
1

Computational Geometry II

Randomized Algorithms

Computational Geometry II
Lecturer: Gill Barequet

Michal Aharon

24/11/05
2

Randomized Algorithms
A randomized algorithm is
an algorithm that makes
random choices during its
execution.
Whatever the random
choices are, a randomized
algorithm always runs in a
finite time and outputs the
correct solution.

2

24/11/05
3

Randomized Incremental method

Randomized Incremental method:
Solve for a small subset of the data.
A valid solution is maintained while the rest of the data is
processed.

Off-line algorithm:
requires a prior
knowledge of the
whole data.

on-line (semi-
dynamic)
algorithms: do not
look ahead at the
objects that
remain to be
inserted.

24/11/05
4

Randomized Incremental method

Sometimes, these algorithms are not random at all,
as the order of the inserted data is imposed on the
algorithm.
However, we refer to this order as random, and then
perform a randomized analysis of the algorithm.

Assumption: All
permutations are

expected with equal
probability.

3

24/11/05
5

Definition - Reminder

n Objects, regions defined by
objects, regions conflict with
objects
Fj(S) – all regions defined by S
which conflict with j objects in S.
Fi

j(S) – all regions defined by i
objects from S and conflict with j
objects.
F0(S) – all regions defined by S
which do not conflict with any
object in S.

24/11/05
6

On Our Agenda

Sample Problem Description –
Vertical decomposition of a set of segments

Off-line solution to the problem
Randomized analysis

General off-line solutions of incremental problems.
on-line solution to the problem

Randomized analysis

General on-line solutions of incremental problems.
Extentions…

4

24/11/05
7

Vertical decomposition of a set of
segments

Let S be a set of n segments
in the plane. We are
interested in building a planar
map F0(S) that includes a
minimal number of trapezoids
defined and without conflict
over the set S, using only
vertical segments.

The maximal
number of
segments that
define a
region is 4.

24/11/05
8

Vertical Decomposition – General
Approach

In each step, a new segment is processed.
The regions that conflict with the new segment are
deleted.
Regions defined by the new segment are created.
At each step, the set of regions F is defined and
without conflict with the already processed segments.

5

24/11/05
9

Vertical Decomposition – General
Approach

The main problem is:

How do we find the regions
that conflict with the current

segment ?

24/11/05
10

Vertical Decomposition – Off-line
Approach

Two data structures are stored:

Decs(R) Conflict Graph

1

2

3

s6 s7 s8 s9

s1 s2 s3 s4 s5

s4 s6 s10 s11 s12

b1

2 3

a

c

d

s4

s6

At most 4 regions

b c d

a b c

b c d

6

24/11/05
11

Vertical Decomposition – Off-line
Approach

Two data structures are stored:

Conflict Graph

f

e

f

1

1 3
e (ordered lists)

1

2

3

e f

f

b1

2 3

a

c

d

s4

s6

24/11/05
12

Vertical Decomposition – Initialization

Conflict Graph

b

c

1

2

3

Decs(R)

1

2

3

4
4

O(1) O(n)

n-
1

S
eg

m
en

ts

7

24/11/05
13

Vertical Decomposition – Initialization

Conflict Graph

b

c

1

2

3

Decs(R)

1

2

3

4
4

O(1) O(n)

n-
1

S
eg

m
en

ts

24/11/05
14

Vertical Decomposition

Updating the decomposition:
The conflict graph reports all the
trapezoids that conflict with the
current processed segment.
Each such trapezoid is split into
at most 4 subregions.

8

24/11/05
15

Vertical Decomposition

Updating the decomposition:
The conflict graph reports all the
trapezoids that conflict with the
current processed segment.
Each such trapezoid is split into
at most 4 subregions.
Not all of these subregions will be
included in F(R∪{S}).

24/11/05
16

Vertical Decomposition
Updating the decomposition:

The conflict graph reports all the
trapezoids that conflict with the
current processed segment.
Each such trapezoid is split into
at most 4 subregions.
Not all of these subregions will be
included in F(R∪{S}).
S may intersect a vertical wall. A
part of the wall might be deleted
and the two subregions that join
this part should be joined.
The update of the decomposition
can be done in time linear in the
number of conflicting regions.

