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Introduction. Main Results

a) Definition of Voronoi diagrams.

b) Construction in 2-dim space. Higher dimensions.

c) Parabolic representation. Voronoi diagrams and
polytopes.

d) Delaunay triangulation. Connection with Voronoi
diagrams.

Voronoi Diagram: Definition

For a given set of sites
(points) on space E“,

Voronoi Diagram is the
subdivision of the space
into cells, such that each
point of the space is
assigned to the nearest
site.




Voronoi Diagram: Definition (cont)

Given M ={M,...,.M }: set of sites (points ) in E?,
to each M, attach the cell V'(M,) as follows:

VIM)={X eE*:6(X,M))<5(X,M,) for any j#i}.

Here 0(-,') - Euclidean distancein E“.

Parabolic Construction: Adding
Dimension

We consider the construction in d dimensions with the time
complexity O(nlogn+n'*'?).

1. For each point p= (P p,)€E’
constructp =(Pi>>PasPan) €E !

where p,,=pi+.+p;.

d .
Now space E° is represented T
. d B
as a parabolic surface Q € E*! (par:0)

O={qeE™:q,,=q +.+q¢;}

2.




Parabolic Construction: Adding
Dimension (cont.)

3. For each site M, € M consider the corresponding M, € Q

4. TFor each projected site M ;€0 construct the
hyperplane /7, tangent to Q at point ;.

5. The intersection of the n half spaces lying above
the hyperplanes defines a polytope in E"'.

6. The facets of the obtained polytOf)e are projected
down to E“ to get exactly the cells of the Voronoi
Diagram.

Delaunay Triangulation: Definition

1. Connect all the pairs
of sites whose Voronoi
cells are adjacent.




Delaunay Triangulation: Definition

1. Connect all the pairs
of sites whose Voronoi
cells are adjacent.

2. The resulting set of

segments forms the
Delaunay

triangulation.

Delaunay triangulation: Parabolic
Construction

1. — 3. the same

4. Construct L, the lower
envelope of the convex
hull of points M, € Q.

5. The facets of L are
projected down to get

exactly the cells of the
Delaunay

triangulation.




Theoretical Part

a) Power of a point w.r.t. a sphere.

b) Point representation of spheres.

c) Polarity. Polar hyperplanes.

d) Orthogonal spheres.

e) The connection with Voronoi Diagram.

Power of a Point w.r.t. a Sphere

Let Y be aspherein [E¢ with center C and radius r.
For any point X € E“ define its power w.r.t. X as
>(X)=XC? -7

Here X( is avector (XC = ?Cf ).




Properties of (-

1. 2(X)=0,for XeX
2. X(X)>0, for X outside X
3 2(X)<0, for X inside X

4. IfDis any line that contains X; if M and N are the
intersection points of D with the sphere )’ , then

S(X)= XM - XN

Properties of 2(*) cont)
>(X)=XM-XN = XC* —r*
* Proof:
1. If D is a line that connecting X and C:
XM - XN =|XM|-|XN|-cos(LMXN) =| XM |-| XN| =
= (xc|-r)xC|+r)= XC* —r* =5(X)

2. Otherwise: /XMM = /XN N
The triangles XMM’ and XNN’ are similar.
So, |xu| _|xwr]

YN [XN]
lxM|-|xN| = (xc|+r) xC|-r)
| XM |-|XN|-cos(0) = XC* —#*
XM - XN = XC* —r*

M




Point Representation of Spheres

For each sphere Y, with center C and radius r, define
o =%(0) = X(origin)=0C* —r* =C* —r*
Pay attention, that pair (C , o‘) describes sphere Y. completely.
Introduce the mapping ¢: #(X) = (C,0) € E“*'.
. . d . d+1
The mapping ¢ takes a sphere 2, in [ “to the point (C,o)eE™,

d d+1
We embed F “as the hyperplane in E“" whose equationis X,,; = 0.

Point Representation of Spheres

Connection with paraboloid:

Consider a point X € E¢ as a sphere with center X and » =0,
The correspondent O equals 0 =X~ =X +..+X;
and the mappingis #(X)=(X,0).

