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Randomized Algorithms
A randomized algorithm is 
an algorithm that makes 
random choices during its 
execution. 
Whatever the random 
choices are, a randomized 
algorithm always runs in a 
finite time and outputs the 
correct solution.
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Randomized Incremental method

Randomized Incremental method:
Solve for a small subset of the data.
A valid solution is maintained while the rest of the data is 
processed.

Off-line algorithm: 
requires a prior 
knowledge of the 
whole data.

on-line (semi-
dynamic) 
algorithms: do not 
look ahead at the 
objects that 
remain to be 
inserted.
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Randomized Incremental method

Sometimes, these algorithms are not random at all, 
as the order of the inserted data is imposed on the 
algorithm. 
However, we refer to this order as random, and then 
perform a randomized analysis of the algorithm.

Assumption: All 
permutations are 

expected with equal 
probability.
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Definition - Reminder

n Objects, regions defined by 
objects, regions conflict with 
objects
Fj(S) – all regions defined by S
which conflict with j objects in S.
Fi

j(S) – all regions defined by i
objects from S and conflict with j
objects.
F0(S) – all regions defined by S
which do not conflict with any 
object in S.
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On Our Agenda

Sample Problem Description –
Vertical decomposition of a set of segments

Off-line solution to the problem 
Randomized analysis

General off-line solutions of incremental problems.
on-line solution to the problem

Randomized analysis

General on-line solutions of incremental problems.
Extentions…
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Vertical decomposition of a set of 
segments

Let S be a set of n segments 
in the plane. We are 
interested in building a planar 
map F0(S) that includes a 
minimal number of trapezoids 
defined and without conflict 
over the set S, using only 
vertical segments.

The maximal 
number of 
segments that 
define a 
region is 4.
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Vertical Decomposition – General 
Approach

In each step, a new segment is processed. 
The regions that conflict with the new segment are 
deleted.
Regions defined by the new segment are created.
At each step, the set of regions F is defined and 
without conflict with the already processed segments.
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Vertical Decomposition – General 
Approach

The main problem is:

How do we find the regions 
that conflict with the current 

segment ?
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Vertical Decomposition – Off-line 
Approach

Two data structures are stored:

Decs(R) Conflict Graph
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Vertical Decomposition – Off-line 
Approach

Two data structures are stored:

Conflict Graph

f

e
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1 3
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Vertical Decomposition – Initialization

Conflict Graph

b
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Decs(R)
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Vertical Decomposition – Initialization

Conflict Graph
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Vertical Decomposition

Updating the decomposition:
The conflict graph reports all the 
trapezoids that conflict with the 
current processed segment.
Each such trapezoid is split into 
at most 4 subregions.



8

24/11/05
15

Vertical Decomposition

Updating the decomposition:
The conflict graph reports all the 
trapezoids that conflict with the 
current processed segment.
Each such trapezoid is split into 
at most 4 subregions.
Not all of these subregions will be 
included in F(R∪{S}).
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Vertical Decomposition
Updating the decomposition:

The conflict graph reports all the 
trapezoids that conflict with the 
current processed segment.
Each such trapezoid is split into 
at most 4 subregions.
Not all of these subregions will be 
included in F(R∪{S}).
S may intersect a vertical wall. A 
part of the wall might be deleted 
and the two subregions that join 
this part should be joined.
The update of the decomposition 
can be done in time linear in the 
number of conflicting regions.
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Vertical Decomposition

Updating the conflict graph:
When a trapezoid F is split into 
sub-regions, the list of segments 
that conflict with F is traversed 
linearly, and up to 4 new lists are 
created.
When joining regions to create a 
new one, their lists of conflict 
segments should be merged.
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Vertical Decomposition – Algorithm 
Analysis

Each update stage obeys:
Each update stage requires time 
proportional to the number of 
killed or created regions in this 
step.
The update of the conflict graph 
can be carried out in time 
proportional to the number of 
arcs added or removed during 
this step.
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Vertical Decomposition – Algorithm 
Analysis

Each update stage obeys:
Each update stage requires time 
proportional to the number of 
killed or created regions in this 
step.
The update of the conflict graph 
can be carried out in time 
proportional to the number of 
arcs added or removed during 
this step.

The Update
Condition
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Vertical Decomposition – Algorithm 
Analysis

Let        be a region determined by i 
segments that has j conflicts with all 
segments.

'ijp

i=3, j=1

! !
( )!' i ji

j i jp +=

Proof: this equals the probability 
that the i creating segments will be 
processed before the j conflicting 
segments.