9

24/11/05
17

Vertical Decomposition

Updating the conflict graph:
When a trapezoid F is split into
sub-regions, the list of segments
that conflict with F is traversed
linearly, and up to 4 new lists are
created.
When joining regions to create a
new one, their lists of conflict
segments should be merged.

24/11/05
18

Vertical Decomposition – Algorithm
Analysis

Each update stage obeys:
Each update stage requires time
proportional to the number of
killed or created regions in this
step.
The update of the conflict graph
can be carried out in time
proportional to the number of
arcs added or removed during
this step.

10

24/11/05
19

Vertical Decomposition – Algorithm
Analysis

Each update stage obeys:
Each update stage requires time
proportional to the number of
killed or created regions in this
step.
The update of the conflict graph
can be carried out in time
proportional to the number of
arcs added or removed during
this step.

The Update
Condition

24/11/05
20

Vertical Decomposition – Algorithm
Analysis

Let be a region determined by i
segments that has j conflicts with all
segments.

'ijp

i=3, j=1

! !
()!' i ji

j i jp +=

Proof: this equals the probability
that the i creating segments will be
processed before the j conflicting
segments.

The probability that F be one of the
regions created by the algorithm is:

()i
jF F S∈

F

11

24/11/05
21

Vertical Decomposition – Algorithm
Analysis

The probability that F be one of
the regions created by the algorithm
during step r,

i=3, j=1

' ()i
jp r

' () ()i i
j j

ip r p r
r

=

()i
jF S

Let F be a region determined by i
segments that has j conflicts with all
segments.

()i
jp rLet be the probability that a region

F of be defined and without
conflict over a random r-sample of S
(4.2.1).

24/11/05
22

()i
jF S
()i
jp r

Vertical Decomposition – Algorithm
Analysis

The probability that F be one of
the regions created by the algorithm
during step r,

i=3, j=1

' ()i
jp r

' () ()i i
j j

ip r p r
r

=

Let F be a region determined by i
segments that has j conflicts with all
segments.

Let be the probability that a region
F of be defined and without
conflict over a random r-sample of S
(4.2.1).

Proof: For a region F to exists after
step r, we require that the R
already processed segments do
not conflict with F (P=). For F
to be created in step r, we require
that one of the segments creating F
is processed, and this happens in
P = i/r.

()i
jp r

12

24/11/05
23

Vertical Decomposition – Algorithm
Analysis

The expected total number of regions
created by the algorithm is:

0

1

(,)()
n

r

f r Sv S O
r=

 
=  

 
∑

Let S be a set of n objects.

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

Proof:
4 4

1 0 1 0 1
() () ' () ()

n i n i n
i i i i
j j j j

i j i j r

iv S F S p F S p r
r

− −

= = = = =

= =∑∑ ∑∑∑
4.2.2

24/11/05
24

Algorithm Analysis – Reminder

Lemma 4.2.2:

0
(,) ()

n i
i i
k j

j

j n i j
k r i k

f r S F S
n
r

−

=

− −  
  − −  =

 
 
 

∑

0
0 0

(,) () () ()
n i n i

i i i i
j j j

j j

n i j
r i

f r S F S F S p r
n
r

− −

= =

− − 
 − = =

 
 
 

∑ ∑

4 4

0
1 0 1 0

(,) () () ()
n i n

i i i
j j j

i j i j

n i j
r i

f r S F S F S p r
n
r

−

= = = =

− − 
 − = =

 
 
 

∑∑ ∑∑

13

24/11/05
25

Vertical Decomposition – Algorithm
Analysis

The expected total number of regions
created by the algorithm is:

0

1

(,)()
n

r

f r Sv S O
r=

 
=  

 
∑

Let S be a set of n objects.