Thus, for any pointin X € E¢ the correspondent ¢(X)
lies on the paraboloid Q={ge E":q,., =q] +..+q,}.




Polarity. Polar Hyperplanes

Useful notation: X € EY but X e E“"

For each point P = (P> Pya) € E" define a
unique (polar) hyperplane H as follows:

d
ﬁ: {XeEdH : Xav1 zzzpi'xi _pd+l}
i=1

Actually, there is a one-to-one correspondence between
the points of £9*'and the non-vertical hyperplanes in £¢*!

Polarity. Polar Hyperplanes cont)

Our case: forasphere Y take the corresponding
#(Z)=(C,0) e E‘*" and construct the polar hyperplane #(2)

d
dE) ={XeE™: x,, = 2Zcixl. —o}

i=1

or
dE) ={X=(X,x,)eE™: x,,=2C-X -0}




Connection with Paraboloid:

Recall...

1. For apoint X € E? as a sphere with center X and 7 =
we have o = X’ and the correspondent #(X)=(X,o )
lies on the paraboloid

O={qeE™ :q,, =q} +.+q;}

2. Then the polar hyperplane H(X) is tangentto O at
point d(X)-
Proof outline:
a) By definition we get that A X)ed(X).

b) The hyperplane ¢(X) intersects a paraboloid in only
one point:
for any ¥ € ¢(X) N QO we get that necessarily ¥ = #(X),

Orthogonal Spheres-1

Two spheres 2, and 2, are orthogonal E, L1Lx)

if their centers C, andradii 7, satisfy
3,(C,) =7 or, equivalently, %,(C,)=r’,

The power of C, w.r.t. a sphere X, equals 7, .

Actually: ¥, | ¥, iff the angle (/C,, IC,) at any intersection
point [ €X NX, isarightangle( 90°).

20




Orthogonal Spheres-2

Recalling that O; = C,-z - 1”,-2, i=1,2 wehave

1
2,12 <C-C, —5(0'1 +0,)=0&0,=2C,-C, -0,
So, two spheres 21 and 22 are orthogonal if §(X,) € #(2,)"

or, equivalently, ¢(X,) € ¢(21)*.

It is said that @#(X,) and ¢(X,) are conjugate.

Lemma 17.2.1: The set of spheres in E“ that are orthogonal
to a given sphere ¥, is mapped by ¢ to the polar hyper-
plane ¢(X)" of #(X).

21

Orthogonal Spheres-3

The sphere that passes through a given point X € E¢ is
orthogonal to X as to a zero-radius sphere centered at X.

Corollary: The set of spheresin E‘ that pass through

a given point X is mapped by @ tothe polar hyper-
plane ¢(X)" of ¢(X), tangent to the paraboloid Q at #(X).
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Orthogonal Spheres-4

Lemma (location of a polar hyperplane) :

1. Theintersection of #(X) with Qis the image under ¢
of the set of spheres with radius (), that are orthogonal
to Y, namely, Y, itself.

2. Let 2 beaspherein E . Then, the points of 2.,
lifted on the paraboloid Q in E**', belong to a unique
hyperplane that intersects Q exactly at these points.
This hyperplane is the polar hyperplane ¢(2)" of H(X)-

23

Orthogonal Spheres-5

Lemma 17.2.3 The power of X with respect to a sphere 2
equals the signed vertical distance from the point ¢(X)
to the hyperplane #(X)".

Proof: Construct a sphere 2y, centeredat Xand X, L X .

By definition, its radius satisfies rzz =2(X).

Now, #(Z ) and #(X) are placed on the same vertical line, that
passes through X and intersects ¢(2)* This is since (2, ) e ¢(2)*
The X,y - coordinates of #(T ,)and @#(X) are

X? and 2,(0)= X* - I’EZX =X’ - (X)), respectively.