The probability           that F be one of the 
regions created by the algorithm is: 

( )i
jF F S∈

F
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Vertical Decomposition – Algorithm 
Analysis

The probability              that F be one of 
the regions created by the algorithm 
during step r, 

i=3, j=1

' ( )i
jp r

' ( ) ( )i i
j j

ip r p r
r

=

( )i
jF S

Let F be a region determined by i 
segments that has j conflicts with all 
segments.

( )i
jp rLet            be the probability that a region 

F of               be defined and without 
conflict over a random r-sample of S 
(4.2.1).
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( )i
jF S
( )i
jp r

Vertical Decomposition – Algorithm 
Analysis

The probability              that F be one of 
the regions created by the algorithm 
during step r, 

i=3, j=1

' ( )i
jp r

' ( ) ( )i i
j j

ip r p r
r

=

Let F be a region determined by i 
segments that has j conflicts with all 
segments.

Let            be the probability that a region 
F of               be defined and without 
conflict over a random r-sample of S 
(4.2.1).

Proof: For a region F to exists after 
step r, we require that the R 
already processed segments do 
not conflict with F (P=         ). For F
to be created in step r, we require 
that one of the segments creating F
is processed, and this happens in 
P = i/r.

( )i
jp r
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Vertical Decomposition – Algorithm 
Analysis

The expected total number of regions 
created by the algorithm is:

0

1

( , )( )
n

r

f r Sv S O
r=

 
=  

 
∑

Let S be a set of n objects.

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

Proof:
4 4

1 0 1 0 1
( ) ( ) ' ( ) ( )

n i n i n
i i i i
j j j j

i j i j r

iv S F S p F S p r
r

− −

= = = = =

= =∑∑ ∑∑∑
4.2.2
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Algorithm Analysis – Reminder

Lemma 4.2.2:

0
( , ) ( )

n i
i i
k j

j

j n i j
k r i k

f r S F S
n
r

−

=

− −  
  − −  =

 
 
 

∑

0
0 0

( , ) ( ) ( ) ( )
n i n i

i i i i
j j j

j j

n i j
r i

f r S F S F S p r
n
r

− −

= =

− − 
 − = =

 
 
 

∑ ∑

4 4

0
1 0 1 0

( , ) ( ) ( ) ( )
n i n

i i i
j j j

i j i j

n i j
r i

f r S F S F S p r
n
r

−

= = = =

− − 
 − = =

 
 
 

∑∑ ∑∑
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Vertical Decomposition – Algorithm 
Analysis

The expected total number of regions 
created by the algorithm is:

0

1

( , )( )
n

r

f r Sv S O
r=

 
=  

 
∑

Let S be a set of n objects.

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

The expected total number of conflict 
arcs added to the conflict graph by the 
algorithm is:

0
2

1

( , )( )
n

r

f r Se S O n
r=

 
=  

 
∑
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The expected total number of conflict 
arcs added to the conflict graph by the 
algorithm is:

0
2

1

( , )( )
n

r

f r Se S O n
r=

 
=  

 
∑

Vertical Decomposition – Algorithm 
Analysis

Let S be a set of n objects.

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S
Proof:

( )

4 4

1 0 1 0 1

1
02

1 1

0
2

1

( ) ( ) ' ( ) ( )

( , )4 / 2 ,

( , )

n i n i n
i i i i
j j j j

i j i j r

n n

r r

n

r

ije S F S jp F S p r
r

m r S nO f r S
r r

f r SO n
r

− −

= = = = =

= =

=

= =

 
≤ =    

 
 

=  
 

∑∑ ∑∑∑

∑ ∑

∑
4.2.54.2.7
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Algorithm Analysis – Reminder

Lemma 4.2.5:

1 0
( , ) ( ) ( )

b n i
i i

k j j
i j

j
m r S F S p r

k

−

= =

 
=  

 
∑∑

1
1 0

( , ) ( ) ( )
b n i

i i
j j

i j
m r S F S jp r

−

= =

= ∑∑
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Algorithm Analysis – Reminder

Lemma 4.2.7:

(for a constant      ) 

( )1 0( , ) / 2 ,n rm r S f r S
r

γ −
≤   

γ
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Vertical Decomposition – Algorithm 
Analysis

Let S be a set of n objects.

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S
The expected total number of conflict 
arcs added to the conflict graph by the 
algorithm is:

0
2

1

( , )( )
n

r

f r Se S O n
r=

 
=  

 
∑

If the algorithm satisfies the update 
condition, then its complexity is, on the 
average:

0
2

1

( , )n

r

f r SO n
r=

 
 
 
∑
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0
2

1

( , )( )
n

r

f r Se S O n
r=

 
=  

 
∑

Vertical Decomposition – Algorithm 
Analysis

Let S be a set of n objects.