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

The expected total number of conflict
arcs added to the conflict graph by the
algorithm is:

0
2

1

(,)()
n

r

f r Se S O n
r=

 
=  

 
∑

24/11/05
26

The expected total number of conflict
arcs added to the conflict graph by the
algorithm is:

0
2

1

(,)()
n

r

f r Se S O n
r=

 
=  

 
∑

Vertical Decomposition – Algorithm
Analysis

Let S be a set of n objects.

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S
Proof:

()

4 4

1 0 1 0 1

1
02

1 1

0
2

1

() () ' () ()

(,)4 / 2 ,

(,)

n i n i n
i i i i
j j j j

i j i j r

n n

r r

n

r

ije S F S jp F S p r
r

m r S nO f r S
r r

f r SO n
r

− −

= = = = =

= =

=

= =

 
≤ =    

 
 

=  
 

∑∑ ∑∑∑

∑ ∑

∑
4.2.54.2.7

14

24/11/05
27

Algorithm Analysis – Reminder

Lemma 4.2.5:

1 0
(,) () ()

b n i
i i

k j j
i j

j
m r S F S p r

k

−

= =

 
=  

 
∑∑

1
1 0

(,) () ()
b n i

i i
j j

i j
m r S F S jp r

−

= =

= ∑∑

24/11/05
28

Algorithm Analysis – Reminder

Lemma 4.2.7:

(for a constant)

()1 0(,) / 2 ,n rm r S f r S
r

γ −
≤   

γ

15

24/11/05
29

Vertical Decomposition – Algorithm
Analysis

Let S be a set of n objects.

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S
The expected total number of conflict
arcs added to the conflict graph by the
algorithm is:

0
2

1

(,)()
n

r

f r Se S O n
r=

 
=  

 
∑

If the algorithm satisfies the update
condition, then its complexity is, on the
average:

0
2

1

(,)n

r

f r SO n
r=

 
 
 
∑

24/11/05
30

0
2

1

(,)()
n

r

f r Se S O n
r=

 
=  

 
∑

Vertical Decomposition – Algorithm
Analysis

Let S be a set of n objects.

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S
The expected total number of conflict
arcs added to the conflict graph by the
algorithm is:

If the algorithm satisfies the update
condition, then its complexity is, on the
average:

0
2

1

(,)n

r

f r SO n
r=

 
 
 
∑

Proof:

() ()v S e S= +
Update

condition

16

24/11/05
31

Vertical Decomposition – The Update
Condition

Each update stage obeys:
Each update stage requires time
proportional to the number of
killed or created regions in this
step.
the update of the conflict graph
can be carried out in time
proportional to the number of
arcs added or removed during
this step.

24/11/05
32

Vertical Decomposition – Algorithm
Analysis

Let S be a set of n segments, a pairs of which
intersect. Then, 2

0 2(,) ()arf r S O r
n

= +

Let a(R) be the number
of intersecting pairs in R.
The number of regions
in the vertical
decomposition is:
O(r+a(R)).

17

24/11/05
33

Vertical Decomposition – Algorithm
Analysis

Let S be a set of n segments, a pairs of which
intersect. Then, 2

0 2(,) ()arf r S O r
n

= +

Proof: For a subset R of r segments, denote a(R)
the number of intersecting pairs. The number of
regions is O(r+a(R)). An intersection point P in S is
also an intersection point in R with probability

2 (1)/
2 (1)

n n r r
r r n n
−    −

=   − −   

24/11/05
34

Total complexity of the vertical
decomposition Algorithm

2 2
0

2 2
1 1

2
1

(,) (/)

1

(log)

n n

r r

n

r

f r S O r ar nO n O n
r r

an O O
r n

O n n a

= =

=

 + 
=   

   
    = +    

    
= +

∑ ∑

∑

18

24/11/05
35

General off-line solutions -
Randomized Incremental Method

S F(R)

F0(R)Planar map of trapezoids
that are defined and

without conflict with the
set R.

ObjectsSegments

RegionsTrapezoids

24/11/05
36

General off-line solutions -
Randomized Incremental Method

Regions Killed By O: The regions of F0(R) that do
not belong to F0(R∪{O}) are the ones the conflict with
O
Regions Created By O: The regions of F0(R∪{O})
that do not belong to F0(R) are the ones determined
by a subset of R∪{O} that contains O.

