for a general quadratic
distance is an affine diagram



Weighted Diagrams

* Non-affine.

* Defined over finite sets of points and a
weighted Euclidean distance



Additively Weighted Diagrams:
Vor, (M)

e Additive weighted distance formula

6, (X,M,)=|XM,|-r,
* We assume that all r; values, the weights, are
non-negative.




Vor (M)

 Consider 2. in /2, centered at M, with radius r,
and let Y be the bijection that maps Z. to the
point Y(Z)=(M,,r;) in [

 The spheres of radius O correspond to the
hyperplane x,,=0 in F4*1,




Projection

* Points at additive distance r from M. are
centers of spheres tangent to 2. with radius r,
inside or outside ..

Y generates a cone of revolution
C(Z) : x,,,=|XC|-r
— Apex of Cis (C,-r),
— symmetrical with respect to x, ,=0,
— has an aperture angle /4



\

The projection /, of a point X on the cone C(2)
Is the projection under U of the sphere
centered at X and tangent to 2

Signed vertical distance from X to /, equals the
additive distance from X to C weighted by r

Each sphere, X, corresponds to a cone C(Z)),
also denoted C.

The projection of the lower envelope of the
cones is exactly Vor,(M)



Equidistance w.r.t. additive distance

The set of points in /2 equidistant (w.r.t.
additive distance) from 2 points == the
projection of intersection of cones

C,:(xy,#r)?> =XM}?, x,,,+r;>0
C,: (X, ,#r,)° = XM,2, x,,,+r,>0
Hy, i -2(M-My)-X-2(r =1 5)X 4, 1+ M 2=r 2-M 2 +r )



Vor, and Power Diagram

* There exists a correspondence between Vor,
and a power diagram

* Take spheres 2’ in F9*1, centered at (Z;) with
radius r; V2




Vor, and PD

* The cell of Vor,(M) that corresponds to M,
V.(M.)), is the projection of intersection of the
cone C; with the cell of the PD corresponding
to the sphere %’

* Xisin V, (M) iff the projection X; of X onto C,
has a smaller x,,; coordinate than of X; j#i

(X, x,,,) of X must obey:
(Xgi 11 =XMZ, (Xgoit1)? S XMZ, j#i



Computation of Vor,

* 3'(X) £%/(X)) for any j#i
* Vor, can be computed by
— Compute %/
— Compute the power diagram of the 2’s

— For all j, project onto #¢ the intersection of C; with
the cell of the PD that corresponds to 2.



Computation of Vor,

* The PD of 2" can be computed in time
O(n(floor(d/2)+1))

* The intersections can be computed in
O(n(floor(d/2)+1))

e Theorem 18.3.1
— Vor, has complexity O(n(floor(d/2)+1))

— Can be computed in time O(n(floor(d/2)+1))



Optimality of Computation

* This result is optimal in odd dimensions, but is
not optimal in d=2, and possibly not for any
even dimension (can be computed in optimal
time O(nlogn)



Multiplicatively Weighted Diagrams
Vor.(M)
* Similar to Vor,, but with multiplicative
distance 0,(X,M.)= p(Ml.)HXMl.

* Where p(M)) is a positive real number (from
now on, p))




Vor.

» Set of points at equal multiplicative distance
from 2 sites M, M; is a sphere of the equation

piX-M))? = pj(X'Mj)Z

* In normalized form
X2_2piMi_ijj .X_|_piMi —p;M;
Pi—P; Pi—P;
* And in £7*1, the sphere can be represented as

2 2
pM,—pM, pM;—pM,
Pi—P; Pi—P;

=0




Point ¢(2;)

 We have mapped the sphere intersection to a
point in £+,

 The polar hyperplane H
P has equation
H ij(X/Xd+1) =
(0;-P)Xg,1-20;MX+2p,M-X+p,M;? —p,M?
=0

i» W.r.t. the paraboloid



d(2;)

* H,’s are the radical hyperplanes of spheres 2,

iyt il
* Y. is centered at (p;M,-1t/2), with o=p.M?2.

* We now have a correspondence between Vor.
and the PD of 2’s



Vor. and PD

e Xis a pointin £, projected onto P
XeV.M) & p(X-M,) <p(X-M,)
& H (X,X*)<0

& L,(0(X)) < T, (9(X))
& P(X)e P(X,)



Computing Vor.

* Compute 2.
* Compute PD of the 2.’s

* For each |, project the intersection of the 2. in
the PD with the paraboloid P



Complexity of computation

e Theorem 18.3.2

— Vor. has complexity O(n(floorld/2)+1)) and can be
computed in time O(n(floor(d/2)+1))

* This is optimal



L, metric

* Reminder, L, distance between X and point M
0,(X,M)= Z‘x —m‘

+ Points at dlstance r from M are a polytope w/
vertices at coordinates x,=mztr, and x=m; if i#/

— In 2d- a tilted square y
— In 3d- a regular octahedron 4 /@/—

* These are dual to the cube, a co-cube




Vor,,

* Voronoi Diagram for L, distance

* We create a similar mapping to Vor,, but
mapped to a pyramid instead of a cone, with
Xd+1 =51 (X/ M i)




Vor,,

* Lower envelope of the Pi pyramids
— The graph of the function min, .., 6, (X,Mi)

e Each portion from a distinct pyramid projects
onto /7 as a facet, a cell of Vor,, (M)

* The complexity is O(n%(n)).