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S
The expected total number of conflict 
arcs added to the conflict graph by the 
algorithm is:

If the algorithm satisfies the update 
condition, then its complexity is, on the 
average:

0
2

1

( , )n

r

f r SO n
r=

 
 
 
∑

Proof:

( ) ( )v S e S= +
Update 

condition
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Vertical Decomposition – The Update
Condition

Each update stage obeys:
Each update stage requires time 
proportional to the number of 
killed or created regions in this 
step.
the update of the conflict graph 
can be carried out in time 
proportional to the number of 
arcs added or removed during 
this step.
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Vertical Decomposition – Algorithm 
Analysis

Let S be a set of n segments, a pairs of which 
intersect. Then,                                  2

0 2( , ) ( )arf r S O r
n

= +

Let a(R) be the number 
of intersecting pairs in R. 
The number of regions 
in the vertical 
decomposition is: 
O(r+a(R)).
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Vertical Decomposition – Algorithm 
Analysis

Let S be a set of n segments, a pairs of which 
intersect. Then,                                  2

0 2( , ) ( )arf r S O r
n

= +

Proof: For a subset R of r segments, denote a(R)
the number of intersecting pairs. The number of 
regions is O(r+a(R)). An intersection point P in S is 
also an intersection point in R with probability

2 ( 1)/
2 ( 1)

n n r r
r r n n
−    −

=   − −   
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Total complexity of the vertical 
decomposition Algorithm

2 2
0

2 2
1 1

2
1

( , ) ( / )

1

( log )

n n

r r

n

r

f r S O r ar nO n O n
r r

an O O
r n

O n n a

= =

=

 + 
=   

   
    = +    

    
= +

∑ ∑

∑
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General off-line solutions -
Randomized Incremental Method

S F(R)

F0(R)Planar map of trapezoids 
that are defined and 

without conflict with the 
set R.

ObjectsSegments

RegionsTrapezoids

24/11/05
36

General off-line solutions -
Randomized Incremental Method

Regions Killed By O: The regions of F0(R) that do 
not belong to F0(R∪{O}) are the ones the conflict with 
O
Regions Created By O: The regions of F0(R∪{O}) 
that do not belong to F0(R) are the ones determined 
by a subset of R∪{O} that contains O.

S F(R)
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On Our Agenda

Sample Problem Description –
Vertical decomposition of a set of segments

Off-line solution to the problem 
Randomized analysis

General off-line solutions of incremental problems.
on-line solution to the problem

Randomized analysis

General on-line solutions of incremental problems.
Extentions…
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Vertical Decomposition – On-line 
Approach

Two data structures are stored:

Decs(R) Conflict GraphInfluence Graph
The Influence Graph is directed and acyclic.
The nodes correspond to the regions created by the 
algorithm.
A node in the graph might have several parents. 
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The Influence Graph

O

U1 U2 U3 U4

U1

U2

U4
U3
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The Influence Graph

O

U1 U2 U3 U4

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

When a new object is inserted, it should first be located, 
searching from the root O.

U1

U2

U4
U3
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The Influence Graph

U
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1

U
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U13_1

U
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U
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U2

U4
O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4
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The Influence Graph

U
1_

1

U13_1

U2

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

U3_1 U3_2

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4U
1_

1

U
1_

2

U13_1

U4

U3_1_1 U3_24_1U3_12_1 U4_3U4_2
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The Influence Graph

U
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U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4
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Vertical Decomposition – On-line 
Approach

Two data structures are stored:

The Influence Graph is directed and acyclic.
The nodes correspond to the regions created by the 
algorithm.
A node in the graph might have several parents. 
It holds that:

Each leaf in the influence graph represents a region which is 
defined and without conflict over the current subset of objects.
The domain of influence of a region associated with a node is 
contained in the union of the domains of influence of the 
regions associated with the parents of that node.

Influence Graph
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The Influence Graph

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4

c a
c

a
c

c a
c

U
1_

1

U
1_

2

U13_1

U
3_

1

U
3_

2

U2

U4

The decomposition 
can be omitted 
here, as all 
information about 
the planar map can 
be retrieved from 
the influence graph.
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Analysis of the On-line Algorithm

The algorithm must satisfy:
A conflict between a given region and object can be detected 
in constant time.
The number of children of each node in the graph is 
bounded by a constant (4).
The parents of a node created by O are nodes that are killed 
by O, and the update takes time linear in the number of 
nodes killed or created at each step.

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4
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Analysis of the On-line Algorithm

The algorithm must satisfy:
A conflict between a given region and object can be detected 
in constant time.
The number of children of each node in the graph is 
bounded by a constant (4)
The parents of a node created by O are nodes that are killed 
by O, and the update takes time linear in the number of 
nodes killed or created at each step.