S F(R)

19

24/11/05
37

On Our Agenda

Sample Problem Description –
Vertical decomposition of a set of segments

Off-line solution to the problem
Randomized analysis

General off-line solutions of incremental problems.
on-line solution to the problem

Randomized analysis

General on-line solutions of incremental problems.
Extentions…

24/11/05
38

Vertical Decomposition – On-line
Approach

Two data structures are stored:

Decs(R) Conflict GraphInfluence Graph
The Influence Graph is directed and acyclic.
The nodes correspond to the regions created by the
algorithm.
A node in the graph might have several parents.

20

24/11/05
39

The Influence Graph

O

U1 U2 U3 U4

U1

U2

U4
U3

24/11/05
40

The Influence Graph

O

U1 U2 U3 U4

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

When a new object is inserted, it should first be located,
searching from the root O.

U1

U2

U4
U3

21

24/11/05
41

The Influence Graph

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4
O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

24/11/05
42

The Influence Graph

U
1_

1

U13_1

U2

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

U3_1 U3_2

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4U
1_

1

U
1_

2

U13_1

U4

U3_1_1 U3_24_1U3_12_1 U4_3U4_2

22

24/11/05
43

The Influence Graph

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4
O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

24/11/05
44

Vertical Decomposition – On-line
Approach

Two data structures are stored:

The Influence Graph is directed and acyclic.
The nodes correspond to the regions created by the
algorithm.
A node in the graph might have several parents.
It holds that:

Each leaf in the influence graph represents a region which is
defined and without conflict over the current subset of objects.
The domain of influence of a region associated with a node is
contained in the union of the domains of influence of the
regions associated with the parents of that node.

Influence Graph

23

24/11/05
45

The Influence Graph

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

c a
c

a
c

c a
c

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4

The decomposition
can be omitted
here, as all
information about
the planar map can
be retrieved from
the influence graph.

24/11/05
46

Analysis of the On-line Algorithm

The algorithm must satisfy:
A conflict between a given region and object can be detected
in constant time.
The number of children of each node in the graph is
bounded by a constant (4).
The parents of a node created by O are nodes that are killed
by O, and the update takes time linear in the number of
nodes killed or created at each step.

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

24

24/11/05
47

Analysis of the On-line Algorithm

The algorithm must satisfy:
A conflict between a given region and object can be detected
in constant time.
The number of children of each node in the graph is
bounded by a constant (4)
The parents of a node created by O are nodes that are killed
by O, and the update takes time linear in the number of
nodes killed or created at each step.

The Update
Condition

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

24/11/05
48

Analysis of the On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected storage used by the
algorithm to process the n objects is

0

1

(,)n

r

f r SO
r=

 
 
 
∑

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

Proof:This is exactly the bound proved for the
expected number of created regions.

25

24/11/05
49

Analysis of the On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected complexity of the
algorithm is

0
2

1

(,) .
n

r

f r SO n
r=

 
 
 
∑

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

24/11/05
50

Analysis of the On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected complexity of the
algorithm is:

0
2

1

(,)n

r

f r SO n
r=

 
 
 
∑

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r SProof:

1. Complexity for locating the object: if a region of
is created at some step, this node will be visited j
times. That is equal to the number of conflict arcs
created in the off-line version (with the same
permutation). This was proved to be as above.

2. Complexity of the all update phases – proportional
to the number of regions created (previous slide).

3. Total complexity is therefore the sum of the two
terms, which equals the above.

()i
jF S

26

24/11/05
51

Analysis of The On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected complexity of the
algorithm is:

0
2

1

(,)n

r

f r SO n
r=

 
 
 
∑

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r SProof:

1. Complexity for locating the object: if a region of
is created at some step, this node will be visited j
times. That is equal to the number of conflict arcs
created in the off-line version (with the same
permutation). This was proved to be as above.