Region Bisectors in Vor,,

* When d=2, bisectors are generally 3 piece
polylines. However, can be 1 linear segment
connecting 2 regions of dimension 2




L__ Metric

e Using the distance metric
6 (X;M)=max|x-m.|




Voronoi Diagrams in Hyperbolic
Spaces



Pencils of spheres

* Aset of spheres, S, that are affine
combinations of 2 given spheres, %, and %,

— F={Z : exists real A, s.t. for all X in /¢
2(X)= A Z1(X)+(1-A) 2,(X)}
* When mapping F by ¢, the image of Fis the
line ¢(F) that connects ¢(Z,) to d(2,)



Types of Pencils

Concentric pencil Pencil with two limit points

() ()

Tangent pencil Pencil with supporting sphere




Types of pencils of spheres

* |f ¢(F) intersects P at 1 point, F contains a
single sphere of radius O, F is a pencil of
concentric spheres

e |f 2 intersection points, 2 limit points of radius
0

e |f 1 tangent point, as if 2 limit points touching,
a tangent pencil



Types of pencils

If ¢(F) does not intersect P, exists some family
of hyperplanes tangent to P containing F.

d(Z;) is the set of tangent points

2. is the set of points that belong to all spheres
In F

All d-spheres in F intersect on the (d-1)-sphere
2, Intersect 2,

2. is the supporting sphere of the pencil F



Radical Hyperplane

* Any pointin H,, of Z, and X, has same power
with respect to any particular sphere

* Therefore, H,, is the radical hyperplane of a

pencil of spheres, or of any 2 spheres in the
pencil



Radical Hyperplane of types of pencils

* Concentric pencil- does not exist

e Pencil with 2 limit points- the bisector

* Tangent pencil- hyperplane bisector

e Supporting Sphere- the affine hull of the

supporting sphere

entrie pencil Pencll with two limit points




VD’s in Hyperbolic Spaces

 The Poincare model of hyperbolic space:
— H¥={Xin 2 :xd > 0}
— A half-space

* Hyperbolic distance: sufficient to decide
whether B or C closer to A

Hg



Hyperbolic Distance

* Consider a pencil F,, with limit points A and A’,

where A” denotes the symmetric of A w.r.t.
nyperplane H, of equation x,=0, the radical
nyperplane of F,

* Distance is the radius of sphere of F, passing
through the point.



Hyperbolic VD

* Given n sites in the poincare half-space /¥,
corresponds a region

V,(M))={Xin I, 6,(X, M) < 6,(X,M) for any j # i}




Projecting the Hyperbolic Diagram

* |dentify with half-hyperplane x_,,=0, x, > 0.
The hyperplane H, is now identified with the
subspace {x_, ,=x=0}.

* F,is mapped to a line in £4*1 parallel to the x,
axis.

* X, X’ symmetric w.r.t. H,, F, has limit points at
X, X’ mapped to d(X), d(X’'), symmetric to
hyperplane x,=0 in /7*



Hyperbolic Diagram in [+

* A point X belongs to V,(M,) iff the ray parallel
to the x, axis in £4*! originating at ¢(X)
(entirely contained in P), directed toward x>0

intersects the hyperplane ¢(M,)* before any
other (M))*



Hyperbolic Diagram in [+

Td 1 ‘u

@lA)




Consequences of the Projection

* Bisecting surface of 2 points for hyperbolic
distance is a half-sphere

— Xis only equidistant between A and B if F,
contains a sphere passing through A and B

— ®(F,) intersects the intersection of ¢(A)* and
®(B)*
— We say that ¢(X) intersects I, the projection of the

intersection of ¢(A)* and &(B)* parallel to x, axis
onto P



Bisecting surface

* [, the projection of the intersection of ¢(A)*
and ¢(B)* parallel to x, axis onto P

* Also the intersection of a hyperplane parallel
to x, and P, which projects to /¢ as a sphere
2 \p, belong to pencil with limit points A,B

e Spheres on that pencil are mapped to
d(Z)=AP(A)+(1-A) d(B), with corresponding
polar hyperplanes, which all contain the
intersection of ¢(A)* and p(B)*



Bisecting Surface

* His therefore a hyperplane polar to a sphere
in F,g, limit points AB.

* H has a hyperplane polar to ¢(2,;), by 17.2.2,
so 2, belongs to £y,

* Therefore, 2,5 is the sphere in F,; centered on
H, (unique)



Consequences (2)

* Xis equidistant from d+1 points, A, ...A,, iff
d(X) is the projection of the intersection of
their projected polar halfplanes (intersection
¢(A,)*) parallel to x, axis, onto P

* The point at equal hyperbolic distance from
d+1 points is the limit point of the pencil
containing the sphere circumscribed to the
d+1 points of radical hyperplane H,



Consequences (3)

HD can be obtained by projecting
V(M)=intersection ¢(Ai)** parallel to x, axis
onto P, then vertically onto x, ,=0

This double projection creates injection
between VD and HD

Can do in 1 projection

Complexity is O(n<€(d/2)) computed in
O(nlogn+n<eild/2)) time