The Update
Condition

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4
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Analysis of the On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected storage used by the 
algorithm to process the n objects is 

0

1

( , )n

r

f r SO
r=

 
 
 
∑

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

Proof:This is exactly the bound proved for the 
expected number of created regions.
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Analysis of the On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected complexity of the 
algorithm is 

0
2

1

( , ) .
n

r

f r SO n
r=

 
 
 
∑

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S
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Analysis of the On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected complexity of the 
algorithm is: 

0
2

1

( , )n

r

f r SO n
r=

 
 
 
∑

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r SProof: 

1. Complexity for locating the object:  if a region of             
is created at some step, this node will be visited j 
times. That is equal to the number of conflict arcs 
created in the off-line version (with the same 
permutation). This was proved to be as above. 

2. Complexity of the all update phases – proportional 
to the number of regions created (previous slide).

3. Total complexity is therefore the sum of the two 
terms, which equals the above.

( )i
jF S
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Analysis of The On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected complexity of the 
algorithm is: 

0
2

1

( , )n

r

f r SO n
r=

 
 
 
∑

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r SProof: 

1. Complexity for locating the object:  if a region of             
is created at some step, this node will be visited j 
times. That is equal to the number of conflict arcs 
created in the off-line version (with the same 
permutation). This was proved to be as above. 

2. Complexity of the all update phases – proportional 
to the number of regions created (previous slide).

3. Total complexity is therefore the sum of the two 
terms, which equals the above.

( )i
jF S

Notice that the complexity of 
the algorithm is dominated by 

the cost of the locating 
phases.

This will later be changed in 
an off-line accelerated 

version.
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Analysis of the On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected time complexity of the 
locating phase at step k is 

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

1
0

2
1

( , ) .
k

r

f r SO
r

−

=

 
 
 
∑
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Analysis of the On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected complexity of the 
locating phase at step k  is: 

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

1
0

2
1

( , )k

r

f r SO
r

−

=

 
 
 
∑

Proof:   a region F in            is created at step r with 
probability                   . The probability that this region
conflicts with the object in step k, knowing F is created 
prior to step k, is                . Therefore, the expected 
number of nodes that conflicts with O is:

( )i
jF S

/( )j n r−

4 1

1 0 1

4 1 1
0

1 2
1 1 1

1
0

2
1

( , ) ( ) ( )

( / 2 , )
( , )

( )

( , )

n i k
i i
j j

i j r

k k

i r r

k

r

i jw k S F S p r
r n r

f r Si m r S O
r n r r

f r SO
r

− −

= = =

− −

= = =

−

=

=
−

   = =  −  
 

=  
 

∑∑ ∑

∑∑ ∑

∑

' ( ) ( )i i
j j

ip r p r
r

=

4.2.54.2.7
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Algorithm Analysis – Reminder

Lemma 4.2.5:

1 0
( , ) ( ) ( )

b n i
i i

k j j
i j

j
m r S F S p r

k

−

= =

 
=  

 
∑∑

1
1 0

( , ) ( ) ( )
b n i

i i
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m r S F S jp r

−

= =
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Algorithm Analysis – Reminder

Lemma 4.2.7:

( )1 0( , ) / 2 ,n rm r S f r S
r

γ −
≤   
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Analysis of the On-line Algorithm

If an algorithm satisfies the update 
condition, then:
The expected time complexity of the 
update phase at step k is: 

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

00 ( ( 1) / 2 , )( , )
1

f k Sf k SO
k k

 −  + − 

Expected number 
of regions created 
at step k

Expected number 
of regions killed at 
step k
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Analysis of The On-line Algorithm

denotes the 
expected 
number of 
regions defined 
and without 
conflict over a 
random r-
sample of S

0 ( , )f r S

Proof: the expected number of regions created at step 
k is

A region is killed if it is a region before step k, and if it  
conflicts with O. This happens with probability

and the expected number of regions killed in step k is

4
0

1 0

( , )( , ) ( ) ( ) .
n i

i i
j j

i j

f k Siv k S F S p k
k k

−

= =

= =∑∑

( 1) ,
1

i
j

jp k
n k

−
− +

( )

4

1 0

01

'( , ) ( ) ( 1)
1

( 1 /2 ,( 1, ) .
1 1

n i
i i
j j

i j

jv k S F S p k
n k

f k Sm k S O
k k

−

= =

= −
− +

  −−  = =  
 − − 

∑∑
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Vertical Decomposition - Analysis

The expected number of trapezoids is: 
2 2( / )O r ar n+

The expected time complexity of an on-line algorithm is

( log )O n n a+

The average time complexity of the nth insertion is

( )O n a+

(log / )O n a n+

and its expected storage is
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Summary of Previous Lecture

We defined random incremental algorithms, and 
talked about off-line and on-line versions.