2. Complexity of the all update phases – proportional
to the number of regions created (previous slide).

3. Total complexity is therefore the sum of the two
terms, which equals the above.

()i
jF S

Notice that the complexity of
the algorithm is dominated by

the cost of the locating
phases.

This will later be changed in
an off-line accelerated

version.

24/11/05
52

Analysis of the On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected time complexity of the
locating phase at step k is

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

1
0

2
1

(,) .
k

r

f r SO
r

−

=

 
 
 
∑

27

24/11/05
53

Analysis of the On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected complexity of the
locating phase at step k is:

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

1
0

2
1

(,)k

r

f r SO
r

−

=

 
 
 
∑

Proof: a region F in is created at step r with
probability . The probability that this region
conflicts with the object in step k, knowing F is created
prior to step k, is . Therefore, the expected
number of nodes that conflicts with O is:

()i
jF S

/()j n r−

4 1

1 0 1

4 1 1
0

1 2
1 1 1

1
0

2
1

(,) () ()

(/ 2 ,)
(,)

()

(,)

n i k
i i
j j

i j r

k k

i r r

k

r

i jw k S F S p r
r n r

f r Si m r S O
r n r r

f r SO
r

− −

= = =

− −

= = =

−

=

=
−

   = =  −  
 

=  
 

∑∑ ∑

∑∑ ∑

∑

' () ()i i
j j

ip r p r
r

=

4.2.54.2.7

24/11/05
54

Algorithm Analysis – Reminder

Lemma 4.2.5:

1 0
(,) () ()

b n i
i i

k j j
i j

j
m r S F S p r

k

−

= =

 
=  

 
∑∑

1
1 0

(,) () ()
b n i

i i
j j

i j
m r S F S jp r

−

= =

= ∑∑

28

24/11/05
55

Algorithm Analysis – Reminder

Lemma 4.2.7:

()1 0(,) / 2 ,n rm r S f r S
r

γ −
≤   

24/11/05
56

Analysis of the On-line Algorithm

If an algorithm satisfies the update
condition, then:
The expected time complexity of the
update phase at step k is:

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

00 ((1) / 2 ,)(,)
1

f k Sf k SO
k k

 −  + − 

Expected number
of regions created
at step k

Expected number
of regions killed at
step k

29

24/11/05
57

Analysis of The On-line Algorithm

denotes the
expected
number of
regions defined
and without
conflict over a
random r-
sample of S

0 (,)f r S

Proof: the expected number of regions created at step
k is

A region is killed if it is a region before step k, and if it
conflicts with O. This happens with probability

and the expected number of regions killed in step k is

4
0

1 0

(,)(,) () () .
n i

i i
j j

i j

f k Siv k S F S p k
k k

−

= =

= =∑∑

(1) ,
1

i
j

jp k
n k

−
− +

()

4

1 0

01

'(,) () (1)
1

(1 /2 ,(1,) .
1 1

n i
i i
j j

i j

jv k S F S p k
n k

f k Sm k S O
k k

−

= =

= −
− +

  −−  = =  
 − − 

∑∑

4.2.5

4.2.7

24/11/05
58

Vertical Decomposition - Analysis

The expected number of trapezoids is:
2 2(/)O r ar n+

The expected time complexity of an on-line algorithm is

(log)O n n a+

The average time complexity of the nth insertion is

()O n a+

(log /)O n a n+

and its expected storage is

30

24/11/05
59

Summary of Previous Lecture

We defined random incremental algorithms, and
talked about off-line and on-line versions.

Conflict graph.