The difference between these coordinates is the signed vertical distance.
24




Orthogonal Spheres-6

Lemma 17.2.4 Let X and 2 be a point and a sphere in E‘¢
Then,

L XeX & ¢X)ed(X) < 4 edX)
2. Xeint(T) o HX)edE) < HE)edX)"
3 Xeext(T) & ¢X)eg(X)" < dE)ed(X)”

Here H"and H~ define the halfspaces lying above and
below the hyperplane H, respectively.

25

Radical Hyperplane

Let £, and X, be two spheresin E“.
The radical hyperplane / , satisfies

H,={XeE": 2,(X)-Z,(X)=0.

Le., H,, is the set of points of E“ that have the same
power with respect to both spheres.

Observation 1: The spheres that are orthogonal to %, and %, are
mapped by ¢ to the intersection of ¢(z,)" N ¢(z,)" , which
can be projected onto g to H,, .

Think about spheres, that pass through two given points....
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Voronoi Diagrams

Let M ={M,,....M } beasetof points in E“.
Embed the space E¢ into E*' as the hyperplane x,,, =0.

As before, construct the paraboloid Q, specify the points
#(M,) € O and the corresponding polar hyperplanes #(M,)",
which are tangent to Q at points ¢(M,).

Let V(M) denote the polytope that is the intersection of the
n halfspaces, lying above the hyperplanes ¢(M,)".

27

Voronoi Diagrams-Intuition

M={M,,..M,} -sitesin E’.

1. Each cell V(M,) is the set of centers of
spheres, such that the boundary of such a sphere
contains M, and its interior does not contain

another site M ;, i# j.

2. For each such sphere Y. holds ¢(X) € p(M ,.)*,

but * ..
HE)epM)*, i)

lies above the hyperplanes ¢(M j)*, I # ] (see Lemma 17.2.4(1-2)).

3. Therefore, the Vgrlonoi diagram can be represented
as a polytope in E i

28




Voronoi Diagrams-2

Theorem 17.2.5. The Voronoi diagram of M, Vor(M), is the
cell complex of dimension din E“, whose faces are

obtained by projecting onto E“the proper faces of the
Voronot polytope V(M).

Proof: The boundary of V(M) is a pure cell complex of dimensiond ,
hence so is Vor(M ). Let A bea apoint on a facet of (M), that is
contained in ¢(M,)". This point A is the image under ¢ of some sphere 2
that passes through M, and whose interior contains no other point of M.
There cannot be a site in M closer to the center of 2 than M.

That is, A, as the center of Z , belongs to the cell V(M ) of the Voronoi
diagram. A is the projection of A onto E“

29

Properties of Voronoi Diagrams

. L2 - general position assumption: no 4 + 2 pointsin M
lie on the boundary of a sphere. If it is satisfied, then V(M) is a simple
(d+1) — dimensional polytope, with each vertex incident to d+1 hyperplanes.
Also, Vor(M)is a complex whose vertices are all equidistant from some d+1
points in M and closer to these points than to any other point in M.

. The problem of computing the Voronoi diagram of n points in £ d is
reduced to the computation of the intersection of n half-spaces of F -+t
Corollary 17.2.6: The complexity (namely, the number of faces) of
the Voronoi diagram of n pointsin g9 is @(nw/ﬂ) . The
diagram. may be computed in time O(nlogn + n(d/ﬂ) , which is
optimal in the worst case.
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Delaunay Complexes

Let M ={M,,...M,} beaset of points in £ .
Embed the space E“ into E‘" asthe hyperplane X, =0.

As before, construct the paraboloid Q and specify the points ¢(M,)€Q .

Let D(M) be the convex hull of the points ¢(M),...,¢(M ) and let L(M)
be the lower envelope of D(M) .

The projection of L(M) onto E form a complex, whose vertices are
exactly the points M,,..., M, . The domain of this complex is the projection
of the convex hull of ¢(M)),...,4(M,), hence, it is a convex hull of M,.... M.

This complex is called the Delaunay complex - Del(M).

31

Delaunay. Connection with Voronoi

1. For k£ =0,...,d the k-faces (k-dimensional faces) of De/(M) are in a
one-to-one correspondence with the k- faces of L(M).