Conflict graph.

Influence graph.

b

c

1

2

3

4

n-
1 

S
eg

m
en

ts

O

U1 U2 U3 U4

U1_1 U1_2 U13_1 U3_1 U3_2

U2 U4
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Accelerated incremental algorithms

0
2

1

( , )n

r

f r SO n
r=

 
 
 
∑

0

1

( , )n

r

f r SO
r=

 
 
 
∑

0
2

1

( , )n

r

f r SO n
r=

 
 
 
∑

Locating 
phase

Updating 
phase

Total
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Accelerated incremental algorithms

( )logO n n

( )O n

( )logO n n

Locating 
phase

Updating 
phase

Total
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Accelerated incremental algorithms

Process in the 
On-line approach

Compute the conflict graph

Process in the 
On-line approach, while
start each search from
the lowest node in the

conflict graph
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The Influence Graph
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The Influence Graph
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Accelerated incremental algorithms

When should 
we compute the 
conflict graph   

???

Process in the 
On-line approach

Compute the conflict graph

Process in the 
On-line approach, while
start each search from
the lowest node in the

conflict graph
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Accelerated incremental algorithms

We try to combine the conflict graph and the influence 
graph so to achieve a static algorithm (off-line) that has a 
lower average complexity.

If an on-line algorithm satisfies the update condition,  
knowledge of the conflict graph at step k can be used to 
perform the locating phase in step m with an average 
complexity of

1
0

2
1

( / 2 , )m

r k

f r S
O

r

−

= +

   
 
 
∑

We don't maintain the conflict graph at every step, but 
update it only at certain steps.
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Accelerated incremental algorithms

We try and combine the conflict graph and the influence 
graph so to achieve a static algorithm (off-line) that has a 
lower asymptotic average complexity.

We don't maintain the conflict graph at every step, but 
update it only at certain steps.

Proof: The conflict graph at step k can be augmented, for each 
object O in S\Sk, by a list of pointers to the nodes of the 
influence graph which correspond to a region of F0(Sk) that 
conflict with O. In order to locate Om at step m, the algorithm 
may start to traverse the influence graph not from the root, but
from the nodes of the influence graph which correspond to a 
region of f0(Sk) that conflicts with Om. The expected number of 
regions that conflicts with the object Om is,

1 1

1
1 1 0 1

1
0

2
1

( ) ( ) ( , )
( )

( / 2 , )

m b n b m
i i
j j

r k i j r k

m

r k

i j bO F S p r O m R S
r n r r n r

f r S
O

r

− − −

= + = = = +

−

= +

   
=   − −  

   =  
 

∑ ∑∑ ∑

∑
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Accelerated incremental algorithms
If the conflict graph is computed at steps

( ) */ log , 1,2,..., logk
kn n n for k n = = 

log*n remains smaller than 5 for all numbers n from 1 up 
to 265,535

( )

( 1)
*

( )

log log log...log

log 1
log

log 1

k

k times

i

i

n n

n
n i

n

−

=

 >
= ⇔ 

≤

14243
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Accelerated incremental algorithms
If the conflict graph is computed at steps

( ) */ log , 1,2,..., logk
kn n n for k n = = 

{ }1000, 100,301,578kfor n n= =
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Accelerated incremental algorithms
If the conflict graph is computed at steps

( ) */ log , 1,2,..., logk
kn n n for k n = = 
Then the conflict graph is computed log*n times, with 
complexity O(n log*n). The locating phases, between 
step nk and step nk+1, have a total average complexity 
of

( )

1 1

1

1

1 1 1

( )

1

( )
1

1 (log )

(log log )

( ) log log

( )

k k

k k k

k

k

n nl

l n r n l n k

n
k

l n

k
k k

lO O
r n

lO n
n

n n O n

O n

+ +

+

−

= + = + = +

= +

+

   =   
   

 =  
 

= −

=

∑ ∑ ∑

∑

Total complexity: *( log )O n n

Given that: f0(r,S) = O(r), and that the 
conflict graph can be built in expected 

time O(n)
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Vertical Decomposition of a Polygon

0

*

( , ) ( )

( log )

f r S O r

O n n

=

⇓
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To summarize

Randomized Incremental Algorithms

Off-line approach On-line approach

Conflict graph Influence graph

Accelerated Algorithm 

Update Condition

Complexity 
Bounds
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