Influence graph.

b

c

1

2

3

4

n-
1

S
eg

m
en

ts

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

24/11/05
60

Accelerated incremental algorithms

0
2

1

(,)n

r

f r SO n
r=

 
 
 
∑

0

1

(,)n

r

f r SO
r=

 
 
 
∑

0
2

1

(,)n

r

f r SO n
r=

 
 
 
∑

Locating
phase

Updating
phase

Total

31

24/11/05
61

Accelerated incremental algorithms

()logO n n

()O n

()logO n n

Locating
phase

Updating
phase

Total

24/11/05
62

Accelerated incremental algorithms

Process in the
On-line approach

Compute the conflict graph

Process in the
On-line approach, while
start each search from
the lowest node in the

conflict graph

32

24/11/05
63

The Influence Graph

O

U1 U2 U3 U4

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

U1

U2

U4
U3

f U3

f

24/11/05
64

The Influence Graph

U
1_

1

U13_1

U2

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

U3_1 U3_2

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4U
1_

1

U
1_

2

U13_1

U4

f U3

f

U3_1_1 U3_24_1U3_12_1 U4_3U4_2

33

24/11/05
65

Accelerated incremental algorithms

When should
we compute the
conflict graph

???

Process in the
On-line approach

Compute the conflict graph

Process in the
On-line approach, while
start each search from
the lowest node in the

conflict graph

24/11/05
66

Accelerated incremental algorithms

We try to combine the conflict graph and the influence
graph so to achieve a static algorithm (off-line) that has a
lower average complexity.

If an on-line algorithm satisfies the update condition,
knowledge of the conflict graph at step k can be used to
perform the locating phase in step m with an average
complexity of

1
0

2
1

(/ 2 ,)m

r k

f r S
O

r

−

= +

   
 
 
∑

We don't maintain the conflict graph at every step, but
update it only at certain steps.

34

24/11/05
67

Accelerated incremental algorithms

We try and combine the conflict graph and the influence
graph so to achieve a static algorithm (off-line) that has a
lower asymptotic average complexity.

We don't maintain the conflict graph at every step, but
update it only at certain steps.

Proof: The conflict graph at step k can be augmented, for each
object O in S\Sk, by a list of pointers to the nodes of the
influence graph which correspond to a region of F0(Sk) that
conflict with O. In order to locate Om at step m, the algorithm
may start to traverse the influence graph not from the root, but
from the nodes of the influence graph which correspond to a
region of f0(Sk) that conflicts with Om. The expected number of
regions that conflicts with the object Om is,

1 1

1
1 1 0 1

1
0

2
1

() () (,)
()

(/ 2 ,)

m b n b m
i i
j j

r k i j r k

m

r k

i j bO F S p r O m R S
r n r r n r

f r S
O

r

− − −

= + = = = +

−

= +

   
=   − −  

   =  
 

∑ ∑∑ ∑

∑

24/11/05
68

Accelerated incremental algorithms
If the conflict graph is computed at steps

() */ log , 1,2,..., logk
kn n n for k n = = 

log*n remains smaller than 5 for all numbers n from 1 up
to 265,535

()

(1)
*

()

log log log...log

log 1
log

log 1

k

k times

i

i

n n

n
n i

n

−

=

 >
= ⇔ 

≤

14243

35

24/11/05
69

Accelerated incremental algorithms
If the conflict graph is computed at steps

() */ log , 1,2,..., logk
kn n n for k n = = 

{ }1000, 100,301,578kfor n n= =

24/11/05
70

Accelerated incremental algorithms
If the conflict graph is computed at steps

() */ log , 1,2,..., logk
kn n n for k n = = 
Then the conflict graph is computed log*n times, with
complexity O(n log*n). The locating phases, between
step nk and step nk+1, have a total average complexity
of

()

1 1

1

1

1 1 1

()

1

()
1

1 (log)

(log log)

() log log

()

k k

k k k

k

k

n nl

l n r n l n k

n
k

l n

k
k k

lO O
r n

lO n
n

n n O n

O n

+ +

+

−

= + = + = +

= +

+

   =   
   

 =  
 

= −

=

∑ ∑ ∑

∑

Total complexity: *(log)O n n

Given that: f0(r,S) = O(r), and that the
conflict graph can be built in expected

time O(n)

36

24/11/05
71

Vertical Decomposition of a Polygon

0

*

(,) ()

(log)

f r S O r

O n n

=

⇓

24/11/05
72

To summarize

Randomized Incremental Algorithms

Off-line approach On-line approach

Conflict graph Influence graph

Accelerated Algorithm

Update Condition

Complexity
Bounds

37

24/11/05
73