2. There exists a one-to-one correspondence between the vertices of L(M)
and the faces of V(M) : it maps the facet of J'(M), containing ¢(M,)",
to the point ¢(M,). More generally, the k-faces of V(M) are in one-
to-one correspondence with the (d-k) - faces of L(M). Also, the
bijection reverses inclusion relationships.

3. In addition, the k-faces of V(M) are in a one-to-one correspondence
with the k - faces of Vor(M).
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Delaunay. Connection with Voronoi

Therefore, we have the bijection between the k-faces of Del(M) and
the (d-k) - faces of Vor(M).

The Delaunay complex is therefore dual to the Voronoi diagram. The
above duality maps a face of Vor(M), formed by the points, equidistant
from m sites in M, to the face of Del(M), that is the convex hull of these
sites.

33

Delaunay. Connection with Voronoi

Theorem 17.3.1 The Delaunay complex of points M,,...,M, € E’ isa
complex dual to the Voronoi diagram. Its faces are obtained by
projecting the faces of the lower envelope of the convex hull of the
points ¢(M))....,4(M ), obtained by lifting the M,,....M, € E* onto the
paraboloid Q.

Therefore, the computation of the Delaunay complexin g¢ isreduced
to the computation of the convex hull of n points in g9+!.

Corollary: The Delaunay complex of n points in E? can be computed
in time O(nlogn+n'“*!), which is optimal in the worst case.
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Delaunay Triangulations

Under L, general assumption, L(M) is a simplicial polytope and
Del(M) is a simplicial complex which is called then the Delaunay
Triangulation.

If the assumption is not satisfied, then some d-face of Del(M) will be
formed by more than d+1 points and, hence, will not be a simplex.
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Delaunay . Properties-1

Theorem 17.3.3 : Let M be a set of points M,,...M, € E. Then, any
d- face in the Delaunay complex can be circumscribed by a sphere that
passes through all its vertices, and whose interior contains no point in M.

Proof: Assume L, general condition. Pick a d-face T of the Delaunay complex.
Then, T is the convex hull oM, ... M, ) of d+1 cospherical points M, ..., M, .
By the bijection between L(M) and Del(M) | the convex hull

conv(g(M, ),....,¢(M, )) isa d-faceof L(M) .

The points  ¢(M, ),....,4(M, ) lie on paraboloid Q and also belong to ¢(2)*, where Z
circumscribes M ,..., M, . In turn, by the orthogonality argument, ¢(X)
belongs to the intersection of ¢(M, ) s p(M ; ) and, hence, is a vertex of V' (M) .

Again, by the bijection between }'(M ) and Vor(M), the point C (center of ¥ )

is the vertex of Vor(M), incident to the cells that correspond to the sites

M .., M, , therefore, the interior of £ cannot contain any other points in M.
Io ta
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Delaunay . Properties-2

Theorem 17.3.4: Let M be a set of points M,,...M, € E* and let
={M, ...,M,} beasubsetofk pointsin M.

Then, the convex hull of M is a face of the Delaunay complex if and
only if there exists a (d-1)- sphere passing through M, ,....M, and
such that no pointin M belongs to its interior.

Corollary: Any Delaunay triangulation of aset M ={M,,...M } e E*
is such that the sphere circumscribed to any d- simplex in the
triangulation contains no points of M in its interior. Conversely,

any triangulation satisfying this property is a Delaunay triangulation.
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Higher-order Voronoi diagrams

Given M ={M,,..., M} :set of sites (points ) in E‘
To each subset M — M of size k attach the cell V/ - ( M ‘)

VM) ={Xe€E": YM,eM,, VM, e M\M,, || XM, |<| XM, ||}.

In other words, it is the set of points in £ “ that are  closer
to all the sites in M, than to any other sitein M \ M.

The total complex1ty of the Voronoi diagrams of all orders k,
1<k<n—1, is O(n™™),

Note: some of cells now can be empty...
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Example: Voronoi Diagram of Order 2




